激光投射模组、深度相机和电子装置的制作方法

文档序号:15344175发布日期:2018-09-04 22:33阅读:103来源:国知局

本发明涉及成像技术领域,特别涉及一种激光投射模组、深度相机和电子装置。



背景技术:

激光发射器发射激光时,激光会产生发散。激光发散后在激光发射器的发光面的中心位置处叠加聚集的光束为零级光束,在激光发射器的发光面的四周处传输的光束为非零级光束。当零级光束的强度过强时,零级光束传输到衍射光学元件时无法被完全衍射,导致经衍射光学元件出射的零级光束的强度过强,如此,可能危害用户的眼睛。



技术实现要素:

本发明的实施例提供了一种激光投射模组、深度相机和电子装置。

本发明实施方式的激光投射模组包括激光发射器、反射元件、衍射光学元件和光检测器。所述激光发射器用于发射激光。所述反射元件用于反射所述激光发射器发射的激光。所述衍射光学元件用于衍射经所述反射元件反射后的激光。所述光检测器设置在激光发射器与反射元件之间,所述光检测器用于接收所述激光以输出电信号,所述电信号用于确定所述激光的非零级光束强度、以及在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率。

本发明实施方式的深度相机包括上述的激光投射模组、图像采集器和处理器。所述图像采集器用于采集由所述激光投射模组向目标空间中投射的所述激光图案。所述处理器用于根据所述电信号确定所述激光的非零级光束强度、在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率、以及处理所述激光图案以获得深度图像。

本发明实施方式的电子装置包括壳体和上述的深度相机。所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。

本发明实施方式的激光投射模组、深度相机和电子装置通过在激光发射器与反射元件之间设置一个光检测器,利用光检测器检测非零级光束的强度在非零级光束强度较小时,确定零级光束的能量可能过大,此时立即执行减小激光发射器的发射功率的动作,以避免零级光束能量过大而危害用户眼睛的问题,提升激光投射模组使用的安全性。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:

图1是本发明某些实施方式的激光投射模组的结构示意图。

图2至图5是本发明某些实施方式的激光投射模组的光路示意图。

图6和图7是本发明某些实施方式的激光投射模组的结构示意图。

图8是本发明某些实施方式的深度相机的结构示意图。

图9是本发明某些实施方式的电子装置的结构示意图。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。

在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。

下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。

请参阅图1,本发明实施方式的激光投射模组100包括镜筒40和基板组件60。基板组件60包括基板62和电路板61。电路板61承载在基板62上。镜筒40包括侧壁41和自侧壁41延伸的承载台411,侧壁41设置在电路板61上,侧壁41和电路板61围成收容腔42。激光投射模组100还包括激光发射器10、反射元件50、准直元件20、衍射光学元件30和光检测器70。激光发射器10、反射元件50、准直元件20、衍射光学元件30和光检测器70均收容在收容腔42中。具体地,激光发射器10承载在电路板61上,激光发射器10用于发射激光。反射元件50也承载在电路板61上,反射元件50用于反射激光发射器10发射的激光。准直元件20和衍射光学元件30依次设置在反射元件50的出光方向上,衍射光学元件30放置在承载台411上。准直元件20用于准直经反射元件50反射后的激光。衍射光学元件30用于衍射经准直元件20准直后的激光以形成激光图案。光检测器70设置在激光发射器10和反射元件50之间,更具体地,光检测器70设置在激光发射器10和反射元件50之间,光检测器70用于接收激光发射器10发射的激光以输出电信号。电信号可用于确定激光的非零级光束强度、以及在非零级光束强度小于预设强度时减小激光发射器10的发射功率。

其中,反射元件50放置在激光发射器10的侧边。激光发射器10的激光发射方向与反射元件50反射的光线的光轴垂直。光检测器70包括收光面71,收光面71与电路板61平行。

