光子芯片光栅耦合器的制作方法

文档序号:12785370阅读:307来源:国知局
光子芯片光栅耦合器的制作方法与工艺

本申请要求2015年11月20日提交的、名称为“PHOTONIC CHIP GRATING COUPLERS(光子芯片光栅耦合器)”的美国临时专利申请号62/258,221的优先权,其全部内容通过引用合并于此。

技术领域

本公开涉及光通信领域,特别涉及光耦合器。



背景技术:

硅光电技术包括在相同芯片上的人造光、电、光电子组件,可为数据通信、电话通信、特别是光通信提供低花销、低功率、高速度的光解决方案。通过在相同的基底上集成光、电、光电子组件,可获得收发机信道和传输速度的调节。



技术实现要素:

至少一个方面指一种用于将光从一个源耦合到芯片的耦合装置。所述耦合装置包括射束分路器,具有输入端口、第一输出端口和第二输出端口,所述射束分路器被配置成用于在所述输入端口接收入射光束,并从所述第一输出端口输出具有基本上横磁(TM)偏振的第一光束,并从所述第二输出端口输出具有基本上横电(TE)偏振的第二光束。所述耦合装置包括在所述芯片上形成的第一光栅耦合器,其包括第一喇叭部分,所述第一喇叭部分包括具有第一多个弧形光栅线的第一光栅。所述耦合装置包括第一反射器,第一反射器被布置成用于将所述第一光束反射到所述第一光栅耦合器,使得所述第一光束的第一入射平面基本上垂直于所述第一喇叭部分的轴线,TM偏振方向在第一入射平面内,并且第一光束以相对于所述第一光栅耦合器的平面法线的角度入射到所述第一多个光栅中。

在一些实施方式中,所述耦合装置包括形成在所述芯片上的第二光栅耦合器,包括第二喇叭部分,所述第二喇叭部分包括具有第二多个弧形光栅线的第二光栅;以及第二反射器,第二反射器被布置成用于将第二光束发射到所述第二光栅耦合器,使得所述第二光束的第二入射平面基本上平行于所述第二喇叭部分的轴线,TE偏振的方向基本上垂直于所述第二入射平面,并且所述第二光束以相对于第二光栅耦合器的平面法线的角度入射到所述第二光栅。

在一些实施方式中,所述第一喇叭部分和所述第二喇叭部分包括硅。

在一些实施方式中,所述第一喇叭部分的轴线是在第一喇叭部分的平面内第一喇叭部分的对称轴线。

在一些实施方式中,所述第一多个弧形光栅线基本上关于第一喇叭部分是非对称的。

在一些实施方式中,所述第二多个弧形光栅线基本上被形成为椭圆弧。

在一些实施方式中,所述第一喇叭部分包括耦合到波导的窄端,并且所述第一光栅将入射光导向所述喇叭部分的窄端并进入所述波导。

在一些实施方式中,所述第二喇叭部分包括耦合到波导的窄端,并且所述第二光栅将入射光导向所述喇叭部分的窄端并进入所述波导。

附图说明

图1A示出在光通信中使用的示例光子芯片的示意图。

图1B示出了耦合到一个光耦合器的图1A所示示例光子芯片的示意图。

图2示出了光耦合器中光组件的示意图。

图3A和3B示出了图2中所示第一棱镜/反射器、TE光栅耦合器、第二棱镜/反射器、和TM光栅耦合器的横截面视图。

图4A-4D示出了耦合到波导的示例光栅耦合器的示意图。

图5示出了具有光栅耦合器的示例光子芯片的横截面。

不同附图中相同的参考标号和标志指示相同的元件。

具体实施方式

因为所述原理不限于任意特定的实现方式,以上介绍的和以下更详细讨论的不同原理可使用多种方式中的任意方式实现。提供特定实施和应用的示例是主要出于说明性目的。

硅光子技术的一个主要的挑战是有效地将来自激光器或光线的光耦合进入和离开光子芯片。硅光子集成电路典型地设计为工作在单个(基础)波导模式并处理该模式,其中基础波导模式涉及将被处理的光的偏振方向。来自例如光纤或激光器并进入光子芯片的光,可具有横电(TE)和/或横磁(TM)偏振。存在一些解决方案,以在光纤或激光器和光子芯片上引导光线的单个波导的基础模式之间有效地耦合TE偏振光。然而,关于耦合TM偏振光和波导的基础模式,缺乏更有效的解决方案。

标准TM耦合器典型地具有高光损,并且不在波导中使用基础模式输出光。结果是,需要附加的偏振旋转器,以将TM耦合器输出的光偏振旋转进入基础模式。增加光组件例如偏振旋转器,可引入额外的损耗,并可降低通信系统的链路能量预算。

