宽带编码装置、宽带线谱对预测装置、频带可扩展编码装置以及宽带编码方法

文档序号:2829251阅读:330来源:国知局
专利名称:宽带编码装置、宽带线谱对预测装置、频带可扩展编码装置以及宽带编码方法
技术领域
本发明涉及以频带可扩展的方式对语音信号进行编码的频带可扩展编码装置、作为其一部分动作的宽带编码装置、搭载于宽带编码装置的宽带LSP(Line Spectrum Pair线谱对)预测装置、以及对该宽带编码装置生成的宽带编码数据等进行解码的宽带可扩展解码装置。
背景技术
在信号频带中具有可扩展性的嵌入式可变速率语音编码方式,作为能够支持从以往的电话服务到有临场感的宽带语音通信服务的语音编码方式备受瞩目。并且,可扩展的编码信息由于能够在传输路径上任意的节点(node)自由地削减编码信息,对利用以IP网为代表的分组网的通信中的拥塞控制极为有效。基于这样的背景,在ITU-T(International Telecommunication Union-Telecommunication standardization sector)SG16(Study Group16)中,也对语音信号的频带可扩展的嵌入式可变速率编码方式进行标准化。
另一方面,在语音信号的编码中,LSP参数作为高效率地表示频谱包络信息的参数而被广泛使用,在频带可扩展语音编码中,LSP参数的编码也是必要的基本技术之一。
使LSP参数具有频带可扩展性时,使用分析窄带信号而获得的窄带LSP参数对宽带LSP参数进行预测量化。因此,在宽带LSP参数的预测量化的预测精度和量化效率是对语音信号的频带可扩展编码性能直接造成影响的重要指标。
作为对这样的宽带LSP参数进行预测量化的技术,使用如码本映射的非线性预测技术从编码后的窄带LSP参数预测宽带LSP参数,比较该预测结果和实际的宽带LSP参数而生成预测误差,并将生成的预测误差和编码后的窄带LSP参数一起传输的技术广为人知(例如参照专利文献1)。并且,使用码本映射等从窄带LSF(Line Spectral Frequency)参数预测宽带LSF参数,对预测残差进行编码的技术也为人所知(例如参照专利文献2)。
特表2003-534578号公报[专利文献2]特开平6-118995号公报发明内容发明需要解决的问题然而,在专利文献1中,虽然以专利文献2所公开的方法预测宽带LSP(与LSF同义)参数,并进一步披露了对预测残差进行编码的“概念”,但作为其具体内容,仅描述了使用码本映射的技术。
这里,在以专利文献2记载的方法预测宽带LSP参数的情况下,该量化性能依赖于预测性能,并且该预测性能依赖于变换表的大小和通过学习生成变换表时的学习数据等。如果使用大规模的学习数据设计尺寸较大的变换表,能够使各种窄带信号和宽带信号相对应,因此一般能获得较高的预测性能。另一方面,在实际的应用中,不可能使用庞大的学习数据来生成无限大的变换表并加以使用。因此,在实际上是使用规模被限制到某种程度的学习数据,生成在某种程度上较实际的大小的变换表并加以使用。由于变换表的大小除了存储量之外还与变换处理所需的运算处理量相关,对于在存储量和运算处理量受限的应用,例如在便携式终端等使用的应用,必须进一步减小变换表的大小。而且,如果变换表的大小较小,由于在使窄带信号与宽带信号相关联时受到限制,宽带LSP参数的预测性能变低。换言之,如果该变换表的大小不充足,从窄带LSP参数对宽带LSP参数进行非线性预测时的量化效率降低,尤其对于会出现显著的语音信号的特征的低频分量,通过进行非线性预测反而会使该质量恶化。
如上述,专利文献1没有有关在仅使用码本映射技术从窄带LSP参数预测宽带LSP参数时会产生的技术问题的启示,当然也没有公开有关其解决方法的思想。换言之,即使直接将专利文献2记载的码本映射技术应用在专利文献1记载的技术,也不能可靠地改善从窄带LSP参数预测宽带LSP参数时的量化效率和预测精度。
因此,本发明的目的在于提供能够抑制使窄带LSP和宽带LSP相关联的变换表的大小,同时以高量化效率和高精度从窄带LSP预测宽带LSP的宽带编码装置等。
解决该问题的方案本发明的宽带编码装置是使用语音信号的量化窄带LSP对宽带LSP进行编码的宽带编码装置,采用的结构包括变换单元,通过上采样,将所述量化窄带LSP变换为具有该量化窄带LSP的信息的宽带的第一LSP;预测单元,通过非线性预测处理,从所述第一LSP预测宽带的第二LSP;生成单元,使用所述第一LSP和所述第二LSP的加权和,生成预测宽带LSP;以及编码单元,求使所述预测宽带LSP和所述宽带LSP之间的误差最小的编码数据。
