显示面板、像素阵列衬底与线路阵列结构的制作方法

文档序号:14518248阅读:256来源:国知局
显示面板、像素阵列衬底与线路阵列结构的制作方法

本发明涉及一种线路阵列结构,且尤其涉及一种包括线路阵列结构的像素阵列衬底以及显示面板。



背景技术:

随着电子产品设计有越来越多样化的趋势,目前,已发展出多种具有不规则/非矩形显示区范围的显示面板,例如,具有手表形状的显示面板。然而,针对这类型的电子产品,由于显示区并非矩形固定范围,因此容易有阻抗值不均的问题。举例来说,在圆形的显示产品中,为了使信号线衔接至两侧的显示区域,由于信号线的衔接方式是渐进式的变化,因此在驱动信号线时会产生阻抗值不均的问题。进而,会造成在显示图形时严重的颜色不均,并影响到电子产品的显示质量。为了因应市场的需求,目前极需一种能够解决在非矩形显示器中阻抗值不均问题的电子产品。



技术实现要素:

本发明是针对一种线路阵列结构,可用以解决阻抗值不均的问题。

本发明的一种线路阵列结构包括衬底、多条长走线、多条短走线、多条第一虚拟走线与多条第一连接线。所述衬底具有狭长区域、凸伸区域以及驱动连接区域。狭长区域具有沿长边方向延伸的第一侧边以及沿短边方向延伸的第二侧边。凸伸区域由第一侧边向外凸出并与狭长区域连接。驱动连接区域与狭长区域的第二侧边连接。多条长走线设置于狭长区域中,且分别平行长边方向并延伸至驱动连接区域。多条短走线设置于凸伸区域中,且与长走线平行设置。多条第一虚拟走线设置于狭长区域中,且分别平行长边方向并延伸至驱动连接区域。各短走线通过其中一条第一连接线与对应的第一虚拟走线电连接。

根据本发明的实施例,上述的线路阵列结构还包括驱动电路设置于驱动连接区域中,其中长走线以及第一虚拟走线延伸至驱动连接区域并与驱动电路电连接。

根据本发明的实施例,各长走线与至少一条第一虚拟走线相邻设置。

根据本发明的实施例,长走线与第一虚拟走线的长度相同。

根据本发明的实施例,连接凸伸区域与狭长区域的连接边长度l2小于第一侧边的长度l1。

根据本发明的实施例,上述的线路阵列结构还包括多条第二虚拟走线以及多条第二连接线。多条第二虚拟走线设置于凸伸区域中且与第一虚拟走线平行设置。各长走线通过其中一条第二连接线与对应的第二虚拟走线电连接。

根据本发明的实施例,各短走线与至少一条第二虚拟走线相邻设置。

根据本发明的实施例,长走线与短走线为数据线或扫描线。

本发明是针对一种像素阵列衬底,可用以解决阻抗值不均的问题。

本发明的一种像素阵列衬底,包括衬底以及像素阵列。所述衬底具有狭长区域、凸伸区域以及驱动连接区域。狭长区域具有沿长边方向延伸的第一侧边以及沿短边方向延伸的第二侧边。凸伸区域由第一侧边向外凸出并与狭长区域连接。驱动连接区域与狭长区域的第二侧边连接。所述像素阵列位于衬底上,其中像素阵列包括多个像素结构、多条第一信号线与多条第二信号线、多条第一虚拟走线以及多条第一连接线。像素结构设置于狭长区域以及凸伸区域中,其中各像素结构包括像素电极与有源组件。多条第一信号线与多条第二信号线分别与对应的像素结构电性连接且第一信号线与第二信号线用以驱动像素结构。第一信号线或第二信号线包括多条长走线与多条短走线。长走线设置于狭长区域中,且分别平行长边方向并延伸至驱动连接区域,且短走线设置于凸伸区域中,且与长走线平行设置。多条第一虚拟走线设置于狭长区域中,且分别平行长边方向并延伸至驱动连接区域。各短走线通过其中一条第一连接线与对应的第一虚拟走线电连接。

根据本发明的实施例,所述的像素阵列衬底还包括驱动电路设置于驱动连接区域中,其中,长走线以及第一虚拟走线延伸至驱动连接区域并与驱动电路电连接。

根据本发明的实施例,其中各长走线与至少一条第一虚拟走线相邻设置。

根据本发明的实施例,长走线与第一虚拟走线的长度相同。

根据本发明的实施例,连接凸伸区域与狭长区域的连接边长度l2小于第一侧边的长度l1。

根据本发明的实施例,上述的像素阵列衬底还包括多条第二虚拟走线以及多条第二连接线。多条第二虚拟走线设置于凸伸区域中且分别与第一虚拟走线平行设置。各长走线通过其中一条第二连接线与对应的第二虚拟走线电连接。

