背光源和显示装置的制作方法

文档序号:19153892发布日期:2019-11-16 00:26阅读:276来源:国知局
背光源和显示装置的制作方法

本发明属于显示技术领域,具体涉及一种背光源和显示装置。



背景技术:

高动态光照渲染(hdr:high-dynamicrange)相比普通的图像,hdr可以获得更多的明暗动态范围和图像细节。有机电致发光器件(oled:organiclight-emittingdiode)自发光技术给予非常优异的hdr体验,但是其生产良率,使用后的坏点无法自我修复,使得其销售和维修成本均比较昂贵。

液晶显示器(lcd:liquidcrystaldisplay)的显示hdr效果,需要区域发光的背光源,市场上研究比较多的是采用micro-led和mini-led的背光源。从目前晶片加工,灯板焊接工艺及成本考虑,芯片稍大的mini-led有比较大的市场前景。但是芯片大,就意味着发光面积就大,中心强度更加高,而背光的光学非常复杂,有近50%的光线会反射回来,经过膜材、扩散板、led基板,其中led基板因为芯片所占的面积较大,而芯片本身反射率低,光线抵耗多,且目前回流焊的制程影响,灯板的反射层均为白色油墨层,该层反射率最高只有85%,所以光损失很大。同功耗下,mini-led辉度是普通侧入式光源的辉度的65%,与目前市场显示行业节能化发展理念相背。



技术实现要素:

本发明旨在至少解决现有技术中存在的技术问题之一,提供一种有效提高光源辉度的背光源和显示装置。

解决本发明技术问题所采用的技术方案是一种背光源,包括:灯板,其中,所述灯板包括:基底,设置在所述基底上的光源,所述光源用于发射第一波段的光;所述背光源还包括:依次设置在所光源的出光侧的波长选择膜、波长转换膜;其中,

所述波长转换膜,用于通过所述第一波段的光激发出第二波段的光;

所述波长选择膜,用于透射所述第一波段的光,反射所述第二波段的光。

优选的是,所述波长转换膜直接形成在所述波长选择膜之上,且与之相接触。

优选的是,所述第一波段的光包括蓝光;所述第二波段的光包括:红光和/或绿光。

优选的是,所述第一波段的范围为320nm-480nm;所述第二波段的范围为480nm-800nm。

优选的是,所述波长转换膜包括:量子点膜或者荧光粉膜。

优选的是,所述背光源还包括:位于所述波长转换膜的出光面侧的第一棱镜膜;其中,

所述第一棱镜膜,用于将从其上出射的光进行准直处理。

优选的是,所述灯板还包括:位于所述基底上的反射层;

其中,所述反射层上设置有与所述光源适配的开孔;所述反射层通过其上设置的所述开孔嵌套在所述光源所在层上。

优选的是,所述灯板为多个,且多个所述灯板相互拼接;其中,各个所述灯板上的波长选择膜一体成型。

优选的是,所述灯板还包括:依次设置在所述光源和所述波长选择膜之间的扩散膜、第二棱镜膜;其中,

所述扩散膜,用于将所述光源所发射的预设颜色的光进行扩散;

所述第二棱镜膜,用于将经过所述扩散膜的预设颜色的光进行准直。

解决本发明技术问题所采用的技术方案是一种显示装置,包括上述的背光源。

附图说明

图1为本发明的实施例1的背光源的结构示意图;

图2为本发明的实施例1的量子点模光谱及cie193标准色度者观察者图;

图3为本发明的实施例1的反射层和光源的组装示意图;

图4为本发明的实施例1中波长选择膜和量子点膜的位置关系示意图;

图5为本发明的实施例1的背光源的具体结构示意图;

图6为本发明的实施例1的背光源中具有多个灯板的拼接俯视图;

图7为图6的沿a-a'的剖视图。

其中附图标记为:1、灯板;10、基底;11、光源;12、反射层;121、开孔;2、波长选择膜;3、波长转换膜;4、第一棱镜膜;q1、工艺拼接缝;q2、组装公差拼接缝。

具体实施方式

为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。

实施例1:

结合图1所示,本实施例提供一种背光源,该背光源中的光源11可以选用mini-led光源11;以下对本实施例中的背光源11的具体结构进行说明。本实施例中的背光源包括:灯板1;该灯板1包括:基底10,设置在基底10上的光源11,依次设置在光源11的出光侧的波长选择膜2、波长转换膜3;其中,光源11用于发射第一波段的光;波长转换膜3用于通过第一波段的光激发出第二波段的光;波长选择膜2用于透射第一波段的光,反射第二波段的光。

在此需要说明的是,波长选择膜2能够使得第一波段的光透射,第二波段的光反射的具体是,通过光与波长选择膜2接触的面上的折射率差异和光的波长的关系实现的。而且,在本实施例中可以根据具体情况选取不同的波长选择膜2,以调整第一波段的光的光强和光谱,从而调整背光源的色点,进而降低了调整波长转换膜3色点的成本。特别是,当波长转换膜3选用量子点膜时,调节量子点膜色点的成本较高。

由于在本实施例的背光源中增设了波长选择膜2,该波长选择膜2能够将光源11所发射的第一波段的光透射至波长转换膜3;之后,波长转换膜3则在第一波段的光激发下出射第二波长的光,此时,即使第二波长的光再照射至位于波长转换膜3出光面侧的其他膜层发生反射之后,再次到达波长选择膜2时,第二波段的光会被波长选择膜2反射,直至射出,这样一来,第二波段的光损耗极少,从而提升了光源11的辉度。

