显示装置和电子设备的制作方法

文档序号:2729819阅读:104来源:国知局
专利名称:显示装置和电子设备的制作方法
技术领域
本发明涉及一种使用发光装置的显示装置,其能在二维图像显示和三维图像显示之间转换。发光装置包括具有密封发光元件的面板和安装在面板上的模块,该模块拥有例如包括控制器的IC这样的电路。本发明还涉及使用该显示装置的电子设备。
背景技术
当双眼视网膜图像的差别(双眼视差)这可能在用双眼看物体时产生在显示装置中非随机产生时,有可能使人眼能够识别三维图像。已经开发了各式使用双眼视差原理的三维图像显示装置。三维图像显示装置大体分为具有双目视觉特殊眼镜的类型和没有眼镜的类型。
在具有眼镜的类型中,举例来说,存在使右图像和左图像着以不同颜色并且带着具有相反右色和左色的眼镜观察图像的方法,以及使用互相成直角而偏振的滤光器拍摄(shooting)右和左图像并且带着具有分别以相同方向偏振的滤光器的眼镜观察图像的方法,并且各式方法已经被开发和商业化。然而,具有双目视觉眼镜的类型不能消除带眼镜的烦人的复杂性,所以没有眼镜的类型近来成为主流。
在没有眼镜的直视类型的三维图像显示装置中,从像素发出的光被一光学系统控制,例如视差栅栏,双凸透镜,或者微透镜阵列(蝇眼透镜),以分别反射不同的图像到右眼和左眼并获得立体感。
例如,下面的专利文件1公开了使用视差栅栏分别反射右眼图像和左眼图像到右眼和左眼来显示三维图像的技术。
专利文件1已公开的日本专利8-036145(图1第2页)上述专利文件1中描述的显示三维图像的技术,将参考图15和16得以详细描述。图15和16示出了液晶板1401的一个像素、具有狭缝形的孔1402的视差栅栏1403、以及观察者两眼的位置关系。
对于液晶板1401的多个像素,图15和16仅示出了两眼连线方向上一行像素部分。孔1402的纵向方向对应于平行液晶板的平面上的两眼连线方向的垂直方向。
视差栅栏1403位于观察者和液晶板1401之间。在液晶板1401相对于观察者的另一侧,配备有光导板1404,从光源1405发射的光在光导板1404中传输并照射液晶板1401。
然后,如图15所示,当三维图像显示时,液晶板1401的沿着双眼连线方向的相邻两像素分别用于右眼像素和左眼像素。左眼像素中,显示从左眼观察到的图像(图像L),右眼像素中显示从右眼观察到的图像(图像R)。
相应的,从光导板1404发射的部分光经过液晶板的每个像素传输,然后通过视差栅栏1403的孔1402到达观察者的双眼。这种情况,当孔1402的节距B,液晶板1401的像素节距P以及双眼之间的距离E的关系优化时,可能使从右眼像素发出的光仅入射到右眼,从左眼像素发出的光仅入射到左眼。这样,可能使观察者识别由图像L和图像R形成的三维图像。
在显示二维图像的情况下,双眼连线方向的相邻像素不被分别用作右眼像素和左眼像素,两像素上显示相同的图像,如图16所示。根据上面描述的配置,相同的图像反射到双眼,使观察者能够识别二维图像。
专利文件1中描述的方法具有一个缺陷,为了能显示二维图像和三维图像,在显示二维图像时它需要牺牲一半的屏幕分辨率。在只显示二维图像的常规显示装置中,相应的图像可以在所有的像素中显示。然而,在专利文件1公开的显示装置中,从图16理解,所有像素的图像不能反映到双眼,除非左眼像素和右眼像素显示相同的图像。如果相应的图像能分别在所有像素的每个像素中显示以保证显示二维图像的分辨率,则所有像素的图像不能反映到双眼,进而看到模糊的图像。相应的,当优先着眼于图像质量时,必须牺牲一半的分辨率。
在常规显示装置中,二维图像比三维图像显示的机会更多,在提供三维图像显示功能的时候不希望牺牲二维图像显示的分辨率。
因而,未授权的专利文件1公开了显示三维图像的技术,开发该技术就是为了避免上述缺陷。
未授权的专利文件1Naoki TANAKA,“用于更便宜的PC和手机的液晶显示”,NIKKEI MICRO DEVICES(10月1日),日本,NikkeiBusiness Publication,Inc,2002年10月1日出版,No.208,pp.91-96。
上述未授权的专利文件1所描述的显示三维图像的技术,将参考图17和18得以详细描述。图17和18示出了液晶板1601的一个像素,延迟薄膜1602,用于切换的液晶1603,偏振片1606,以及观察者双眼的位置关系。
对于液晶板1601的多个像素,图17和图18仅示出了双眼连线方向的一行像素部分,如图15和16一样。
延迟薄膜1602中,两个具有相差90°偏振方向的区域排列成条纹,每个区域的纵向方向对应于与显示板1601平行的平面上双眼连线方向的垂直方向。另外,偏振片1606具有偏振方向,其与延迟薄膜1602两个区域的偏振方向成±45°。
在液晶板1601相对于观察者的相对侧上,配备有延迟薄膜1602,切换液晶1603,以及偏振片1606,延迟薄膜1602插入到液晶板1601与切换液晶1603之间。另外,偏振片1606配备在切换液晶1603相对于延迟薄膜1602的相对侧上。
而且,光导板1604配备在偏振片1606相对于观察者的另一侧。从光源1605发出的光在光导板1604中传输,并照射偏振片1606。偏振片1606传输预先设定的照射光的偏振光。传输光入射到切换液晶1603。
当液晶具有电压控制的方向时,切换液晶1603能旋转传输光的偏振面。如图17所示显示三维图像时,传输光的偏振面在切换液晶1603中旋转了45°。偏振面旋转45°的光传输通过延迟薄膜1602两个区域中的任何一个区域。
这样,延迟薄膜1602,切换液晶1603以及偏振片1606的组合可以用作视差栅栏。
当经过延迟薄膜1602传输的光传输通过液晶板1601时,可能使从右眼像素发出的光仅进入右眼,使左眼像素发出的光仅进入左眼。这样,可以使观察者识别由图像L和图像R形成的三维图像。
在显示二维图像的时候,切换液晶1603中的偏振面不旋转。因而,大约一半的通过偏振片传输的光经过延迟薄膜1602的两个区域均匀传输。上述配置使得它可能反射所有像素的图像到观察者的双眼,可以识别二维图像,而不像专利文件1中那样需要牺牲一半的分辨率。