根据本发明的实施例,各短走线分别与至少一条第二虚拟走线相邻设置。

根据本发明的实施例,第一讯线为数据线且第二信号线为扫描线。

根据本发明的实施例,第一讯线为扫描线且第二信号线为数据线。

本发明是针对一种种显示面板,可用以解决阻抗值不均的问题。本发明的一种显示面板,包括有如上述的像素阵列衬底以及显示介质,显示介质由像素阵列衬底驱动而进行显示。

基于上述,在本发明的线路阵列结构、像素阵列衬底与显示面板中,由于短走线通过其中一条第一连接线与对应的第一虚拟走线电连接,且第一虚拟走线与长走线同样延伸至驱动连接区域,因此,长走线与短走线之间形成的阻抗值差异能够减少,并解决阻抗值不均的问题。

附图说明

包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。

图1a为本发明实施例中的一种显示面板示意图;

图1b为本发明实施例的显示面板中像素阵列衬底的上视示意图;

图2a为本发明实施例中图1b区块200内的线路阵列的放大示意图;

图2b为本发明另一实施例中图1b区块200内的线路阵列的放大示意图。

附图标号说明:

10:像素阵列衬底;

10a:衬底;

10b:像素阵列;

102:狭长区域;

102a:第一侧边;

102b:第二侧边;

104:凸伸区域;

106:驱动连接区域;

110:信号线;

110a:长走线;

110b:短走线;

112:信号线;

120a:第一虚拟走线;

120b:第二虚拟走线;

130:像素结构;

131:像素电极;

132:有源组件;

140:驱动电路;

20:显示介质;

200:区块;

d1:长边方向;

d2:短边方向;

dp:显示面板;

l1、l2:长度;

wra1、wra2:线路阵列。

具体实施方式

现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同组件标号在附图和描述中用来表示相同或相似部分。

图1a为本发明一实施例中的一种显示面板示意图。由图1a可知,显示面板dp包括像素阵列衬底10与显示介质20,其中显示介质20可由像素阵列衬底10驱动而进行显示,且像素阵列衬底10包括像素阵列10b与衬底10a。在本实施例中,衬底10a的材质可为玻璃、石英、有机聚合物、或不透光/反射材料(例如:导电材料、金属、晶圆、陶瓷、或其它可适用的材料)、或其它可适用的材料。若使用导电材料或金属时,则在衬底上覆盖一层绝缘层(未示出),以避免短路问题。应用于可挠性装置时,衬底可具有可挠曲特性。像素阵列10b设置于衬底10a上,用以传递驱动信号以驱动显示介质20。另外,显示介质20可包括液晶分子、电泳显示介质、或其它可适用的介质。在本发明下列实施例中的显示介质是以液晶分子当作范例,但不限于此。再者,在本发明下列实施例中的液晶分子,较佳地,是以可被水平电场转动或切换的液晶分子或者是可被横向电场转动或切换的液晶分子为范例,但不限于此。

具体来说,请参照图1b,其示出本发明一实施例的显示面板中像素阵列衬底的示意图。在图1b的实施例中,像素阵列衬底是以应用于手表形状的显示面板为例来做为说明,但本发明不以此为限。请参考图1b,像素阵列衬底10包括像素阵列10b与衬底10a。所述衬底10a具有狭长区域102、凸伸区域104以及驱动连接区域106。狭长区域102具有沿长边方向d1延伸的第一侧边102a以及沿短边方向d2延伸的第二侧边102b。凸伸区域104由第一侧边102a向外凸出并与狭长区域102连接。另外,驱动连接区域106与狭长区域102的第二侧边102b连接。

在本实施例中,狭长区域102与凸伸区域104例如是构成显示面板dp的显示区域,且所述显示区域具有手表形状的外观。另外,驱动连接区域106例如是位于显示面板dp的非显示区域。在上述的实施例中,是以圆形表面的手表为例,但本发明不限于此。举例来说,凸伸区域104可具有其它形状,以使狭长区域102与凸伸区域所构成的显示区域具有其它形状(例如方形状、三角形、梯形、哑铃形等)的表面外观。在上述的实施例中,连接凸伸区域104与狭长区域102的连接边长度l2小于狭长区域102的第一侧边102a的长度l1。甚至,以平行于第一侧边102a的方向量测时,凸伸区域104的长度小于狭长区域102的长度。因此,从狭长区域102的第一侧边102a向外凸出的凸伸区域104,实际上不会超出第一侧边102a的长度。据此,可构成具有手表形状外观的显示面板。