另外,本发明的宽带LSP预测装置是使用语音信号的量化窄带LSP来预测宽带LSP的宽带LSP预测装置,采用的结构包括变换单元,通过上采样,将所述量化窄带LSP变换为具有该量化窄带LSP的信息的宽带的第一LSP;预测单元,通过非线性预测处理,从所述第一LSP预测宽带的第二LSP;以及生成单元,使用所述第一LSP和所述第二LSP的加权和,生成预测宽带LSP。
换言之,根据本发明,分别对变换宽带LSP(第一LSP)和非线性预测结果(第二LSP)进行加权,该变换宽带LSP是通过对语音信号的量化窄带LSP进行上采样变换而成的,而该非线性预测结果为使用该变换宽带LSP进行非线性预测的结果,然后通过使用它们的相加结果,从量化窄带LSP预测语音信号的宽带LSP。并且,求通过该预测而获得的预测宽带LSP和另外输入的宽带LSP之间的误差,并将它最小化,由此进行宽带LSP的编码。
再有,本发明的宽带编码装置搭载于生成在频域上具有可扩展性的编码数据的频带可扩展编码装置以及与此对应的频带可扩展解码装置。
发明的有益效果根据本发明,在语音信号的频带可扩展编码中,能够抑制各种码本的大小,所述各种码本包含多个各种代码向量而构成,该各种代码向量为表示变换宽带LSP和语音信号的宽带LSP的基准向量,并且能够同时改善从量化窄带LSP预测语音信号的宽带LSP时的量化效率和预测精度。


图1是表示实施方式1的宽带编码装置的主要结构要素的方框图。
图2是表示实施方式1的非线性预测单元的主要内部结构的方框图。
图3是表示实施方式1的宽带解码装置的主要结构要素的方框图。
图4是表示实施方式1的非线性预测单元的变形例的方框图。
图5是表示实施方式1的非线性预测单元的变形例的方框图。
图6是表示实施方式2的宽带编码装置的主要结构要素的方框图。
图7是表示实施方式2的宽带解码装置的主要结构要素的方框图。
图8是表示实施方式3的宽带编码装置的主要结构要素的方框图。
图9是表示实施方式3的非线性预测单元的主要内部结构的方框图。
图10是表示实施方式3的宽带解码装置的主要结构要素的方框图。
图11是表示实施方式3的宽带编码装置的主要结构要素的方框图。
图12是表示实施方式3的宽带解码装置的主要结构要素的方框图。
图13是表示实施方式4的宽带编码装置的主要结构要素的方框图。
图14是表示实施方式4的宽带解码装置的主要结构要素的方框图。
图15是表示实施方式4的宽带编码装置的主要结构要素的方框图。
图16是表示实施方式4的宽带解码装置的主要结构要素的方框图。
图17是表示实施方式5的非线性预测单元的主要内部结构的方框图。
图18是表示实施方式5的非线性预测单元的变化形式的图。
图19是表示实施方式6的宽带编码装置的主要结构要素的方框图。
图20是表示实施方式6的非线性预测单元的主要内部结构的方框图。
图21是表示实施方式6的宽带解码装置的主要结构要素的方框图。
图22是表示实施方式6的非线性预测单元的主要内部结构的方框图。
图23是表示实施方式7的宽带编码装置的主要结构要素的方框图。
图24是表示实施方式7的非线性预测单元的主要内部结构的方框图。
图25是表示实施方式7的宽带解码装置的主要结构要素的方框图。
图26是表示实施方式8的宽带编码装置的主要结构要素的方框图。
图27是表示实施方式8的非线性预测单元的主要内部结构的方框图。
图28是表示实施方式8的宽带解码装置的主要结构要素的方框图。
具体实施例方式
下面将适当地参照附图详细说明本发明的实施方式。另外,在本发明中,将分析语音信号而获得的LSP参数简称为“LSP”。并且,在本发明中也可以使用“ISP(Immittance Spectral Pair)”以取代“LSP”。
(实施方式1)
图1是表示本发明的实施方式1中具备宽带LSP预测装置的宽带编码装置100主要的结构要素的方框图。另外,在本实施方式中,以将宽带编码装置100作为频带可扩展编码装置的一部分来使用的情况为例进行说明。本实施方式中的宽带LSP预测装置、宽带编码装置、频带可扩展编码装置等可搭载于便携式电话等通信终端装置和基站装置等。
宽带编码装置100包括窄带-宽带变换单元101、非线性预测单元102、放大器103、104、121、LSP预测残差码本110、加法器122、误差计算单元123、误差最小化决定单元124、以及预测系数表131。另外,LSP预测残差码本110是3级结构的码本,第一级码本(CBa)111、第二级码本(CBb)112、加法器113、115以及第三级码本(CBc)114。
窄带-宽带变换单元101例如使用下面的算式(1)等对从未图示的窄带LSP量化器输入的语音信号的量化窄带LSP进行上采样而变换为宽带LSP,将获得的变换宽带LSP输入到非线性预测单元102和放大器104。