然而,由于在未授权的专利文件1中描述的方法除了液晶板之外需要提供切换液晶,显示装置本身很笨重,难于制成很薄的形状。

发明内容
为解决上述问题,本发明的一个目的是提供一种显示装置,所述显示装置能在显示二维图像时分辨率不减半的情况下显示三维图像,并防止设备本身过于笨重。
根据本发明的显示装置中,使用发光元件作为显示元件的发光面板(此后,简单的称为面板)而不是使用液晶板来显示图像。因为发光元件本身发光,所以不像使用液晶板的情况,它不需要提供光源。因此,它不需要使用背光部分例如光源和光导板,而这些阻止了显示装置做成薄状。另外,具有传输光属性的电极(半透明)用作发光元件的阳极和阴极。换句话说,发光元件的光从面板的两侧发出。
图1简单示出了根据本发明的显示装置的配置。图1(A)中,附图标记101表示具有密封发光元件和显示图像的多个像素的面板的侧视图。另外,附图标记102表示一个器件,其通过控制像素发出的光的传输方向能够分别反射不同图像到左眼和右眼,在说明书中,它们被称为光学系统。面板的一侧用于显示二维图像,而另一侧用于显示三维图像。
当使用光学系统102时,像图1(B)中所示的那样,从虚箭头所示的方向观察可以观察到三维图像。另外,从实箭头所示的方向观察,二维图像可以在显示三维图像相对的另一侧观察到,如图1(C)所示。
在一侧显示图像时,当配备有屏蔽入射光进入另一侧的仪器103(此后称为屏蔽器)时,能够保持所需的对比度。
这种情况下,屏蔽器103不需要从面板101分离,屏蔽器103可以制备在面板中。另外,这种情况下,根据本发明的显示装置,屏蔽器103并不是必须的部件。在不需强调对比度的情况下,可以不配备屏蔽器。在使用显示装置作为自己一部分的电子装置中,可以使用能用作屏蔽器103的替代物的物品来保持对比度。
因为面板的两侧在扫描方向互不相同,在从二维图像切换到三维图像,或者从三维图像切换到二维图像时,至少一个垂直方向的扫描方向被翻转。
既然发光装置被用于本发明,不像液晶板,它不需要例如光源和光导板这样的部分,免于使装置本身过于笨重。相应的,当使用发光装置时,一个面板可被不同地使用,一侧用于显示二维图像,一侧用于显示三维图像。因此,由于在显示二维图像时,观察者和面板之间不配备光学系统102,所以所有像素的图像都反射到观察者的双眼,不像专利文件1,它在不牺牲一半分辨率的情况下识别二维图像。
面板可以是任何有源矩阵面板和无源矩阵面板。
本发明提供一种显示装置,其特征在于,该显示装置包括一个具有多个像素的发光装置和在发光装置一侧提供的光学系统,其中,发光元件配备在多个像素的每个像素中,所述发光元件的两个电极都是半透明的,和通过控制从多个像素发出光的传输方向,所述光学系统使得从多个像素中的两个相邻像素的一个像素中发出的光入射到观察者的左眼,从另一个像素发出的光入射到观察者的右眼。
本发明还提供一种显示装置,其特征在于,该显示装置包括一个具有多个像素的发光装置和在发光装置一侧提供的光学系统,其中,发光元件和能够屏蔽光的第一和第二屏蔽器配备在多个像素的每个像素中,所述发光元件的两个电极都是半透明的,从发光元件的一个区域部分发射到发光元件一侧的光被第一屏蔽器屏蔽,从发光元件另一区域发射到发光元件另一侧的光被第二屏蔽器屏蔽,和通过控制从多个像素发出的光的传输方向,所述光学系统使得从多个像素中的两个相邻像素的一个像素中发出的光入射到观察者的左眼,从另一个像素发出的光入射到观察者的右眼。
本发明还提供一种显示装置,其特征在于,该显示装置包括一个具有多个像素的发光装置和在发光装置一侧提供的光学系统,其中,第一和第二发光元件和能够屏蔽光的第一和第二屏蔽器配备在多个像素的每个像素中,第一和第二发光元件的两个电极都是半透明的,从第一发光元件发射到发光装置一侧的光被第一屏蔽器屏蔽,从第二发光元件发射到发光装置另一侧的光被第二屏蔽器屏蔽,和通过控制发射到发光装置一侧的光传输方向,所述光学系统使得从多个像素中的两个相邻像素的一个像素中发出的光入射到观察者的左眼,从另一个像素发出的光入射到观察者的右眼。
本发明还提供一种显示装置,其特征在于,该显示装置包括一个具有多个像素的发光装置和在发光装置一侧的光学系统,其中,第一和第二发光元件和能够屏蔽光的第一和第二屏蔽器配备在多个像素的每个像素中,第一和第二发光元件包括两个都是半透明的电极,从第一发光元件发射到发光装置一侧的光被第一屏蔽器屏蔽,从第二发光元件发射到发光装置另一侧的光被第二屏蔽器屏蔽,第一发光元件和第二发光元件中的一个发光元件在另一个发光元件发射光时是关闭的,和通过控制发射到发光装置一侧的光传输方向,所述光学系统使得从多个像素中的两个相邻像素的一个像素中发出的光入射到观察者的左眼,从另一个像素发出的光入射到观察者的右眼。
本发明还提供一种电子设备,其特征在于,所述电子设备包括一个显示装置,所述显示装置具有含多个像素的发光装置;和在发光装置一侧配备的光学系统;以及一个能够屏蔽经过发光装置传输的光的屏蔽器,其中,发光元件配备在多个像素的每个像素中,发光元件的两个电极都是半透明的,通过控制从多个像素发出的光的传输方向,所述光学系统使得从多个像素中的两个相邻像素的一个像素中发出的光入射到观察者的左眼,从另一个像素发出的光入射到观察者的右眼,和所述屏蔽器可以移动一个位置,使得其相对于观察者位于发光装置的相对侧上。
本发明还提供一种电子设备,其特征在于,所述电子设备包括一个显示装置,所述显示装置具有含多个像素的发光装置;和在发光装置一侧的光学系统;以及能够屏蔽通过发光装置传输的光的第一和第二屏蔽器,其中,发光元件配备在多个像素的每个像素中,所述发光元件的两个电极都是半透明的,通过控制从多个像素发出的光的传输方向,所述光学系统使得从多个像素中的两个相邻像素的一个像素中发出的光入射到观察者的左眼,从另一个像素发出的光入射到观察者的右眼,和第一屏蔽器可以移动一个位置,使得其相对于光学系统位于发光装置的相对侧上,第二屏蔽器可以移动一个位置,使得其相对于光学系统位于所述光学系统的相对侧上。