光检测器70可以是光敏电阻、光电二极管、光电三极管等可以将光强度信号转换成电信号的元件。

可以理解,将光检测器70设置在激光发射器10和准直元件20之间,当激光发射器10发射激光时,由于激光发射时会产生发散,激光发射器10发射的激光包括零级光束和非零级光束,其中,零级光束为激光发散后叠加聚集在发光面中心位置处的光束,非零级光束为激光发散后向发光面四周传输的光束,因此非零级光束中的小部分光线会照射到光检测器70的收光面71上,光检测器70接收这部分光线后产生电信号输出,该电信号表征的是非零级光束的强度。当每次使用激光发射器10时均对激光发射器10施加相同大小的电压,则每次光检测器70输出的电信号大体上是一致的。当对激光发射器10施加一定电压,光检测器70输出的电信号较低时,说明激光发射器10发射的激光中零级光束强度较大,从而导致非零激光束强度较小。而零级光束在经过衍射光学元件30时通常不会被衍射,因此会直接出射,直接出射的零级光束的能量过大会对用户的眼睛产生危害。

本发明实施方式的激光投射模组100通过在激光发射器10与反射元件50之间设置一个光检测器70,利用光检测器70检测非零级光束的强度在非零级光束强度较小时,确定零级光束的能量可能过大,此时立即执行减小激光发射器10的发射功率的动作,以避免零级光束能量过大而危害用户眼睛的问题,提升激光投射模组100使用的安全性。

请参阅图2,在某些实施方式中,准直元件20为一个时,准直元件20还可以设置在激光发射器10和反射元件50之间,此时,准直元件20准直激光发射器10发射的激光,反射元件50反射经由准直元件20准直后的激光,衍射光学元件30衍射经反射元件50反射后的激光。将准直元件20设置在反射元件50和衍射光学元件30之间可以减小激光投射模组100的厚度。

请参阅图3,在某些实施方式中,准直元件20也可为两个,一个准直元件20设置在激光发射器10与反射元件50之间,该准直元件20用于准直激光发射器10发射的激光,反射元件50用于反射经由该准直元件20准直后的激光。另一个准直元件20设置在反射元件50和衍射光学元件30之间,该准直元件20用于准直镜反射元件50反射后的激光,衍射光学元件30衍射经该准直元件20准直后的激光。激光投射模组100中设置两个准直元件20可以优化激光的准直效果,改善激光投射模组100的性能。

请参阅图4,在某些实施方式中,光检测器70的收光面71与电路板61垂直。此时,准直元件20的位置可以是:准直元件20为一个,设置在激光发射器10与反射元件50之间(如图4所示);或者,准直元件20为一个,设置在反射元件50与衍射光学元件30之间(图未示);或者,准直元件20为两个,一个设置在激光发射器10与反射元件50之间,另一个设置在反射元件50与衍射光学元件30之间(图未示)。如此,收光面71与激光发射器10的发光方向垂直,激光发射器10发射的激光直射到收光面71上,光检测器70可以更准确地检测非零级光束的强度。

请参阅图5,在某些实施方式中,光检测器70的收光面71与电路板61呈倾斜夹角。此时,准直元件20的位置可以是:准直元件20为一个,设置在激光发射器10与反射元件50之间(如图4所示);或者,准直元件20为一个,设置在反射元件50与衍射光学元件30之间(图未示);或者,准直元件20为两个,一个设置在激光发射器10与反射元件50之间,另一个设置在反射元件50与衍射光学元件30之间(图未示)。如此,假设光检测器70为光电三极管,收光面71上可容纳的光电三极管的数量更多,光检测器70可接收到更多的光,从而可以更准确地检测非零级光束的强度。

在某些实施方式中,激光发射器10可为垂直腔面发射激光器(verticalcavitysurfaceemittinglaser,vcsel),垂直腔面发射激光器的发光方向与反射元件50反射的光线的光轴垂直。由于垂直腔面发射激光器的光源为多点且呈不规则的阵列分布,因此,激光投射模组100投射的激光图案的不相关性较大,有利于提升深度图像的获取精度。