fw(i)=0.5×fn(i)[其中,i=0,…,Pn-1]=0.0[其中,i=Pn,…,Pw-1]…(1)在算式(1)中,fw(i)表示语音信号中i次的宽带LSP,fn(i)表示语音信号中i次的窄带LSP,Pn表示窄带LSP的LSP分析次数,Pw表示宽带LSP的LSP分析次数(例如参照特开平11-30997号公报)。
非线性预测单元102使用从窄带-宽带变换单元101输入的变换宽带LSP对语音信号的宽带LSP进行非线性预测,将该非线性预测结果输入到放大器103。另外,非线性预测单元102的内部结构及其动作等将后述。
放大器103将从非线性预测单元102输入的非线性预测结果乘以由后述的预测系数表131所通知的加权系数β1(对每个向量元素具有数值),并将该乘法运算结果输入到加法器122。
放大器104将从窄带-宽带变换单元101输入的变换宽带LSP乘以由预测系数表131所通知的加权系数β2,并将该乘法运算结果输入到加法器122。另外,在本实施方式中,在放大器103的乘法运算结果和在放大器104的乘法运算结果的相加结果为语音信号的宽带LSP的预测结果。
LSP预测残差码本110是包含多个LSP预测残差代码向量而构成的码本,该LSP预测残差代码向量是表示对语音信号的宽带LSP进行预测的预测结果与该语音信号的宽带LSP之间的残差的基准向量,LSP预测残差码本110基于来自后述的误差最小化决定单元124的通知,生成该被通知的LSP预测残差代码向量并输入到放大器121。
CBa111基于来自误差最小化决定单元124的通知,将所通知的第一级代码向量输入到加法器113。
CBb112也基于来自误差最小化决定单元124的通知,将所通知的第二级代码向量输入到加法器113。
加法器113对从CBa111输入的第一级代码向量和从CBb112输入的第二级代码向量进行相加,并将该相加结果输入到加法器115。
CBc114也基于来自误差最小化决定单元124的通知,将所通知的第三级代码向量输入到加法器115。
加法器115将从加法器113输入的相加结果和从CBc114输入的第三级代码向量相加,并使该相加结果作为LSP预测残差代码向量输入到放大器121。
放大器121将从LSP预测残差码本110输入的LSP预测残差代码向量乘以由预测系数表131指示的加权系数β4,并将该乘法运算结果输入到加法器122。
加法器122将从放大器103、104、121分别输入的乘法运算结果(向量)相加,使该相加结果作为量化宽带LSP候补输入到误差计算单元123。另外,后述的误差最小化决定单元124分别决定第一级代码向量至第三级代码向量与预测系数的集之后,相加器122视需要使此时的相加结果作为量化宽带LSP输出到宽带编码装置100的外部。被输出到外部的量化宽带LSP用于对语音信号进行编码的未图示的其他块等的处理。
误差计算单元123计算作为量化目标的语音信号的宽带LSP与从加法器122输入的相加结果(量化宽带LSP候补)之间的误差,将计算出的误差输入到误差最小化单元124。再有,误差计算单元123计算的误差可以是所输入的LSP向量间的平方误差。另外,根据输入的LSP向量的特征进行加权的话,能够进一步地提高听觉上的质量。例如,在ITU-T建议G.729中,使用3.2.4章(Quantization of the LSP coefficients)的算式(21)的加权平方误差(加权欧几里得距离)进行误差最小化。
误差最小化决定单元124决定使从误差计算单元123输入的误差最小的第一级代码向量至第三级代码向量与预测系数集,生成表示决定的第一级代码向量至第三级代码向量与预测系数集的编码数据,并将生成的编码数据输入到来图示的无线发送单元等。并且,误差最小化单元124在决定使从误差计算单元123输入的误差最小的第一级代码向量至第三级代码向量与预测系数的集时,通知CBa111、CBb112以及CBc114和预测系数表131改变输出的顺序。换言之,误差最小化决定单元124以反复试验的方式决定编码数据表示的第一级代码向量至第三级代码向量与预测系数集。
预测系数表131存储多个预测系数集,该预测系数集为对放大器103、104、121指示的加权系数的组合,预测系数表131基于来自误差最小化决定单元124的通知,从存储的预测系数集中选择被通知的1个集,并分别指示放大器103、104、121使用所选择的预测系数集中包含的加权系数。