本发明还提供一种电子设备,其特征在于,所述电子设备包括一种发光装置,所述发光装置具有多个像素;和提供在所述发光装置一侧的光学系统,其中,发光元件配备在多个像素的每个像素中,所述发光元件的两个电极都是半透明的,通过控制从多个像素发出光的传输方向,所述光学系统使得从多个像素中的两个相邻像素的一个像素中发出的光入射到观察者的左眼,从另一个像素发出的光入射到观察者的右眼,和使用所述发光装置可以显示随机点立体图。


图1是根据本发明的显示装置的配置图;图2是根据本发明的显示装置的透视图;图3示出了显示三维图像的面板,光学系统,屏蔽器,双眼的位置关系;图4示出了显示二维图像的面板,光学系统,屏蔽器,双眼的位置关系;图5是具有屏蔽器的电子装置的实例的图示;图6是具有屏蔽器的面板的结构图;图7是具有屏蔽器的面板的结构图;图8是示出切换扫描方向的示意图;图9是能够反转显示装置的电子装置的图示;图10是双凸透镜和微透镜阵列的透视图;图11示出了显示三维图像时双凸透镜,面板,屏蔽器,双眼的位置关系;图12是能够切换扫描方向的模拟驱动信号线驱动电路的电路图;图13是能够切换扫描方向的数字驱动信号线驱动电路的电路图;图14是能够切换扫描方向的扫描线驱动电路的电路图;图15是现有技术,示出了显示三维图像时液晶板,光学系统,双眼的位置关系;图16是现有技术,示出了显示二维图像时液晶板,光学系统,双眼的位置关系;图17是现有技术,示出了显示三维图像时液晶板,光学系统,双眼的位置关系;图18是现有技术,示出了显示二维图像时液晶板,光学系统,双眼的位置关系;图19示出了铰接(hinge)结构;图20是能够使用随机点立体图显示三维图像的手机的图示;图21是发光元件(装置)结构的图示;图22是安装在面板上的具有控制器和电源电路的模块的外观图;图23是根据本发明的使用无源矩阵发光装置的显示装置的剖面图。
具体实施例方式
实施例模式1下面详细描述根据本发明的显示装置的配置。图2(A)和图2(B)示出了根据本发明的显示装置的配置。图2(A)是显示三维图像一侧的外貌图,图2(B)是显示二维图像一侧的外貌图。图2(A)和图2(B)成逆关系。图2(A)中,箭头示出了观察三维图像时从观察者到面板的光线的方向。而图2(B)中,箭头示出了观察二维图像时从观察者到面板的光线的方向。
附图标记201表示面板,其具有多个显示图像的像素203,每个像素203都配备有发光元件。每个像素203的发光元件使用能传输光的电极作为阳极和阴极。因此,在没有提供屏蔽器的情况下光被传输,面板201的另一侧可以通过像素可见。这样,从发光元件发出的光可以从面板201的两侧发射。面板的一侧用于显示二维图像,另一侧用于显示三维图像。
另外,附图标记202表示光学系统,其能够通过控制像素发出光的传输方向分别发射不同图像到左眼和右眼。尽管图2中使用了视差栅栏,但光学系统不限于此。也可以使用其他光学系统,例如双凸透镜或微透镜阵列。图2中作为光学系统202使用的视差栅栏具有狭缝状孔204。
光学系统与面板201的一侧在一定的距离上重叠。与光学系统202重叠的一侧对应于显示三维图像的一侧,另一侧对应于显示二维图像的一侧。因而,当观察者观察三维图像时,光学系统202位于观察者和面板201之间。相反,当观察者观察二维图像时,光学系统202位于相对于观察者的面板的另一侧。
接着,给出显示三维图像时面板201的像素203,光学系统202,观察者双眼的位置关系的解释。图3示出了图2(A)沿着A-A’的剖视图。这里,A-A’对应于观察者双眼连线方向。
对于面板201的多个像素,图3示出了沿着双眼连线方向上的一行像素203。另外,在图3所示的例子中,视差栅栏被用作光学系统202,附图标记204表示为视差栅栏202提供的孔。孔204的纵向方向对应于与面板201平行的平面上双眼连线方向的垂直方向。视差栅栏202位于双眼和面板201之间。
当如图3所示显示三维图像时,沿着面板201的双眼连线方向上的两个相邻像素,被分别用作右眼像素和左眼像素。左眼像素中,可以显示从左眼观察到的图像(图像L),右眼像素中可以显示从右眼观察到的图像(图像R)。
相应的,从面板201的每个像素203发出的部分光通过视差栅栏202的孔204进入观察者的双眼。这种情况,当孔204的节距B,面板201的像素节距P以及双眼间距E的关系优化时,有可能使从右眼像素发出的光仅入射到右眼,使左眼像素发出的光仅进入左眼。这样,有可能使观察者识别由图像L和图像R形成的三维图像。
这种情况,用于屏蔽从面板发出光的屏蔽器205还配备在面板201相对于观察者的另一侧上,这在图2中没有示出。当配备屏蔽器205时,面板201的对比度增强。另外,当使用屏蔽器时,它不但可以屏蔽光,还可以抑制光的反射,能够获得更强对比度的图像。
下面,给出显示二维图像时面板201的像素203,光学系统202,观察者双眼的位置关系的解释。图4示出了图2(B)中沿着B-B’线的剖视图。然而,B-B’对应于观察者双眼连线的方向。相同附图标记表示的部分已经在图3中示出。
当显示二维图像时,使用面板201中相对于显示三维图像侧的另一侧。因此,在观察者的双眼和面板之间没有视差栅栏。在显示二维图像时,沿着双眼连线方向,相邻像素不被分别用作右眼像素和左眼像素,在所有的像素中分别显示对应的图像。上述配置使得有可能向观察者的双眼反射所有像素的图像,可以识别二维图像而不象专利文件1那样需要牺牲一半的分辨率。
另外,当显示二维图像时,屏蔽器205的提供使得面板201的对比度提高,就像显示三维图像一样。在使用屏蔽器205的情况下,这在图2中没有示出,屏蔽器205配备在相对于观察者的面板201的另一侧。当配备屏蔽器205时,面板201的对比度提高。另外,当使用屏蔽器时(该屏蔽器不但可以屏蔽光还可以抑制光反射),使得获取的图像具有更高的对比度。
屏蔽器205可以独立于面板201形成,也可以在面板中形成。可以替换的,与显示装置分离的且能够屏蔽光的物体可以用作屏蔽器的替代物。
