提高显示清晰度的面板的制作方法

文档序号:16524044发布日期:2019-01-05 10:11阅读:212来源:国知局
提高显示清晰度的面板的制作方法

本发明涉及液晶显示技术领域,尤其涉及一种提高显示清晰度的面板。



背景技术:

随着科学技术的飞速发展,人们对显示设备的研究也越来越深入,同时,随着显示面板需求的增加,人们对显示面板的性能要求也在不断地提高,希望能进一步得到各种显示效果优异的显示面板。

显示面板内的光学模组对显示面板的清晰度有很大的影响,在现有的一些显示面板中,通过对显示面板内的光学模组进行l48灰阶画面点灯测试,发现部分产品的画面粗糙现象严重,这种情况主要表现为不同行别间的亮暗显示不均匀,通过显微镜观察,确认为相邻两行像素之间的亮暗差异大。在宏观上,肉眼就会将这种相邻两行亮暗的点当作一个亮点,从而导致显示面板的画面粗糙。这种相邻两行像素亮暗的不同导致了显示面板显示画面粗糙,使得显示面板的显示效果降低。

因此,针对显示面板中相邻两行像素亮暗的差异导致面板显示画面粗糙,显示面板的清晰度低的问题,有必要提供一种提高显示清晰度的面板,以解决现有技术所存在的问题。



技术实现要素:

本发明提供一种提高显示清晰度的面板,以解决现有技术水平上显示面板中相邻两行像素亮暗的差异导致面板显示画面粗糙,面板清晰度低的问题。

为解决上述技术问题,本发明提供的技术方案如下:

根据本公开实施例的第一方面,提供了一种提高显示清晰度的面板,

数个提供数据信号的数据线、与所述数据线交叉设置的数个提供扫描信号的栅极线、所述数据线与所述栅极线相交围成的数个区域、设置于所述区域内的氧化铟锡(indiumtinoxide,ito)电极以及脱壳金属,

数个提供数据信号的数据线以及通过栅极引线连接在所述数据线上的薄膜晶体管(thinfilmtransistor,tft),所述的薄膜晶体管tft中的多层结构,各层依次为mo/al层、g-sinx层,mo/al/mo层、p-sinx层。

相邻上下两行的所述薄膜晶体管tft连接在所述数据线的同一侧,相邻上下两行的所述薄膜晶体管tft的开口朝向相同;

所述薄膜晶体管tft中的多层结构还包括保护层,所述保护层设置在g-sinx层与mo/al/mo层之间。

根据本发明一优选实施例,所述数据线与所述数据线两侧的所述脱壳金属之间的距离为行业内数据线两侧的所述脱壳金属之间的距离均值倍增。

根据本发明一优选实施例,所述数据线与所述数据线两侧的所述脱壳金属之间的距离大于2.19um;

根据本发明一优选实施例,所述数据线与所述数据线两侧的所述脱壳金属间的距离为预设距离2.19um的倍增关系;

根据本发明一优选实施例,所述的薄膜晶体管tft中的多层结构,各层依次为mo/al层、g-sinx层,mo/al/mo层、p-sinx层;

根据本发明一优选实施例,所述像素等效电路区域内设置有包括薄膜晶体管tft及像素电极ito电极,所述薄膜晶体管具有栅极、源极、漏极;

根据本发明一优选实施例,所述薄膜晶体管tft的所述g-sinx层为绝缘层;

根据本发明一优选实施例,所述oc层为导电层;

根据本发明一优选实施例,所述薄膜晶体管tft的所述g-sinx层的厚度为大约

根据本发明一优选实施例,所述mo/al/mo层中,底mo层厚度为al层厚度为顶mo层厚度为

根据本发明一优选实施例,所述薄膜晶体管tft包括有多条金属引线,所述金属引线由钼或含钼合金材料的任意一种构成。

综上所述,本发明的有益效果为:

本发明提供的提高显示清晰度的面板,通过不同的面板结构,降低其他区域部件对薄膜晶体管tft内部电容cgd的影响或者减小数据线线路与ito之间的耦合电容的影响,从而提高像素的亮度,解决因相邻两行像素亮暗的差异导致的画面粗糙的情况,使显示面板显示的画面亮暗相同,清晰度提高。

附图说明

为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明提供的一实施例中的tft结构示意图;