在图1a及图1b的实施例中,像素阵列10b位于衬底10a上,且包括多个像素结构130、多条信号线110、多条信号线112、多条第一虚拟走线120a以及多条第二虚拟走线120b。在图1a的实施例中,信号线110、信号线112、第一虚拟走线120a以及第二虚拟走线120b的数量仅为示例,实际上并不以图1a所示的信号线、虚拟走线的数量为限。像素结构130包括像素电极131与有源组件132。在图1b中仅示出出一个像素电极131与有源组件132来做说明,以使本领域技术人员可以清楚的了解本发明。信号线110与信号线112是分别与对应的像素结构130电性连接,且信号线110与信号线112是用以驱动像素电极131。更详细来说,信号线110可为数据线且信号线112可为扫描线,但本发明不限于此。在另一实施例中,信号线110可为扫描线且信号线112可为数据线。在上述的实施例中,扫描线(110或112)与数据线(110或112)彼此交越设置,且扫描线与数据线之间夹有绝缘层。换言之,扫描线的延伸方向与数据线的延伸方向不平行,较佳的是,扫描线的延伸方向相交于或甚至垂直于数据线的延伸方向。基于导电性的考虑,扫描线与数据线一般是使用金属材料。然而本发明不限于此,根据其它实施例,扫描线与数据线也可以使用其他导电材料。例如:合金、金属材料的氮化物、金属材料的氧化物、金属材料的氮氧化物、或其它合适的材料)、或金属材料与其它导材料的堆栈层。

请继续参考图1b,信号线110包括多条长走线110a与多条短走线110b。长走线110a设置于狭长区域102中,且分别平行长边方向d1并延伸至驱动连接区域106。短走线110b设置于凸伸区域104中,且与长走线110a平行设置。另外,第一虚拟走线120a设置于狭长区域102中,且分别平行长边方向d1并延伸至驱动连接区域106。第二虚拟走线120b设置于凸伸区域104中,且与第一虚拟走线120a平行设置。在本发明的一实施例中,各长走线110a与至少一条第一虚拟走线120a相邻设置,且长走线110a与第一虚拟走线120a的长度相同。此外,各短走线110b分别与至少一条第二虚拟走线120b相邻设置。

在上述的实施例中,长走线110a与短走线110b为数据线或扫描线的其中一者。也就是说,长走线110a与短走线110b同为数据线或同为扫描线,且具有不同长度。就非矩形的显示面板来说,不同长度的数据线/扫描线容易在驱动时形成不同的阻抗值,其中,阻抗值的差异会影响显示面板的显示质量。为了降低长走线110a与短走线110b的阻抗值差异,本发明实施例的显示面板设置有第一虚拟走线120a与第二虚拟走线120b。更详细来说,像素阵列衬底10还包括有驱动电路140设置于驱动连接区域106中,其中,长走线110a以及第一虚拟走线120a是延伸至驱动连接区域106并与驱动电路140电连接。另外,短走线110b是通过连接线(未示出)与对应的第一虚拟走线120a电连接。也就是说,短走线110b可通过第一虚拟走线120a与驱动电路140电连接。此外,长走线110a是通过连接线(未示出)与对应的第二虚拟走线120b电连接。据此,通过将短走线110b连接至较长的第一虚拟走线120a,以及将长走线110a连接至较短的第二虚拟走线120b,可用以降低在驱动长走线110a与短走线110b时所形的阻抗值差异。

在上述的实施例中,长走线110a与短走线110b是分别通过连接线与第一虚拟走线120a或第二虚拟走线120b电连接。以下,将对连接线的设置方式进行说明。

图2a为本发明一实施例中图1b的区块200内的线路阵列的放大示意图。请参考图2a,线路阵列wra1包括衬底、多条长走线110a、多条短走线110b、多条第一虚拟走线120a、多条第二虚拟走线120b、多条第一连接线c1与多条第二连接线c2。衬底可参考前述图1a、图1b的衬底10a,其中衬底包括狭长区域102、凸伸区域104以及驱动连接区域106。狭长区域102具有沿长边方向d1延伸的第一侧边102a以及沿短边方向d2延伸的第二侧边102b。凸伸区域104由第一侧边102a向外凸出并与狭长区域102连接,驱动连接区域106与狭长区域102的第二侧边102b连接。