(实施例模式2)接着,图5用来描述与显示装置分离的用作屏蔽器替代物的物体的例子。
图5示出了使用根据本发明的显示装置的电子装置的一种模式的电子图书,图5(A)是电子图书的透视图。电子图书具有两个框架体501和502以及根据本发明的显示装置503,它们与铰接504相连,以铰接504为中心可以旋转。框架体501和502配备有各种操作键505。
在显示装置502的侧上,框架体501和502的一侧由可以屏蔽光的材料形成,当需要提高显示装置502的对比度时,此侧可以用作屏蔽器。
图5(B)示出了图5(A)所示的电子图书的一种状态,其中,机壳502被显示装置503的一侧覆盖,以用作屏蔽器,三维图像在另一侧上显示。另外,图5(C)示出了机壳501被显示装置503的另一侧覆盖以用作屏蔽器的状态,三维图像在此侧上显示。
这样,显示装置在没有配备屏蔽器的情况下可以提高对比度。可替换的,没有配备屏蔽器,可以在另一侧被看透的情况下使用显示装置。
另外,显示装置503中的图像切换可以根据显示装置和机壳501或502在铰接504形成的角度θ自动执行。图19用来描述根据机壳501和显示装置503之间形成的夹角自动切换图像情况下铰接504结构的例子。
图19示出了本实施例中电子图书的铰接504的剖视图。显示装置503在铰接504处与旋转轴508相连。旋转轴508的截面形状为缺口的圆形。
另外,机壳501和502与旋转部分506在铰接504处相连。旋转部分506可以以旋转轴508为主轴旋转,机壳501和显示装置503之间形成的角度θ由旋转部分5 06的旋转角度决定。
旋转部分506具有按钮507,用来识别机壳501和显示装置503之间形成的夹角θ。夹角θ可根据按钮507是否接触到旋转轴508的圆弧部分来识别。
图19(A)和图19(B)示出了θ=0°和θ=30°的情况下铰接504的剖面图。图19(A)所示的θ=0°的情况,旋转轴508与按钮507接触。图19(B)所示的θ=30°的情况,按钮507未与旋转轴508接触。
根据按钮507是否与旋转轴508接触,图像被切换。上述结构使得能够根据机壳501和显示装置503在连接部分形成的角度θ自动切换显示的图像。有可能使设计者设置一个合适的角度θ的值,图像根据旋转轴508形状的改变而执行切换。
(实施例模式3)图6用来描述在面板中制作屏蔽器的例子。
图6(A)示出了面板剖面的一个模式。图6(A)所示的剖面图示出了发光元件,衬底以及屏蔽薄膜的位置关系。实际上,除此之外,可以提供例如隔离薄膜,导电薄膜,导线,晶体管,或者电容器,专用面板等部件,这些在图6(A)中省略。
图6(A)中,发光元件601由阳极602,阴极603和位于阳极602和阴极603之间的场致发光层604形成。本发明中,阳极602和阴极603都由半透明电极形成。发光元件601密封于两个透明衬底605和606之间。
另外,对应于屏蔽器的屏蔽薄膜607在衬底605和阳极602之间形成,对应于屏蔽器的屏蔽薄膜608在衬底606和阴极603之间形成。屏蔽薄膜607屏蔽从像素中发光元件一半区域发出的光,而屏蔽薄膜608屏蔽另一半区域发出的光。
尽管图6所示的例子中屏蔽薄膜607和608夹在衬底605和606之间,但本发明不限于此种结构。屏蔽薄膜607和608的一个或者两个可以配备在相对于发光元件的衬底605和606的相对侧的一侧或者两侧上。然而,当屏蔽薄膜的位置接近发光元件时,传输光可以在更大程度上得到抑制。
上述结构抑制了一定数量的经面板传输的光,进而提高对比度。
图6所示的结构中,尽管两个屏蔽薄膜607和608分别屏蔽发光元件的一半区域,但本发明不限于此。在使用用于屏蔽光的光学系统例如视差栅栏的情况下,例如三维图像的亮度比二维图像的亮度低。在这种情况下,可以调整屏蔽薄膜的区域之间的平衡,使得显示三维图像的一侧发射更多的光,使得两侧亮度平衡。
在图6(A)所示结构中,因为仅需要为普遍面板(normal panel)的像素提供上述两个屏蔽薄膜,上述结构可以在不大幅度改变掩膜设计的情况下实施。另外,此结构可以应用于无源矩阵显示装置和有源矩阵显示装置。应用此结构于有源矩阵显示装置时,因为它不需要在每个像素中改变晶体管或者布图(layout)的数目,所以可以防止分辨率降低。
图6(B)示出了使用于普通面板的像素的电路图。图6(C)示出了在给图6(B)所示像素配备屏蔽薄膜情况下像素的顶视图。
图6(B)中,晶体管610的栅极与扫描线Gj(j=1到y)相连。晶体管610具有源极和漏极,一个与信号线Si(i=1到x)相连,另一个与晶体管611的栅极相连。晶体管611具有源极和漏极,一个与电源线Vi(i=到x)相连,另一个与发光元件612的像素电极相连。
发光元件612包括阳极、阴极、以及位于阳极和阴极之间的场致发光层。在阳极与晶体管611的源极或者漏极相连的情况下,阳极用作像素电极,阴极用作对面电极。相反,在阴极与晶体管611的源极或漏极相连的情况下,阴极用作像素电极,阳极用作对面电极。本发明中,阳极和阴极都由光能穿过的电极形成。
电源在每个发光元件612的相对电极和电源线Vi之间施加电压。相对电极和电源线之间的电压差保持在一定值,使得当晶体管611导通时发光元件被施加正向偏压。
存储电容器613具有两个电极,一个与电源线Vi连接,另一个与晶体管611的栅极相连。在晶体管610处于非选择状态(开态)时,存储电容器613用来保持晶体管611的栅极电压。尽管图6示出的结构具有存储电容器613,但本发明不限于此种结构,也可以是没有存储电容器613的结构。
当根据扫描线Gj的电势导通晶体管610时,输入到信号线Si的视频信号的电势加到晶体管611的栅极。输入视频信号的电势决定了晶体管611的栅极电压(栅极和源极之间的电压差)。根据栅电极流动的晶体管611的漏电流被供给发光元件612,发光元件612根据供给的电流发射光。
图6(C)中,附图标记614表示像素电极,像素电极614中虚线环绕的区域是场致发光层区域(图中未示出),像素电极614和阴极(图中未示出)相互交叠,对应于发光元件612。