图1A示出了光通信中使用的示例光子芯片100的示意图。特别地,光子芯片100可用于处理光信号和电信号两者。光子芯片100可包括一个或多个光/光电子组件102和一个或多个电子组件104。在一些实施方式中,光/光电子组件102可包括但不限于光电检测器、激光器、波导、分路器、滤波器、复用器、解复用器、透镜、反射器、偏振器、减速器、光和/或电光调制器、放大器、衰减器等等。在一些实施方式中,可使用除光或电光调制器以外的调制器,例如但不限于声电调制器、磁光调制器、机械-光调制器、热电-光调制器或其组合。在一些实施方式中,调制器可利用例如正交幅度调制(QAM)和移相键控(PSK)的一些技术用于调制载波信号。可使用其他类型的调制。光组件可用于处理通过光纤接收的光信号,或用于处理光子芯片100上生成的光信号。在一些实施方式中,光子芯片100还可包括光栅耦合器106,其允许光子芯片100上的光组件102与片下光纤或激光器之间的光信号的耦合。例如,光栅耦合器106和其他光组件106之间的光可使用波导112通信。以下在图2-5中进一步讨论光栅耦合器106。在一些实施方式中,电子组件104可包括模拟和数字的电子组件,例如但不限于电压和/或电流放大器、互导放大器、滤波器、数字信号处理器、模拟-数字转换器、数字-模拟转换器等等。电子组件104和光组件102可用于实现多种电光功能块,例如但不限于发射机、接收机、交换机、调制器、转发器、放大器等等。尽管图1A中示出了在相同芯片上制造的光、电光和电子组件,在一些实施方式中,这些组件可安装在通过电互连(例如有线耦合、铜柱等)和/或光互连(例如波导、光纤等等)互连的分离的芯片上。

图1B示出了耦合到光耦合器108的图1A中所示的示例光子芯片100的示意图。特别地,光耦合器108可用作光子芯片100和一个或多个光纤110之间的接口。光耦合器108可通常位于光子芯片100的光栅耦合器106(图1A)上。与光栅耦合器106连接的光耦合器108可有助于光纤110和光子芯片100上光组件102之间的双向光信号通信。在一些实施方式中,代替或附加于的光纤110,光耦合器108可有助于将光源(例如激光器)耦合到光子芯片100。光耦合器108可包括用于密封一个或多个光组件的外壳。外壳还可提供光组件的特定位置和方向,使得可以以期望的角度从光纤110和光栅耦合器106接收光,并以期望的角度向光纤110和光栅耦合器106发送光。

图2示出了光耦合器200中光组件的示意图。特别地,图2所示的光组件可在图1B所示的光耦合器108中使用。光耦合器200可包括偏振射束分路器(PBS)202、第一棱镜/反射器204和第二棱镜/反射器206。PBS 202可将入射光束分为两个不同偏振的光束。特别地,PBS 202可将具有TM和TE偏振的入射光束分为基本上仅具有TM偏振的一个光束和基本上仅具有TE偏振的另一个光束。如图2所示,来自光纤210(例如图1B所示的一个光纤110)的光束208入射到PBS 202。入射的光束208具有TM和TE偏振,使得TM偏振与TE偏振正交,并且TE偏振在入射的平面内。PBS 202将入射的光束208分为两个光束:具有TE偏振的第一光束212和具有TM偏振的第二光束214。第一光束212指向第一棱镜/反射器204,而第二光束214指向第二棱镜/反射器206。第一棱镜/反射器204依次将入射的第一光束212反射到芯片上的TE光栅耦合器216。类似地,第二棱镜/反射器206将入射的第二光束214反射到芯片上的TM光栅耦合器218。在一些实施方式中,TE光栅耦合器216和TM光栅耦合器218可以与图1A所示的光栅耦合器106相似。

可以理解光耦合器200示出了从光纤210输出的光束定向至芯片上的光栅耦合器216和218,同时光耦合器200还可将光栅耦合器216和218产生的射束光合并,并将合并的光束定向回至光纤210。