另外,宽带编码装置100包括未图示的无线发送单元,用于生成包含了以规定的方式对语音信号的量化窄带LSP进行编码的编码数据和构成量化宽带LSP的编码数据的无线信号,该构成量化宽带LSP的编码数据表示使从误差最小化决定单元124输入的量化宽带LSP候补与语音信号的宽带LSP之间的误差最小的第一级代码向量至第三级代码向量和预测系数集,并将生成的无线信号无线发送到搭载了后述的宽带解码装置300的便携式电话等通信终端装置。并且,从宽带编码装置100发送的无线信号经由基站装置进行接收和放大等之后,被宽带解码装置300接收。
图2是表示本实施方式的非线性预测单元102主要的内部结构的方框图。非线性预测单元102包括误差计算单元201、最小化单元202、分类用码本210以及宽带码本220。并且,分类用码本210包括用于存储分类用代码向量(CVkk=1~n)的n个分类用代码向量存储单元211以及选择单元212。再有,宽带码本220包括用于存储宽带代码向量(CVk’k=1~n)的n个宽带代码向量存储单元221以及选择单元222。这里,假设在一个分类用代码向量存储单元211中存储一种CVk,并且同样地在一个宽带代码向量存储单元221中存储一种CVk’。另外,在图2中,对于发挥相同功能的多个结构要素分别赋予不同的分支号,但在本说明书中,总括说明这些要素时,省略其分支号。
窄带-宽带变换单元101进行将窄带LSP的维数简单地变换为宽带LSP的维数的上采样。根据该上采样,窄带LSP的特征反映在宽带LSP,在变换宽带LSP的低频率域(窄带LSP被定义的频带)出现原本的窄带LSP的特征。因此,由窄带-宽带变换单元101获得的变换宽带LSP因上采样而看似宽带,但作为语音信号实质上仍是窄带的数据。非线性预测单元102使用窄带用码本(分类用码本210)和宽带用码本(宽带码本220)对该变换宽带LSP进行如下述的使用码本映射的向量量化,将获得的代码向量作为语音信号的宽带LSP的非线性预测结果输出。
误差计算单元201逐次地计算从窄带-宽带变换单元101输入的变换宽带LSP和从后述的分类用码本210依序输入的CVk(k=1~n)的平方误差,将该计算结果输入到最小化单元202。另外,误差计算单元201也可以计算向量的欧几里得距离(即平方误差),也可以计算向量的加权欧几里得距离(即加权平方误差)。
最小化单元202在每次从误差计算单元201输入变换宽带LSP和CVk的平方误差时,对选择单元212发出指示,以使CVk+1从分类用码本210输入到误差计算单元201,同时存储有关CV1~CVn的平方误差,并确定表示在所存储的平方误差中最小的平方误差的CVk,将该确定的CVk的“k”通知给宽带码本220中的选择单元222。
分类用码本210包含多个CVk而构成,将最小化单元202指示的CVk输入到误差计算单元201。
分类用代码向量存储单元211分别存储作为表示变换宽带LSP的基准向量的CVk,在通过选择单元212与误差计算单元201连接时,将所存储的CVk通过选择单元212输入到误差计算单元201。
选择单元212基于来自最小化单元202的指示,依序更换连接到误差计算单元201的分类用代码向量存储单元211-1~211-n,并将CV1~CVn依序输入到误差计算单元201。
宽带码本220包含多个与CVk相对应的CVk’而构成,根据来自最小化单元202的通知,选出与最小化单元202确定的CVk对应的CVk′作为非线性预测结果,并将该选出的非线性预测结果输入到放大器103。
宽带代码向量存储单元221包含分别与CVk相对应的多个CVk’而构成,在通过后述的选择单元222与放大器103连接时,将所保持的CVk’输入到放大器103。另外,使用学习数据来设计CVk与CVk’之间的对应。具体而言,从作为学习数据的语音信号生成成对的窄带频谱数据和宽带频谱数据,通过LBG算法等将窄带频谱数据(或宽带频谱数据)分群(clustering)为n类别而生成CVk。然后,求与分群成各个类别的频谱数据成对的宽带频谱数据(或窄带频谱数据)的平均值并生成宽带的n类别的CVk’,由此进行CVk和CVk’的对应。
选择单元222在被最小化单元202通知k时,将存储与最小化单元202确定的CVk对应的CVk’的宽带代码向量存储单元221和放大器103连接。
如上述,在本实施方式中,在非线性预测单元102进行使用码本映射技术的非线性预测。
图3是表示本实施方式中具备宽带LSP预测装置的宽带解码装置300主要的结构要素的方框图。宽带解码装置300包括窄带-宽带变换单元101、非线性预测单元102、放大器103、104、121、LSP预测残差码本110、加法器122、预测系数表131、以及索引解码单元324。因此,宽带解码装置300具备多个与宽带编码装置100的结构要素相同的结构要素,在本实施方式中对于这种相同的结构要素省略其说明。