附图标记615和616表示屏蔽薄膜,屏蔽薄膜615配备在发光元件612上,而屏蔽薄膜616配备在发光元件之下。屏蔽薄膜615屏蔽发光元件发光的一半区域,屏蔽薄膜616屏蔽另一半区域。
除此之外,图23示出了无源矩阵面板剖面图的一种模式。
图23中,发光元件7001由阳极7002,阴极7003,以及位于阳极7002与阴极7003之间的场致发光层7004形成。发光元件7001对应于阳极7002、场致发光层7004和阴极7003相互交叠的部分。阳极7002和阴极7003都由半透明电极形成。发光元件7001密封于两个半透明衬底7005和7006之间。
另外,对应于屏蔽器的屏蔽薄膜7007在衬底7005与阳极7002之间形成,对应于屏蔽器的屏蔽薄膜7008也在衬底7006和阴极7003之间形成。屏蔽薄膜7007屏蔽像素中发光元件一半区域发出的光,屏蔽薄膜7008屏蔽另一半区域发出的光。
尽管图6中所示的例子中屏蔽薄膜7007和7008夹在衬底7005和7006之间,但本发明不限于此结构。屏蔽薄膜7007和7008的一个或者两个都可以配备在相对于发光元件的衬底7005和7006的相对侧的一侧或者两侧上。然而,当配备的屏蔽薄膜的位置更接近发光元件时,传输光可以在更大程度上得到抑制。
上述结构使其能够抑制经面板传输的光的数量,进而提高对比度。
尽管图23所示的结构中两个屏蔽薄膜7007和7008分别屏蔽发光元件的一半区域,但本发明不限于此。在使用屏蔽光的光学系统例如视差栅栏的情况下,举例来说,三维图像的亮度比二维图像的亮度低。在这种情况下,可以调整屏蔽薄膜的区域之间的平衡,使得显示三维图像的一侧发射更多的光,进而平衡两侧的亮度。
下面,图7描述了在面板中制作屏蔽器的另一实例。
图7(A)示出了面板透视图的一种模式。就像图6(A)的情况一样,图7(A)所示的剖面图简单示出了发光元件,衬底和屏蔽薄膜的位置关系。实际上,除了这些之外,提供例如隔离薄膜、导电薄膜、导线、晶体管、或者电容器、专用面板等元件,然而这些元件在图7(A)中省略了。
考虑图7(A)所示的像素,一个像素中配备有两个发光元件701和702。发光元件701具有阳极703,发光元件702具有阳极704。另外,两个发光元件701和702共享场致发光层705和阴极706,场致发光层705位于阳极703和阴极706之间,场致发光层705位于阳极704和阴极706之间。
并不是什么时候都需要共享场致发光层和阴极。图7(A)中,两个发光元件分别具有独立的阳极。然而,发光元件可以具有共用的阳极和独立的阴极。
阳极703和704以及阴极706都由半透明电极形成。而且,发光元件701和702密封于两个半透明衬底707和708之间。
另外,对应于屏蔽器的屏蔽薄膜709形成在衬底707和阳极704之间,对应于屏蔽器的屏蔽薄膜710也形成在衬底708和阴极706之间。屏蔽薄膜709屏蔽面向衬底707的发光元件702发出的光,屏蔽薄膜710屏蔽面向衬底708的发光元件701发出的光。
和图6的情况一样,在图7中,一个或两个屏蔽薄膜709和710可以配备在相对于发光元件的衬底707和708的相对侧的一侧或两侧上。然而,当屏蔽薄膜位置更靠近发光元件时,可以更大程度地抑制光传输。
上述结构能够抑制通过面板传输的光并提高对比度。
图7(A)中,两个屏蔽薄膜可以分别拥有已调整的面积平衡,或者两个发光元件可以具有已调整的亮度平衡或者已调整的面积平衡,进而改善了三维图像和二维图像之间的亮度。
图7(B)举例示出了具有图7A中所示结构的像素的电路图。
图7(B)中,晶体管710的栅极与扫描线Gj(j=1到y)相连。晶体管710具有源极和漏极,一个与信号线Si(i=1到x)相连,另一个与晶体管711和721的栅极相连。晶体管711具有源极和漏极,一个与电源线Vai(i=1到x)相连,另一个与发光元件712的像素电极相连。晶体管721具有源极和漏极,一个与电源线Vbi(i=1到x)相连,另一个与发光元件722的像素电极相连。
每个发光元件712和722包括阳极,阴极,以及位于阳极和阴极之间的场致发光层。在阳极与晶体管711或721的源极或者漏极相连的情况下,阳极用作像素电极,阴极用作对面电极。相反,在阴极与晶体管711或721的源极或漏极相连的情况下,阴极用作像素电极,阳极用作对面电极。本发明中,阳极和阴极都由光可穿过的电极形成。图7(B)中,发光元件712和722分别具有分离的阳极,它们用作像素电极。
电源在发光元件712的每个相对电极和电源线Vai和Vbi之间施加电压。相对电极和电源线之间的电压差保持在一定值,使得当晶体管711和721导通时,仅在发光元件712和722中的一个发光元件上施加正向偏压。给哪个发光元件施加正向偏压是根据图像是以二维还是三维方式显示决定。
存储电容器713具有两个电极,一个与用于电容器Ci(i=1到x)的电源线连接,另一个与晶体管711和721的栅极相连。存储电容器713用来在晶体管710处于非选择状态(开态)时保持晶体管711和721的栅极电压。尽管图7(B)示出的结构具有存储电容器713,但本发明不限于此种结构,也可以是没有存储电容器713的结构。
当根据扫描线Gj的电势导通晶体管710时,输入到信号线Si的视频信号的电势施加到晶体管711和721的栅极。输入视频信号的电势决定了晶体管711和721的栅极电压(栅极和源极的电压差)。这样,根据栅极电压,晶体管711或者721的漏电流提供到相应的发光元件712或722中的一个,当另一个截止时,发光元件712或722中的一个根据供给的电流发射光。
这样,通过仅使用像素的两个发光元件中的一个,相比于图6所示的面板的功耗来讲更加抑制了面板的功耗。另外,它可以阻止面板的一侧发射在显示中不起作用的光,并防止显示的图像信息从不用于显示的一侧泄漏到第三方。
对于根据本发明的显示装置中使用的晶体管,可以使用单晶硅形成的晶体管,或者用多晶硅,微晶硅(半导体非晶体硅),或者非晶硅形成的薄膜晶体管。可以替换,也可以使用有机半导体晶体管。