图2为现有设计技术中各膜层示意图;

图3为本发明提供的另一实施例中各膜层示意图;

图4为现有技术中数据线两侧tft设置示意图;

图5为本发明中数据线两侧tft设置示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。

下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。

实施例一:

如图1为本发明提供的tft结构示意图,显示面板中提供扫描信号的栅极线101,薄膜晶体管tft102,dateline数据线103,shellingmetal脱壳金属104,ito电极105。设置的数据线103与脱壳金属104以及脱壳金属104与ito电极105之间的距离都会影响到tft内部形成的耦合电容cpd数值大小,进而对相邻两行之间的像素电压有影响。如图1中所示,所述数据线103与所述数据线103左侧的脱壳金属104之间的预设距离为xld,所述数据线103与所述数据线103右侧的脱壳金属104之间的预设距离为xrd,其中,距离xld=xrd=d,本发明通过将数据线103与数据线103右侧的脱壳金属104之间的预设距离d增大,均倍增,使得他们之间的距离为预设距离d的两倍,也即2d或者nd。预设距离d为行业内数据线两侧的所述脱壳金属之间的距离均值。

于实际中,所述数据线103与所述数据线103两侧的脱壳金属104间的距离增大,预设距离为2.19um,倍增变为4.38um。这样,由于所述数据线103与所述数据线103左右两侧的脱壳金属104之间的距离变大,进而降低了对耦合电容cpd的影响,线路中△v的损耗就会减小。这样像素电压vpixel电压就会增加,从而进一步提升了各行像素的亮度。

实施例二:

如图2所示,图2为现有设计技术中各层示意图,其中,基板201,mo/al层202,g-sinx绝缘层203,mo/al/mo漏/源电极层205以及p-sinx层206。其中,各层之间形成的等效电容与各层之间的距离有直接的关系。

因此,如图3所示,图3为本发明提供的各层示意图。overcoat(oc)保护层301,通过在g-sinx绝缘层203和mo/al/mo电极层205这两层之间再增加一层oc保护层301。g-sinx层的厚度为大约在mo/al/mo的各层结构中,底mo层厚度为al层厚度为顶mo层厚度为所述oc保护层301的增加并不会影响整个tft电极的性能,上下层之间形成一个类似电容的上下极板,由于oc保护层301的增加,使得oc保护层301上下层之间的距离变大,其中,在正常情况下,根据tft内部各个电容与电压之间的关系式:δv=cgd*vd-p/(clc+cs+cgd),耦合电容cgd数值的大小与数据线和ito电极之间距离成反比的关系,耦合电容cgd=εs/(4πkd),可知,两极板之间的距离变大,耦合电容cgd的数值就会变小,它们之间的δv就会减小,使得各行像素的像素电压vpixel增加。这样,由于各行像素电压的提高,本发明中各行像素的亮度也会比现有设计中的亮度高。

实施例三:

如图4所示,图4为现有技术中数据线两侧tft设置示意图。tft401,栅极引脚线402,数据线403,所述薄膜晶体管tft401包括有多条金属引线,所述金属引线由钼或含钼合金材料的任意一种构成。现有的倒装式flip设计中,将相邻两行中的tft401沿着数据线403呈左右分布设置,这样的设置会造成栅极引脚线处的上下两行主tft的开口朝向不同,在栅极层(gatelayer)与数据线层(datalayer)单方向偏移时候,相邻两行的耦合电容cgd会有2倍的差异,从而隔行之间的亮暗差异明显,画面不清晰。图5所示为本发明中数据线两侧tft设置示意图。非倒装式tft501,栅极引脚线502,数据线403。本发明中,将tft的设置由常用倒装式设计改变为非倒装式设计,使得数据线上下两行的tft在数据线的同一侧,如图5中处于数据线403同侧的上下两个tft501,这样,上下两行的主tft的开口朝向就会变成相同,也不会出现相邻两行的耦合电容cgd之间的差异,隔行显示就会变正常。

通过不同实施例中提供的发明,从产生上下两行像素亮暗不同的主要原因出发,减小或降低各部件对耦合电容的影响,以此改变相邻两行像素亮暗的差异情况,或者采用非倒装式flip设计,解决现有技术中存在的问题,达到解决提高画面清晰度的目的。

以上对本发明实施例所提供的提高显示清晰度的面板进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1