在某些实施方式中,激光发射器10可为边发射激光器(edge-emittinglaser,eel),具体地,激光发射器10可为分布反馈式激光器(distributedfeedbacklaser,dfb)。此时,激光发射器10的发光面11朝向反射元件50,即激光发射器10的发光方向与反射元件50反射的光线的光轴垂直。分布反馈式激光器的温漂较小,且为单点发光结构,无需设计阵列结构,制作简单,激光投射模组100的成本较低。

进一步地,当激光发射器10为分布反馈式激光器时,由于分布反馈式激光器的激光是通过光栅结构的反馈获得功率的增益,要提高分布反馈式激光器的功率,需要通过增加分布反馈式激光器的长度和/或增大注入电流来实现。而增大注入电流会使得分布反馈式激光器的功耗增大并且出现发热严重的问题,因此,优选地,采用增加分布反馈式激光器的长度来提高分布反馈式激光器的长度。而为了减小激光投射模组100的宽度,请结合图6,激光投射模组100的镜筒40的侧壁41开设有一个凹槽43,分布式反馈激光器部分收容在凹槽43内。如此,凹槽43可为分布反馈式激光器提供更多的放置空间,且无需增加激光投射模组100的宽度。另外,优选地,凹槽43的长度、宽度和高度应与分布反馈式激光器的长度、宽度、高度对应,具体地,凹槽43的长度、宽度和高度均略大于分布反馈式激光器的长度,如此,凹槽43对分布式反馈激光器可以起到一定的固定作用,放置分布式反馈式激光器移位或脱落,或者,进一步地,将分布反馈式激光器部分收容在凹槽43中后,使用封胶将分布反馈式激光器与凹槽43进行粘结,且封胶可为导热胶。如此,一方面可固定分布反馈式激光器,另一方面还可对分布反馈式激光器进行散热。

请参阅图7,在某些实施方式中,基板62开设有散热孔621。散热孔621的位置与激光投射模组100放置在电路板61上的位置以及与光检测器70放置在电路板61上的位置相对。如此,可以为激光发射器10和光检测器70进行散热。散热孔621中还可以填充有导热胶,进一步为激光发射器10和光检测器70进行散热。

请参阅图8,本发明还提供一种深度相机1000,本发明实施方式的深度相机1000包括上述任意一项实施方式的激光投射模组100、图像采集器200和处理器80。其中,图像采集器200用于采集经衍射光学元件30衍射后向目标空间中投射的激光图案。处理器80分别与激光投射模组100和图像采集器200连接。处理器80用于处理激光图案以获取深度图像。

具体地,激光投射模组100通过投射窗口901向目标空间中投射激光图案。图像采集器200通过采集窗口902采集被目标物体调制后的激光图案。图像采集器200可为红外相机。处理器80采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(digitalimagecorrelation,dic)算法。当然,也可以采用其它图像匹配算法代替dic算法。

本发明实施方式的深度相机1000中的激光投射模组100通过在激光发射器10与反射元件50之间设置一个光检测器70,利用光检测器70检测非零级光束的强度在非零级光束强度较小时,确定零级光束的能量可能过大,此时立即执行减小激光发射器10的发射功率的动作,以避免零级光束能量过大而危害用户眼睛的问题,提升激光投射模组100使用的安全性。

请参阅图9,本发明实施方式的电子装置3000包括壳体2000及上述实施方式的深度相机1000。深度相机1000设置在壳体2000内并从壳体2000暴露以获取深度图像。

本发明实施方式的电子装置3000中的激光投射模组100通过在激光发射器10与反射元件50之间设置一个光检测器70,利用光检测器70检测非零级光束的强度在非零级光束强度较小时,确定零级光束的能量可能过大,此时立即执行减小激光发射器10的发射功率的动作,以避免零级光束能量过大而危害用户眼睛的问题,提升激光投射模组100使用的安全性。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1