场致发光层是包括场致发光材料的层,通过在阳极和阴极之间施加电场,其产生发光(场致发光),场致发光层包括单层或多层。场致发光层中的发光包括从单个受激状态返回到基态(荧光)的光发射,和从三重受激状态返回到基态(磷光)的光发射。
发光元件可以具有这样的形式,其中,包含在场致发光层中的每一层例如空穴注入层,电子注入层,空穴传输层和电子传输层由有机化合物本身或者无机化合物与有机化合物的混合物形成。另外,这些层可以相互部分混合。
本发明的发光元件是由电流或电压控制亮度的元件,其可以从面板的两侧发光,进而包括一个用做FED(场发射显示)和OLED(有机发光二极管)的MIM类型的电子源元件(电子发射元件)。
(实施例模式4)下面给出切换扫描方向和从二维图像切换到三维图像或者从三维图像切换到二维图像的视频信号的具体解释。
一般而言,在具有多个矩阵形排列的像素的面板中,选择一行像素并输入视频信号。依次输入视频信号到所选像素行的驱动方法称为点顺序驱动。另外,立即输入视频信号到所有像素行的驱动方法称为线顺序驱动。在任何一种驱动方法中,被输入到每个像素的视频信号具有与像素对应的图像信息。
图8(A)示出了具有矩阵形多个像素的面板和输入到每个像素的图像信息(D1到D35)。假定图8(A)所示的面板由点顺序驱动方法驱动,实线箭头示出了行扫描方向,虚线箭头示出了作为行扫描方向输入的视频信号的像素顺序。
图8(B)示出了图8(A)所示面板从另一侧的观察图。另一侧的列扫描方向沿着图8(B)所示的从左到右相反的方向,而图8(A)的列扫描方向是从右到左。相应的,在行像素中输入的视频信号的顺序反向。
因此,从二维图像切换到三维图像或从三维图像切换到二维图像时,必须采取切换列扫描方向到反方向或者根据列扫描方向改变视频信号的图像信息使其水平翻转。
在切换二维图像到三维图像或者从三维图像到二维图像时,由于通常情况视频信号的图像信息被改变,所以图像信息可以被水平翻转。上述配置使得驱动电路具有简单的结构。
在切换列扫描方向到反方向情况下,处理视频信号的控制器可以具有对应于面板扫描方向的更简单的结构,可更加减小驱动中控制器的负荷。
为了观察面板的另一侧,例如,假定面板在列方向上翻转。这种情况下,如图8(C)所示,另一侧的行扫描方向与图8(A)中的方向相反。相应的,输入的视频信号的顺序在像素行上反转。这种情况下,如图8(B)的情况,必须采取切换行扫描方向使其反向、或者根据行扫描方向使得视频信号的图像信息水平翻转这两种方法中的一种方法。
下面,图9描述了反转根据本发明的显示装置的方向,其结合在电子装置中。图9示出了桌面监视器的配置,它是使用了根据本发明显示装置的电子装置中的一种。
图9(A)所示的桌面监视器具有框架体901,支撑器902,显示部分903,根据本发明的显示装置用做显示部分903。显示部分903也在框架体901的反面提供,在用户不动的情况下,通过沿所示箭头表示的显示装置的行方向旋转框架体901,可以观察到配备在框架体901反面的显示部分903。
在这种情况下,在显示装置中,有必要采取下面的一种方法切换列扫描方向使其反向,或者根据列扫描方向使得视频信号的图像信息水平翻转。
图9(B)中显示的桌面监视器,包括框架体911,支撑架912,显示部分913,根据本发明的显示装置用作显示部分913。显示部分913也在框架体911的反面上提供,在用户不动的情况下,通过沿所示箭头表示的显示装置的列方向旋转框架体911,可以观察到配备在框架体911反面的显示部分913。
在这种情况下,有必要采取下面方法中的一种切换列扫描或行扫描方向使其反向,或者根据列扫描或列扫描方向水平或垂直翻转视频信号的图像信息。
本实施例模式中描述了点顺序驱动的情况。然而,在线顺序驱动的二维和三维之间切换中,扫描方向可以以相同的方式被切换,视频信号的图像信息可以以相同的方式被水平或垂直翻转。
根据本发明的显示装置可用于显示信息的所有监视器,例如,除了桌面监视器之外,还有个人电脑,TV广播接收器和广告牌显示装置。
(实施例)此后,描述本发明的实施例。
实施例1本实施例中,将描述控制来自像素的光传输方向的光学系统,双凸透镜和微透镜阵列(蝇眼透镜)结构。
图10(A)示出了双凸透镜的透视图。双凸透镜具有形似多个互连的拱曲(hog-backed)透镜的形状,光集中在半圆形的凸出部分以控制传输方向。图11示出了根据本发明的显示装置的剖面图,其中使用了双凸透镜。
对于面板1101的多个像素,图11示出了双眼连线方向上的一行像素1104。另外,附图标记1102表示了双凸透镜,拱曲凸出部分的纵向对应于与面板1101平行的平面上的双眼连线方向的垂直方向。双凸透镜1102配备在观察者双眼与面板1101之间。
如图11所示,当显示三维图像时,面板1101双眼连线方向上的两个相邻像素,分别用作右眼像素和左眼像素。左眼像素中,显示从左眼观察获得的图像(图像L),右眼像素中显示从右眼观察获得的图像(图像R)。
从面板1101的每个像素1104发出的光的一部分被双凸透镜1102聚集,进入观察者的双眼。这种情况下,当双凸透镜1102的聚焦深度优化时,能使右眼像素发出的光仅入射到右眼,从左眼像素发出的光仅入射到左眼。这样,使得观察者识别由图像L和图像R形成的三维图像。
这种情况下,在相对于观察者的面板1101的另一侧,配备有屏蔽面板发出的光的屏蔽器1103。当配备有屏蔽器1103时,面板1101的对比度提高。另外,当使用屏蔽器时,屏蔽器不但能屏蔽光,还可以抑制光反射,可能获得对比度进一步增强的图像。
图10(B)示出了微透镜阵列的透视图。微透镜阵列由多个平凸透镜以矩阵形式相连的方式形成。在使用微透镜阵列的情况下,和使用双凸透镜的情况一样,光被集中在每个透镜的凸起部分,以控制传输方向。结果是,仅右眼图像反射到右眼,仅左眼图像反射到左眼,这样可以识别三维图像。
通过使用有效利用光(没有屏蔽)的光学系统,例如双凸透镜和微透镜阵列,可以避免三维图像的亮度大大低于二维图像的亮度。
另一方面,视差栅栏比上述双凸透镜或微透镜阵列更容易相对于像素对准,并且容易制作。