索引解码单元324接受其构成从宽带编码装置100发送的无线信号中包含的量化宽带LSP的编码数据,对宽带解码装置300中的LSP预测残差码本110的CBa111、CBa112以及CBc114和预测残差表131通知这些应输出的第一级代码向量至第三级代码向量与预测系数集。
此外,宽带解码装置300包括未图示的无线接收单元,在该无线接收单元接收从宽带编码装置100发送的无线信号,并提取用于表示包含在该无线信号的语音信号的量化窄带LSP的编码数据以及构成量化宽带LSP的编码数据。并且,宽带解码装置300包括未图示的窄带LSP解码单元,该窄带LSP解码单元解码在无线接收单元提取出的语音信号的量化窄带LSP。然后,在宽带解码装置300中,未图示的无线接收单元将该提取出的构成量化宽带LSP的编码数据输入到索引解码单元324,并且未图示的窄带LSP解码单元将解码后的语音信号的量化窄带LSP输入到窄带-宽带变换单元101。
因此,宽带解码装置300包括与宽带编码装置100相同的结构要素,基于由宽带编码装置100生成的语音信号的量化窄带LSP和构成量化宽带LSP的编码数据,使这些结构要素动作,由此生成与宽带编码装置100生成的量化宽带LSP相同的量化宽带LSP。
这样,在本实施方式中,基于乘以加权系数β1的非线性预测结果与乘以加权系数β2的变换宽带LSP的和来预测语音信号的宽带LSP,并计算该预测结果与实际的语音信号的宽带LSP之间的残差,生成与该残差最近似的LSP预测残差代码向量。再有,在本实施方式中,通过将语音信号的宽带LSP的预测结果和LSP预测残差代码向量乘以加权系数β4之后的向量相加,来生成量化宽带LSP。换言之,根据本实施方式,对基于非线性预测的预测值和基于上采样的预测值同时进行最大限度的利用,而不是像现有的方法那样仅使用非线性预测或上采样来预测语音信号的宽带LSP。因此,根据本实施方式,能够提高在从语音信号的量化窄带LSP预测语音信号的宽带LSP时的预测性能,作为其结果,能够改善此时的量化性能。
另外,在本实施方式中,由于同时考虑到相同帧内这些彼此相似的值,所以成为利用帧内相关进行预测,能够提高预测性能,而作为其结果,也能够改善此时的量化性能。
再有,根据本实施方式,由于量化宽带LSP候补是由通过各自不同的信号处理而生成的向量的组合构成,在非线性预测单元102的预测性能低的情况下,通过适当地调整预测系数表131向放大器103、104、121指示的加权系数能够改善量化宽带LSP的预测精度。因此,根据本实施方式,能够缓和对非线性预测单元102的预测性能的要求条件。这里,一般在非线性预测的预测性能越高时,非线性预测所需要的存储量和运算处理量越多。因此,如上述那样能够缓和对非线性预测的预测性能的要求条件即代表能够将该存储量和运算处理量抑制得少。换言之,根据本实施方式,即使在非线性预测单元102的存储量和运算处理量受限的情况下,也能够在其确定的存储量和运算处理量的范围内,最大限度利用非线性预测的预测效果。换言之,根据本实施方式,能够在使量化宽带LSP的预测性能高性能化的同时,谋求自由地设计或设定多个预测分量以及与其相乘的加权系数的设计自由度的提升,因此对于宽带编码装置,能够任意地设定容错性和量化性能之间的平衡。
另外,关于本实施方式也可以进行如下述的变形和应用。
在本实施方式中,对在非线性预测单元102使用码本映射技术来进行非线性预测的情况进行了说明,但本发明不限于这个情况,例如也可以在非线性预测单元102中使用采取了神经网络(neural network)或变换函数的映射变换等来进行非线性预测。
另外,在本实施方式中,说明了在非线性预测单元102中CVk和CVk’被一对一方式对应的情况,但本发明不限于这个情况,例如可以使多个CVk’与一个CVk相对应,并使分类用码本210向宽带码本220传输在选出CVk’时所需要的信息。这样,能够在非线性预测单元102的非线性预测所需的传输数据量几乎不增加的情况下高效地改善非线性预测性能。
另外,在本实施方式中,虽然说明了非线性预测单元102的主要内部结构为图2所示的形态的情况,但本发明不限于这个情况,非线性预测单元102的主要内部结构例如也可以是图4所示的形态。
这里,图4是表示本实施方式的变形例中的非线性预测单元102主要的内部结构的方框图。在该变形例中,非线性预测单元102使用码本映射技术进行非线性预测。
在图4所示的变形例中,非线性预测单元102包括分类用代码向量存储单元211、宽带代码向存储单元221、加权系数决定单元401和加权和计算单元402。在本变形例中,分类用代码向量存储单元211和宽带代码向量存储单元221与本实施方式同样地彼此对应,加权系数决定单元401以反复试验的方式对各个CVk乘以加权系数,决定使这些乘法运算结果与变换宽带LSP之间的误差最小的加权系数的组合,并将所决定的加权系数的组合通知给加权和计算单元402。