在图2a的实施例中,长走线110a与第一虚拟走线120a设置于狭长区域102中,且如图1b所示,长走线110a与第一虚拟走线120a平行长边方向d1并延伸至驱动连接区域106与驱动电路140电连接。另外,短走线110b与第二虚拟走线120b设置于凸伸区域104中,且与长走线110a以及第一虚拟走线120a平行设置。在本实施例中,短走线110b通过其中一条第一连接线c1与对应的第一虚拟走线120a电连接,而长走线110a通过其中一条第二连接线c2与对应的第二虚拟走线120b电连接。更详细来说,位于凸伸区域104中最边缘的短走线110b是与较远(或较靠近狭长区域102的中心)的第一虚拟走线120a电连接。另外,位于凸伸区域104内侧较靠近狭长区域102的短走线110b是与较近(或较靠近狭长区域102的边缘)的第一虚拟走线120a电连接。类似地,位于狭长区域102的中心的长走线110a是与较远(凸伸区域104的边缘)的第二虚拟走线120b电连接。另外,位于狭长区域102的边缘的长走线110a是与较近(凸伸区域104的内侧)的第二虚拟走线120b电连接。在本实施例中,由于将短走线110b利用第一连接线c1连接至较长的第一虚拟走线120a,以及将长走线110a利用第二连接线c2连接至较短的第二虚拟走线120b,因此可用以降低在驱动长走线110a与短走线110b时所形的阻抗值差异。

图2b为本发明另一实施例中图1b的区块200内的线路阵列的放大示意图。图2b的实施例与图2a的实施例类似,差异仅在于第一连接线c1以及第二连接线c2的连接方式不同。请参考图2b,线路阵列wra2中,长走线110a与第一虚拟走线120a设置于狭长区域102中,且如图1b所示,长走线110a与第一虚拟走线120a平行长边方向d1并延伸至驱动连接区域106与驱动电路140电连接。另外,短走线110b与第二虚拟走线120b设置于凸伸区域104中,且与长走线110a以及第一虚拟走线120a平行设置。在本实施例中,短走线110b通过其中一条第一连接线c1与对应的第一虚拟走线120a电连接,而长走线110a通过其中一条第二连接线c2与对应的第二虚拟走线120b电连接。更详细来说,位于凸伸区域104中最边缘的短走线110b是与最近(或较靠近狭长区域102的边缘)的第一虚拟走线120a电连接。另外,位于凸伸区域104内侧较靠近狭长区域102的短走线110b是与较远(或较靠近狭长区域102的中心)的第一虚拟走线120a电连接。类似地,位于狭长区域102的中心的长走线110a是与最近(凸伸区域104的内侧)的第二虚拟走线120b电连接。另外,位于狭长区域102的边缘的长走线110a是与较远(凸伸区域104的边缘)的第二虚拟走线120b电连接。在本实施例中,由于将短走线110b利用第一连接线c1连接至较长的第一虚拟走线120a,以及将长走线110a利用第二连接线c2连接至较短的第二虚拟走线120b,因此可用以降低在驱动长走线110a与短走线110b时所形的阻抗值差异。

在上述图1b、图2a及图2b的实施例中,所有的短走线110b是与第一虚拟走线120a电连接,且所有的长走线110a是与第二虚拟走线120b电连接,但本发明不限于此。举例来说,在另一实施例中,所有的短走线110b是与第一虚拟走线120a电连接,但并未设置第二虚拟走线120b。在此实施例中,由于短走线110b已经通过第一连接线c1连接至第一虚拟走线120a,因此,也可达到降低阻抗值差异的技术功效。此外,虽然在上述图1b、图2a及图2b的实施例中,是以手表形状的显示面板为例来做为说明,但可以得知的是,本发明的概念可适用于任何不规则的/非矩形的显示面板。

另外,在本发明的一实施例中,线路阵列结构可由上述的衬底、多条长走线110a、多条短走线110b、多条第一虚拟走线120a、多条第一连接线c1、多条第二虚拟走线120b与多条第二连接线c2所构成。据此,本发明的线路阵列结构可同样用于解决阻抗值不均的问题。

综上所述,在本发明的线路阵列结构、像素阵列衬底以及显示面板中,由于将短走线利用第一连接线连接至较长的第一虚拟走线,以及将长走线利用第二连接线连接至较短的第二虚拟走线,且第一虚拟走线与长走线同样延伸至驱动连接区域,因此,长走线与短走线之间所形成的阻抗值差异能够减少,并解决阻抗值不均的问题。据此,利用虚拟走线的设置,可为非矩形的显示产品带来较佳的显示质量。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1