实施例2本实施例将描述根据本发明的有源矩阵显示装置中的信号线驱动电路和扫描线驱动电路的结构,其具有切换扫描方向的功能。
图12示出了根据本实施例的信号线驱动电路的电路图。图12所示的信号线驱动电路对应于模拟视频信号。图12中,附图标记1201表示移位寄存器,其产生一个定时信号,该定时信号根据时钟信号CK决定视频信号的取样定时,一个反时钟信号CKb,其通过反转时钟信号CK获得,以及一个起始脉冲信号SP。
另外,移位寄存器1201中,配备有多个触发电路1210和多个传输门1211和1212,其中两个传输门与每个触发电路1210相对应。传输门1211和1212的切换由切换信号L/R控制,传输门1211和1212的其中一个在另一个关闭时开启。
当传输门1211开启时,因为起始脉冲信号输入到最左端的触发电路1210,所以移位寄存器1201用作右移的移位寄存器。相反,当传输门1212开启时,因为起始脉冲信号供给最右端的触发电路1210,移位寄存器1201用作左移位的移位寄存器。
移位寄存器1201中产生的定时信号被多个反相器1202缓冲和放大,并被传输到传输门1203。尽管图12仅示出了移位寄存器一个输出的后续电路(这里,反相器1202和传输门1203),实际上,对应于其他输出的多个后续电路也可使用。
传输门1203的切换由缓冲和放大定时信号来控制。当传输门1203开启时,视频信号被取样并被提供到像素部分的每个像素中。在移位寄存器1201用作右移的移位寄存器的情况下,列扫描方向从左到右。在移位寄存器1201用作左移的移位寄存器时,列扫描方向从右到左。
下面,图13示出了根据本实施例的信号线驱动电路的电路图。图13所示的信号线驱动电路对应于数字视频信号。图13中,附图标记1301表示移位寄存器,其具有图12所示移位寄存器1201的相同结构,通过切换信号L/R控制扫描方向的切换。
移位寄存器1301中产生的定时信号被反相器1302缓冲和放大,并被输入到锁存器1303。尽管图13仅示出了移位寄存器1301的一个输出的后续电路(这里,反相器1302,锁存器1303,锁存器1304),实际上,对应于其他输出的多个后续电路也可使用。
锁存器1303根据定时信号锁存视频信号。尽管图13仅示出了一个锁存器1303,实际上通常配备有多个锁存器1303,依照定时信号视频信号分别被顺序地锁存。依照切换信号L/R,锁存顺序的方向能从左切换到右锁存器1303,或者从右切换到左锁存器1303。
当所有锁存器1303中的视频信号都被锁存时,锁存器1303中保持的视频信号立即被传输到后续锁存器1304并依照闩锁信号LAT和其反信号LATb被锁存。然后,锁存器1304中锁存的视频信号被供给相应的像素。
下面,图14示出了根据本实施例的扫描线驱动电路的电路图。图14中,附图标记1401表示移位寄存器,其具有与图12中所示移位寄存器1201相同的结构,扫描方向的切换由切换信号L/R控制。然而,移位寄存器1401中产生的定时信号用于选择像素的每一行。
移位寄存器1401中产生的定时信号被反相器1402缓冲和放大,并被输入到像素。尽管图14仅示出了移位寄存器1401的一个输出的后续电路(这里,反相器1402),但实际上也可使用对应于其他输出的多个后续电路。
本实施例的驱动电路是可用于根据本发明显示装置的驱动电路的一些实例,本发明不限于此。
本实施例可以和实施例1自由组合实施。
实施例3本实施例描述使用显示装置的实例,其能作为电子装置特别是移动电子装置的显示部分使用随机点立体图显示三维图像。
图20示出了能够使用随机点立体图显示三维图像的手机的实例。附图标记2001表示手机,能够使用随机点立体图显示三维图像的显示装置用作显示部分2002。
在随机点立体图中,当屏幕如通常那样被聚焦以显示图像或者在屏幕前的方形面基础上,可视点偏离对准一定距离或者更多距离时,随机散落的点被浅薄地刻画。然而,当在眼中看到屏幕成方形时,通过向前或向后移动聚焦点,可以识别三维图像。
上述原则用于本实施例。如附图标记2004所示的那样,当观察者的视线直角指向屏幕时,可能识别三维图像。当观察者的视线以预定角度或更大角度从偏离正面的方向入射时,如附图标记2003和2005所示,可能仅能识别散落的点。
由随机点立体图形成的虚拟图像具有一个深度,其由观察者双眼之间的距离决定。
上述配置可以防止屏幕上显示的信息从屏幕的这面泄漏到第三方,个人信息可以被有效的保护。
尽管本实施例中使用手机作为例子,但本发明不限与此,除了手机和其他电子装置之外本发明可以应用到个人数字助理中。特别是,在移动电子装置的情况下,甚至在需要防止信息从屏幕泄漏时,本发明很有效,可不用考虑位置来使用移动电子装置。
实施例4本实施例描述用于本发明显示装置的发光元件结构的实例。
图21示出了用于本实施例的发光元件的剖面图。作为元件结构,用作空穴注入层2101的薄膜厚度为20nm的酞菁铜(CuPc),用作空穴传输层2102的薄膜厚度为40nm的4,4’-双N-(1-奈基)-N-苯基-氨基-二苯基(4,4’-bisN-(1-naphtyle)-N-phenyl-amino-biphenyl)(此后称为α-NPD),用作电子传输层2104的薄膜厚度37.5nm的添加喹吖(二)酮(DMQd)的Alq3,用作电子注入层2105的薄膜厚度为1nm的CaF2,包含Al的阴极2106都顺序层叠在透明导电薄膜ITO形成的阳极2100上。
下面,给出具有图21所示叠层结构的发光元件的制造方法的描述。
首先,具有ITO阳极的衬底在真空条件下进行150℃ 30分钟的热处理,之后使用蒸发的方法淀积薄膜厚度为20nm的CuPc,淀积速率为0.1nm/秒。
接着,用蒸发的方法淀积薄膜厚度为40nm的α-NPD,淀积速率为0.2nm/秒。然后,用蒸发的方法通过共蒸发Alq3和DMQd淀积添加DMQd的Alq3,其薄膜厚度为37.5nm,其中添加的DMQd的浓度从0.001wt%到0.35wt%,Alq3的淀积速率为0.2nm/秒。