加权和计算单元402从加权系数决定单元401接收到所决定的加权系数的组合的通知后,从宽带代码向量存储单元221取出与CVk相对应的CVk’,将取出的CVk’分别与被通知的加权系数相乘并将其乘法运算结果相加,使该相加结果作为非线性预测结果输入到放大器103。
这样,根据图4所示的变形例,从非线性预测单元102输入到放大器103的非线性预测结果由分别与加权系数相乘的多个CVk’的总构成,因此能够对非线性预测结果进行细微的调整,从而能够进一步提高非线性预测单元102的预测性能。
再有,在本发明中,非线性预测单元102的主要内部结构例如可以是图5所示的形态。这里,图5是表示本实施方式的变形例中的非线性预测单元102主要的内部结构的方框图。
在图5所示的变形例中,非线性预测单元102使用多个变换函数进行非线性预测。在本变形例中,非线性预测单元102包括加权系数决定单元501、加权和计算单元502以及分别保持变换函数k(k=1~m)的m个变换函数保持单元511。
变换函数保持单元511分别使用所保持的变换函数k(k=1~m)对从窄带-宽带变换单元101输入的变换宽带LSP进行向量变换,并将变换后的向量输入到加权和计算单元502。另外,变换函数k能够预先使用学习数据生成,并不被特别限定。
加权系数决定单元501决定分别与从变换函数保持单元511输入到加权和计算单元502的向量相乘的加权系数。换言之,使用从窄带-宽带变换单元101输入的变换宽带LSP决定上述的加权系数,并将决定的加权系数通知给加权和计算单元502。作为该加权系数的决定方法,例如可举出为接近特定的代表向量的输入向量学习并设计特定的变换函数,并基于与分配给各个变换函数的代表向量之间的相似程度来决定的方法等。
加权和计算单元502将从加权系数决定单元501通知的加权系数与从变换函数保持单元511输入的各个向量相乘,将该乘法运算结果全部相加,并将该相加结果作为非线性预测结果输入到放大器103。
另外,在本实施方式中,对LSP预测残差码本110和预测系数表131不与非线性预测单元102相关联的情况进行了说明,但本发明不限于这种情况,例如也可以利用在非线性预测单元102内决定的分类结果k和加权系数集来进行变换宽带LSP的分类,更换并使用按所决定的每个类别而不同的LSP预测残差码本110和预测系数表131。如上述,如果进行LSP预测残差码本和预测系数表的多模式化,就只是利用在非线性预测处理过程中获得的信息,不需要用于模式判定的追加处理和新的传输信息,就能够进一步改善非线性预测单元102的预测性能。
(实施方式2)图6是表示本发明实施方式2中具备宽带LSP预测装置的宽带编码装置600的主要结构要素的方框图。宽带编码装置600在实施方式1的宽带编码装置100中包括加法器622和预测系数表631以取代加法器122和预测系数表131,并且进一步包括延迟器601、602、除法器602以及放大器603、604、605。因此,宽带编码装置600包括多个进行与宽带编码装置100相同的动作的结构要素,所以在本实施方式中,关于宽带编码装置600仅说明与宽带编码装置100不同的结构要素,以避免重复。
延迟器601将从窄带-宽带变换单元101输入的变换宽带LSP延迟1帧时间,并将延迟的1帧前的变换宽带LSP输入到除法器602。
除法器602将从延迟器601输入的1帧前的变换宽带LSP除以从后述的延迟器612输入的1帧前的量化宽带LSP,将该除法运算结果输入到放大器603。
放大器603使从除法器602输入的除法运算结果作为放大系数与从窄带-宽带变换单元101输入的变换宽带LSP相乘,并将该乘法运算结果输入到放大器604。
放大器604将由预测系数表631指示的加权系数β6乘以从放大器603输入的变换宽带LSP,并将该乘法运算结果输入到加法器622。
放大器605将从延迟器612输入的1帧前的量化宽带LSP乘以由预测系数表631指示的预测系数β5,并将该乘法运算结果输入到加法器622。
加法器622将从放大器103、104、121、604、605分别输入的乘法运算结果相加,并将该相加结果、即量化宽带LSP候补输入到误差计算单元123。另外,在使用误差最小化决定单元124决定的使误差最小的第一级代码向量至第三级代码向量与预测系数的集时从加法器622输出的量化宽带LSP在被输入到延迟器612的同时,视需要输出到宽带编码装置600的外部。
延迟器612将从加法器622输入的量化宽带LSP延迟1帧时间,并将该1帧前的量化宽带LSP分别输入到除法器602和放大器605。