图3A和3B示出了图2所示第一棱镜/反射器204、TE光栅耦合器216、第二棱镜/反射器206和TM光栅耦合器218的横截面视图。特别地,图3A示出了沿着第一光束212的入射平面的第一棱镜/反射器204和TE光栅耦合器216的横截面视图,而图3B示出了沿着第二光束214的入射平面的第二棱镜/反射器206和TM光栅耦合器218的横截面视图。在一些实施方式中,TE光栅耦合器216和TM光栅耦合器218可由硅、硅氮化物、硅氧化物、多晶硅或者这些材料的组合制成。第一棱镜/反射器204和第二棱镜/反射器206两者构成棱镜或反射面(例如镜面)以将入射光以特定角度反射到光栅。将第一棱镜/反射器204与TE光栅耦合器216相关布置,使得第一光束212以与TE光栅耦合器216的平面的法线相关的期望角度,入射到TE光栅耦合器216。此外,光束入射平面的方向,基本上沿着TE光栅耦合器216的纵轴线。在一些实施方式中,TE偏振光束的入射平面可具有相对于TE光栅耦合器216的纵轴线从大约-5°到大约+5°或从大约-10°到大约+10°的角度。类似地,第二棱镜/反射器206与TM光栅耦合器218相关布置,使得第二光束214以与TM光栅耦合器216的平面的法线相关的期望角度入射到TM光栅耦合器218。然而,不像TE光束(其入射平面基本上沿着TE光栅耦合器的纵轴线),TM偏振入射射束的入射平面基本上与TM光栅耦合器218的纵轴线垂直。在一些实施方式中,TM偏振光束的入射平面可具有相对于TM光栅耦合器218的纵轴线的从大约85°到大约95°或从大约80°到大约100°的角度。

在一些实施方式中,光耦合器200可提供一些程度的调整(手动或自动),用于PBS 202、第一棱镜/反射器204和第二棱镜/反射器206的方向和位置。在一些实施方式中,第一棱镜/反射器204和第二棱镜/反射器206可包括基于微电机械系统(MEMS)的反射器或镜子,其方向可使用来自芯片上的控制器的电信号进行调整。在一些实施方式中,光耦合器200还可包括校准透镜,以校准PBS 202中的光,和/或包括聚焦透镜,以将光束宽度与光栅耦合器216和218的散射模式相匹配。

图4A-4D示出了耦合到波导的示例光栅耦合器的示意图。特别地,图4A和4C示出了耦合到其相关波导404和454的TE光栅耦合器402和TM光栅耦合器452的顶视图。图4B和4D相应示出了波导404和454的横截面视图。图4A中所示的TE光栅耦合器402可用于实现以上关于图2和3A讨论的TE光栅光纤,而图4C示出的TM光栅耦合器452可用于实现以上关于图2和3B讨论的TM光栅耦合器。

参考图4A和4B,TE光栅耦合器402可包括TE喇叭部分406,具有窄端和宽端。波导404可耦合到TE喇叭部分406的窄端,而TE光栅408可形成在TE喇叭部分406的宽端。TE光栅408可包括多个线或脊412。喇叭形状允许更大模式的入射光与波导404的相对窄模式相耦合。作为参考,在由x、y和z轴代表的三维笛卡尔空间的x-y平面中示出了TE光栅耦合器402的平面。喇叭部分406可包括从喇叭部分406的窄端延伸到宽端的纵轴线。为了便于参考,图4A示出了与y轴协同入射的喇叭部分406的纵轴线。在一些实施方式中,喇叭部分406的纵轴线可以是喇叭部分406的对称轴线。在一些实施方式中,TE光栅408沿着纵轴线或者喇叭部分406的对称轴线是对称的。TE光栅可包括多个光栅线或脊412,例如被成型或弯曲为圆形、抛物线、椭圆弧,由形成在光栅耦合器402所装配在的芯片表面的多个沟分离。在一些实施方式中,TE光栅408可包括相同光指数的多个周期间隔的区域,其由具有不同光指数的间隔区域分离。周期间隔的区域不必由沟分离。在一些实施方式中,TE光栅408可被认为作为光天线,其指引或引导光束入射到朝向喇叭部分406的窄端的光栅并进入波导404。

图4A还示出了入射到TE光栅408上的具有TE偏振的光束410。如所示,电场(E)与入射平面正交或垂直,其沿着射束410的中线414和喇叭部分406的纵轴线并并行于磁场(H)。TE偏振光束410的入射平面基本上垂直(正交)于第一喇叭部分406的x轴。TE偏振光束410以相对于光栅耦合器402的平面的法线(z轴)的角度θ入射到TE光栅408。具有非零角度θ可降低反射回至反射器(例如图3A中示出的棱镜/反射器204)的光线的风险,反射器将光束反射至TE光栅408。TE偏振光束410关于喇叭部分406定向,使得光束410的入射平面基本上沿着喇叭部分406的纵轴线。结果是,TE偏振光束410的TE偏振的电场(E)的方向基本上垂直于喇叭部分406的纵轴线(如所示)。因此,当TE偏振光束410入射到TE光栅408时,具有基本上平行于x-y平面的偏振,入射光410由喇叭部分406导入波导404,如图4B中由电场组件(E)示出。在一些实施方式中,TE偏振光束410的入射平面可具有相对于喇叭部分406的纵轴线大约5-10°的角度α。