接着,蒸发淀积Alq3,厚度为37.5nm,淀积速率为0.2nm/秒。,在淀积添加DMQd的Alq3之后,通过使用例如闸门这样的装置分离DMQd蒸发源,可以连续地淀积Alq3。
然后,蒸发淀积CaF2,厚度1nm,淀积速率0.01nm/秒。CaF2通过电阻加热蒸发来进行淀积。接着,蒸发淀积薄膜厚度为20nm的Al。Al通过电阻加热蒸发来进行淀积。
通过这些工艺步骤而不暴露于空气,发光元件的可靠性提高。
尽管CuPc在图21中用作空穴注入层2101,聚(亚乙二氧基)噻吩(PEDOT)可以替代CuPc。这样,以500rpm使用旋转涂覆将乙醇作为溶剂的PEDOT溶液施加到ITO上,该ITO作为薄膜厚度为60nm的阳极。然后,执行热处理以蒸发薄膜PEDOT中包含的乙醇。该热处理在80℃条件下执行10分钟,然后,200℃下执行1小时,然后在真空环境下执行150℃30分钟的热处理。后续工艺与CuPc作为空穴注入层2101的情况相似。
本实施例中发光元件的叠层结构和薄膜厚度不受图2中结构的限制。为了从阴极面获得光,除了使薄膜厚度变薄的方法,还有使用ITO的方法,该ITO通过添加Li使其功函数减小。简而言之,本发明中使用的发光元件具有从阳极和阴极两面发光的结构。
在蒸发淀积场致发光层的时候,希望将用于执行蒸发的腔的内壁进行电解抛光,通过使用抽真空的低温泵能有效去处湿气。
本实施例可以和实施例1或2结合实施。
实施例5一种面板,具有密封的发光元件和在所述面板上安装的具有IC的模块,所述面板包括例如控制器和电源电路的电路,它们都对应于发光装置的模式。本实施例描述在模块的一种状态下发光装置特殊配置的一个实例。
图22示出了具有安装在面板800上的控制器801和电源电路802的模块的外观图。面板800中,具有配备在每个像素中的具有发光元件的像素部分803,用于选择像素部分803的像素的扫描线驱动电路804,以及用于为所选的像素提供视频信号的信号线驱动电路805。本发明中,发光元件具有从两电极发光的结构。
另外,提供具有控制器801和电源电路802的印刷电路板806,从控制器801或电源电路802输出的各种信号和电源电压通过FPC807供给到面板800的像素部分803,扫描线驱动电路804和信号线驱动电路805。印刷电路板806的电源电压和各种信号通过接口(I/F)部分808(其具有多个输入端)提供。
尽管本实施例中,印刷电路板806安装在具有FPC的面板800上,但本发明不总限于此种配置。COG(玻璃上的芯片)也可用来直接在面板800上安装控制器801和电源电路802。
另外,在印刷电路板806中,因为各种原因,例如在导线和导线自身电阻之间形成电容,电源电压存在噪声或者在信号的前沿可能存在延迟。因而,不同的元件,例如电容器或者缓冲器可以在印刷电路板806中使用,以防止电源噪声或者信号前沿的延迟。
控制器801可以具有切换各种信号的功能,这些信号输入到扫描线驱动电路804或者信号线驱动电路805,使得根据二维图像信号和三维图像信号(这些信号通过接口部分808提供)来正确切换像素部分803中的扫描方向。
本实施例可以和实施例1,2和4自由组合实施。
工业应用性因为本发明使用了发光装置,不像液晶显示板,它不需要使用例如光源或光导板的部分,并可能防止装置本身变得笨重。另外,当使用发光装置时,可以使用一个面板进行不同的显示,一侧用于显示二维图像,一侧用于显示三维图像。因此,由于在显示二维图像时观察者和面板之间没有光学系统102,所以所有像素的图像都可以反射到观察者的双眼,不像专利文件1,其能在不牺牲一半的分辨率的情况下识别二维图像。
权利要求
1.一种发光装置,包括多个像素和在发光装置一侧提供的光学系统,其中具有至少两个电极的发光元件提供在所述多个像素的每个像素中,和所述光学系统控制从所述多个像素发射的光的传输方向,用于选择多个像素的至少一个观察方向。
2.根据权利要求1所述的发光装置,其中所述光学系统是双凸透镜、微透镜阵列和视差栅栏之一。
3.根据权利要求1所述的发光装置,其中所述光学系统具有狭缝形状的孔。
4.一种发光装置,包括包含第一多个像素的第一部分和包含第二多个像素的第二部分;提供在发光装置一侧的光学系统,其中具有至少两个电极的发光元件提供在第一多个像素的每个像素中和第二多个像素的每个像素中,和所述光学系统控制从第一多个像素和第二多个像素发射的光的传输方向,用于选择所述第一部分和第二部分的观察方向。
5.根据权利要求4所述的发光装置,其中所述光学系统是双凸透镜、微透镜阵列和视差栅栏之一。
6.根据权利要求4所述的发光装置,其中所述光学系统具有狭缝形状的孔。
7.一种发光装置,包括包含第一多个像素的第一部分和包含第二多个像素的第二部分;提供在发光装置一侧的光学系统,其中具有至少两个电极的发光元件提供在第一多个像素的每个像素中和第二多个像素的每个像素中,从第一部分发射的光被第一屏蔽器屏蔽,从第二部分发射的光被第二屏蔽器屏蔽,和所述光学系统控制从第一多个像素和第二多个像素发射的光的传输方向,用于选择所述第一部分和第二部分的观察方向。
8.根据权利要求7所述的发光装置,其中所述光学系统是双凸透镜、微透镜阵列和视差栅栏之一。
9.根据权利要求7所述的发光装置,其中所述光学系统具有狭缝形状的孔。
全文摘要
一种显示单元,能够在没有将二维图像显示分辨率减半的情况下显示三维图像,并能防止单元自身尺寸增大。该单元包括具有多个像素的发光装置和在发光装置一个表面配备的光学系统,其特征在于,每一组多个像素配备有发光装置,发光元件中配备的两个电极都是半透明的,光学系统控制从多个像素发出光的传输方向以允许从相邻两像素的其中一个像素发出的光从多个像素输出进入观察者的左眼,另一个像素发出的光进入右眼。
文档编号G02F1/13GK101089675SQ20071010825
公开日2007年12月19日 申请日期2003年10月23日 优先权日2002年10月30日
发明者宫川惠介, 木村肇 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1