作为本实施例中的一种具体实现方式,第一波段的范围为320nm-480nm;第二波段的范围为480nm-800nm;其中,第一波段的光为蓝光;第二波段的光包括红光和/或绿光;以下以第二波段的光为红光和绿光为例进行说明。波长转化膜包括量子点膜,当然可以是荧光粉膜;在波长转换膜3的出光面侧设置有用于对光线进行准直处理的第一棱镜膜4。

具体的,如图1所示,基底10上的光源11出射蓝光,蓝光从波长选择膜2射出,照射至量子点膜;此时蓝光激发量子点膜上的红色量子点出射红光,激发绿色量子点出射绿光,当然也有部分蓝光从量子点膜射出,这样一来,经过量子点膜的红光、绿光、蓝光进行混色后成白光;此时,白光照射至第一棱镜膜4之后,其中,白光中的部分红光、绿光、蓝光被准直射出,射出之后依旧混色为白光;而白光中的另外部分红光、绿光、蓝光发生反射透过量子点膜照射至波长选择膜2,而波长选择膜2依据自身的性质将照射至其上红光和绿光反射回去,直至从第一棱镜膜4射出,从而避免了红光和绿光的损耗,从而提升了光源11的辉度,而对于蓝光则透过波长选择膜2到达基底10后发生反射,直至从第一棱镜膜4射出。

之所以要减小红光和绿光的损耗是因为,如图2所示,实线所示的曲线是蓝光激发量子点后,再经过彩色滤光片的光谱图(也即量子点膜光谱),虚线曲线是人眼的视觉函数图(也即cie193标准色度者观察者图),e代表能量。从人眼视觉函数线,可知,500~620nm之间的光能量人眼最敏感,也就是说出射光谱能量在500~620nm之间占比越多,亮度越高,也即提升红光和绿光的利用率对亮度贡献非常大。

其中,如图3所示,本实施例的灯板1还包括:位于所述基底10上的反射层12;该反射层12上设置有与所述光源11适配的开孔121;反射层12通过其上设置的开孔121嵌套在所述光源11所在层上。也就是说,首先需要在反射层12上开孔121,之后再将具有开孔121的反射层12嵌套在光源11所在层上。这样避免了反射层12先贴附在灯板1上,之后再激光定位开孔121,网版刷焊锡时回流焊温度过高,会导致反射片熔化皱褶,破坏功能层的问题。其中,反射层12的材料可以采用白色油墨,当然,也可以采用其他具有反射功能的膜层。进一步的,在反射层12至少还可以设置保护层,通过保护层覆盖光源11和反射层12,以防止后续膜层划伤光源11,其中,保护层可以是保护胶层。

其中,在本实施例中量子点层可以直接形成在波长选择膜2上,且与之相接触。该种设置方式波长选择膜2可以作为量子点层的保护层,同时使得背光源整体更加轻薄。

具体的,波长选择膜2为量子点膜为例,通常量子点膜为两层透明基材夹一层量子的结构;而在本实施例中可以省略其中一层透明基材,以波长选择膜2来替代这层透明基材,如图4所示,量子点膜30则由一层透明基材32和波长选择膜2夹量子点层31构成。当然,本实施例中量子点膜也可以不省略透明基板,量子点层31则可以通过该透明基材与波长选择膜2固定在一起;其中,透明基材可以是pet(塑料)材料。透明基材和波长选择膜2的厚度大约为25nm-200nm。

其中,如图5所示上述的灯板1还可以包括依次设置在光源11和波长选择膜2之间的扩散膜5、第二棱镜膜6;该扩散膜5用于将光源11所发射的预设颜色的光进行扩散,以使光线发散、均匀;扩散膜5具体可以是表面具有起伏粗糙的膜材;第二棱镜膜6用于将经过第一波长的光(蓝光)进行准直,可以直接从波长选择膜2射出;其中,第二棱镜膜6与第一棱镜膜4的结构可以是相同的,只是在设置时,二者相差90°。

其中,如图6、7所示,本实施例中背光源可以包括多个灯板1,可以为大型的面板提供光源。而多个灯板1采用拼接的方式形成一个面光源,可以理解的是,由于多个灯板1拼接在一起,那么势必会在拼接位置出现拼接缝,该隙拼接缝隙包括:拼接工艺出现的拼接缝q1和组装公差拼接缝o2,接缝处很难二次加工反射层,导致照射至此处的光无法反射出显示面板,所以会会致使显示面板出现显示暗带,也即影响最终的显示,且各个灯板工艺的差别会导致灯板与灯板的白色油墨基底的反射率差异较大,从而会出现各个灯板最终出射的光亮暗不均的情况。而在本实施例中优选的各个灯板1中的波长选择膜2采用一体成型结构,也即波长选择膜2能够将拼接缝隙覆盖,因此,把辉度贡献最大的红光、绿光波段截止在波长选择膜2远离光源的一面,从而不会在灯板上反射,避免在拼接缝处无出现暗带和灯板的辉度差异的问题。其中,在该种结构的背光源中各个灯板的波长转换膜3和第一棱镜膜4也均采用一体成型结构,这样以来,方便制备,同时也能够降低工艺成本。

实施例2:

本实施例提供一种显示装置,其包括实施例1中的背光源,由于本实施例中的显示装置包括实施例1中的背光源,因此光源11的辉度明显提升。

其中,其中,本实施例的显示装置可以为液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。

可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1