如上所述,图4C示出了TM光栅耦合器452的顶视图。TM光栅耦合器452可包括TM喇叭部分456,其可与图4A所示的TE喇叭部分406的形状类似。波导454可耦合到TM喇叭部分456的窄端,TM光栅458可形成在TM喇叭部分456的宽端。TM光栅可包括多个线或脊462。作为参考,在x-y面示出了TM光栅耦合器452的平面。TM喇叭部分456可包括从TM喇叭部分456的窄端延伸到宽端的纵轴线。为了便于参考,图4C示出了与x-轴线一致的TM喇叭部分456的纵轴线。

在一些实施方式中,不像图4A中所示TM光栅408(其沿着TE喇叭部分406的纵轴线是对称的),TM光栅458可以沿着TM喇叭部分456的纵轴线是不对称的。在一些实施方式中,可由TM光栅耦合器452平面中TM光栅458的椭圆光栅弧的半径和TM喇叭部分456的纵轴线之间形成的角度,部分表示TM光栅458的非对称。该角度由代表,如图4C所示。在一些实施方式中,TM光栅线的椭圆形状可由以下公式(1)-(3)模拟:

x=r·cos(φ) (1)

y=-r·sin(φ) (2)

其中

图4C还示出了入射到TM光栅458的TM偏振光束460。如所示,磁场(H)与入射平面正交或垂直,入射平面沿着射束460的中线464并平行于电场(E)。以与图4A所示的TE入射光束410相类似的方式,TM偏振光束460还形成了相对于TM光栅耦合器452的平面法线(z轴)的入射角θ。在一些实施方式中,TM偏振光束460相对于TM光栅耦合器452的平面法线的形成的入射角可以不同于图4A中所示的TE入射光束410形成的角度。此外,TM光束460的入射平面基本上垂直于喇叭部分456的纵轴线。这不像图4A中所示的TE光束410的入射平面,其基本上平行或沿着喇叭部分406的纵轴线。在一些实施方式中,TM偏振光束460的入射平面可具有相对于喇叭部分456纵轴线的大约85-95°或大约80-100°的角度。入射TM偏振光束460相对于TM耦合器452的方向导致TM偏振光束460的电场(E)的方向与喇叭部分456的纵轴线垂直。结果是,具有基本上与x-y轴平行的偏振,TM偏振光410被导入波导454,如图4D中由电场组件(E)示出。这类似于进入到耦合到图4B中所示TE光栅耦合器402的波导404的光的偏振。由于TM波导454中的光束偏振与TE波导404中光偏振相同(即基础模式),不需要附加组件(例如偏振旋转器)以对TE或TM波导中的光偏振进行旋转。结果是,可避免由于例如偏振器旋转器这样的组件导致的损耗,获得改进的信号质量。

图5示出了具有光栅耦合器的示例光子芯片500的横截面视图。特别地,光子芯片500的横截面视图可代表沿着TE或TM光栅耦合器402和452(图4A和4C所示)的纵轴线并沿着它们相应喇叭部分的纵轴线的横截面视图。图5示出了绝缘体上硅(silicon-on-insulator,SOI)芯片500,其包括硅处理层或基底502、埋氧层504和浇注在氧化层504上的薄硅层506。薄硅层506可被成型以形成光栅512,其具有由沟510分离的光栅线或脊508。在一些实施方式中,可使用干蚀刻或湿蚀刻成型这些光栅特征。在一些其他实施方式中,可使用各向异性蚀刻技术成型光栅特征。然而,也可使用用于成型半导体的其他公知技术。在一些实施方式中,薄硅层506可具有大约上百纳米的厚度。

在一些实施方式中,光栅线或脊508和沟510的宽度和斜度可以是固定的(统一光栅)或可从一个沟到另一个沟不同(切趾光栅),以最优化本地散射强度以增加与入射光束模式的交叠,和/或调节光栅51使其具有入射光束的波长。在一些实施方式中,可选择薄硅层506或氧化层504的厚度以优化从光栅512至光纤的光耦合并改进带宽。在一些实施方式中,反射层(电介质或金属)可浇注在光栅512之下。在一些实施方式中,例如SiN、SiON的材料可用于形成光子芯片500中的一个或多个层。在一些实施方式中,标准CMOS过程可用于制造该光子芯片500。

对本公开描述的实施例的不同修改,对本领域技术人员是显而易见的,且此处定义的通指性原理可用于其他实施方式,而没有背离本公开的精神或范围。因此,本权利要求不意指限制于此处所示的实施方式,而应符合与本公开、此处公开的原理和新颖特征相一致的最宽范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1