预测系数表631存储多个预测系数集,该预测系数集为对放大器103、104、121、604、605指示的加权系数的组合,预测系数表631基于来自误差最小化决定单元124的通知,从存储的预测系数集中选择被通知的1个集,并分别向放大器103、104、121、604、605指示所选择的预测系数集中的各个加权系数。
图7是表示本发明实施方式2中具备宽带LSP预测装置的宽带解码装置700的主要结构要素的方框图。宽带解码装置700在实施方式1的宽带解码装置300中包括加法器622和预测系数表631以取代加法器122和预测系数表131,并且进一步包括延迟器601、612、除法器602以及放大器603、604、605。因此,宽带解码装置700的主要结构要素全部都进行与宽带解码装置300和宽带编码装置600的结构要素相同的动作,所以在本实施方式中,为避免重复而省略有关宽带解码装置700的说明。
如上述,根据本实施方式,在宽带编码装置600或宽带解码装置700中,在从量化窄带LSP预测语音信号的宽带LSP时,由于使用1帧前的量化宽带LSP,能够高效率地利用帧间相关和帧内相关,改善语音信号的频带可扩展编码或其解码的预测性能。
另外,本实施方式也与实施方式1同样地,可以使非线性预测单元102的内部结构为如图4和图5所示的形态。再有,本实施方式也可以采用多模式结构,即,使用在非线性预测单元102内部获得的信息进行变换宽带LSP的类别(class)的分类,基于分类后的类别切换LSP预测残差码本110和预测系数表631中的至少一方的结构。
(实施方式3)图8是表示本发明实施方式3中具备宽带LSP预测装置的宽带编码装置800的主要结构要素的方框图。宽带编码装置800是在实施方式1的宽带编码装置100中进一步包括放大器801的装置。并且,非线性预测单元102、加法器122以及预测系数表131的基本动作相同,但也进行新的动作,因此表示为非线性预测单元102a、加法器122a、预测系数表131a。因此,宽带编码装置800包括多个进行与宽带编码装置100相同的动作的结构要素,所以在本实施方式中,关于宽带编码装置800,仅说明与宽带编码装置100不同的结构要素,以避免重复。
如后述,非线性预测单元102a也将其非线性预测结果输入到放大器801。
预测系数表131a存储多个预测系数集,该预测系数集为对放大器103、104、121、801指示的加权系数的组合,预测系数表131a基于来自误差最小化决定单元124的通知,从存储的预测系数集中选择被通知的1个集,并分别指示放大器103、104、121、801使用所选择的预测系数集中包含的加权系数。
放大器801将从非线性预测单元102a输入的非线性预测结果乘以由预测系数表131a通知的加权系数β3,并将该乘法运算结果输入到加法器122a。
加法器122a对分别从放大器103、104、121、801输入的乘法运算结果(向量)进行相加,并输出该相加结果,即作为语音信号的宽带LSP的预测结果。
另外,在本实施方式中,虽然为了简化说明而使各个加权系数的标号与实施方式1相同,但这些值是在设计阶段通过最佳化而决定的值,实际的值与实施方式1不同。
图9是表示本实施方式的非线性预测单元102a的主要内部结构的方框图。
实施方式1中的非线性预测单元102从分类用码本210中选择与从窄带-宽带变换单元101输入的变换宽带LSP最近似的代码向量,将与该代码向量对应的宽带码本220的代码向量输出到放大器103。相对于此,在本实施方式中的非线性预测单元102a将在分类用码本210最终选择的代码向量输出到放大器801。
图10是表示本实施方式中具备宽带LSP预测装置的宽带解码装置1000的主要结构要素的方框图。另外,宽带解码装置1000采用与实施方式1的宽带解码装置300同样的基本结构,并且对于放大器801等也已进行说明,故在此省略说明。
这样,根据本实施方式,以下述三个LSP的加权和作为语音信号的宽带LSP的预测结果,即,实质上为窄带LSP的变换宽带LSP、码本映射后的宽带LSP(非线性预测宽带LSP)、以及以码本映射用的码本进行向量量化的变换宽带LSP。换言之,预测语音信号的宽带LSP的预测宽带LSP由下面的式(2)表示。
预测宽带LSP=β2×窄带LSP+β1×非线性预测宽带LSP+β3×以码本映射用的码本进行向量量化的窄带LSP…(2)另一方面,在实施方式1中,通过码本映射将窄带LSP变换为宽带LSP,使变换前后的LSP的加权和为宽带LSP的预测结果,预测宽带LSP由下面的式(3)表示。
预测宽带LSP=β2×窄带LSP+β1×非线性预测宽带LSP…(3)因此,与实施方式1相比,由于还考虑以码本映射用的码本进行向量量化的窄带LSP,所以能够进一步提高预测性能,并提高编码性能。
另外,本实施方式也可以与实施方式2组合。图11、12是组合本实施方式和实施方式2时的宽带编码装置1100和宽带解码装置1200的主要结构要素的方框图。基本动作如上述,故省略其说明。
(实施方式4)在实施方式3所示的由各个放大器相乘的加权系数不一定是正数。例如,如果通过模拟求出各个系数的最佳值,在β1为正数时,β3成为接近-β1的负值,而β2成为接近1.0的值的情况较多。
在这样的情况下,上述式(2)相当于通过将从窄带-宽带变换单元101输入的窄带LSP和存储在窄带用的码本的代码向量之间的加权误差与从宽带用的码本输出的代码向量相加,来求预测宽带LSP。此时,能够将在实施方式3所示的非线性预测单元102a、放大器801、加法器122a整个视为一个非线性预测单元102b。
图13是表示本发明实施方式4中具备宽带LSP预测装置的宽带编码装置1300的主要结构要素的方框图。另外,宽带编码装置1300也具备多个进行与实施方式1的宽带编码装置100相同的动作的结构要素。
根据该结构,使β3=-β1,通过由减法器1301计算出窄带LSP与以码本映射用的码本进行向量量化的窄带LSP之间差,由此能够如下面的式(4)来求预测宽带LSP。
预测宽带LSP=β1×非线性预测宽带LSP+β2×(窄带LSP-以码本映射用的码本进行向量量化的窄带LSP)…(4)图14是表示本实施方式中具备宽带LSP预测装置的宽带解码装置1400的主要结构要素的方框图。基本动作如上述,故省略其说明。
因此,根据本实施方式,通过使用上述式(4)的预测模式,能够减少一个预测系数(加权系数)的数量,因此能够节省相应的存储量。
另外,本实施方式也可以与实施方式2组合。图15、16是组合本实施方式和实施方式2时的宽带编码装置1500和宽带解码装置1600的主要结构要素的方框图。这些装置的基本动作如上述,故省略其说明。
(实施方式5)本发明的实施方式5的宽带编码装置的基本结构与实施方式1的宽带编码装置100相同。因此,下面对与实施方式1不同结构的非线性预测单元102c进行说明。
图17是表示非线性预测单元102c的主要内部结构的方框图。
非线性预测单元102c为实施方式1所示的宽带码本220(参照图2)的多级结构。换言之,本实施方式的宽带码本220c被多级化。图17的例子为双极化。这里,x表示宽带码本220c的第一级码本221-11~221-1x存储的代码向量数,y表示宽带码本220c的第二级码本221-21~221-2y存储的代码向量数。在两者之间存在n=x×y的关系。
对于分类用码本210的分类用代码向量CVk与从宽带码本220c生成的宽带代码向量CVk’之间的对应,例如预先设计如下。这里,以x=8、y=8、n=64的情况为例进行说明。
CV1→CV11+CV21CV2→CV11+CV22···CV8→CV11+CV28CV9→CV12+CV21···CV16→CV12+CV28CV17→CV13+CV21···CV64→CV18+CV28如上述,使分类用代码向量CVk与宽带代码向量CVk’相对应,则从分类用码本210选择的代码向量的索引的前三个比特成为从宽带码本220c的第一级码本221-11~221-1x选择的代码向量号码,并且,从分类用码本210选择的代码向量的索引的最后三个比特成为从宽带码本220c的第二级码本221-21~221-2y选择的代码向量号码。因此,没有必要在个别的存储器保持分类用代码向量CVk和宽带代码向量CVk’之间的对应关系。
这样,根据本实施方式,由于将分类用码本210或宽带码本220的至少一方多级化,能够减少非线性预测处理所需的存储量。
另外,在实施方式1中,也能够采用使分类用码本210多级化的结构,而不是宽带码本220。然而,在宽带码本220的向量的维数比分类用码本210多的情况下,将宽带码本220多级化时存储器的削减量较大。
另外,本实施方式也能够适用于实施方式3、4。在这个情况下,在实施方式3所示的非线性预测单元102a成为如图18所示的非线性预测单元102c。
(实施方式6)图19是表示根据本发明的实施方式6的宽带编码装置1900的主要结构要素的方框图。宽带编码装置1900包括多个进行与实施方式1的宽带编码装置100相同的动作的结构要素,所以在本实施方式中仅说明与宽带编码装置100不同的结构要素,以避免重复。
宽带编码装置1900选择码本映射的候补,将有关该选择的信息输出到宽带解码装置。具体而言,从分类用码本选择多个候补代码向量,并从中选择与输入宽带LSP向量的误差最小的代码向量,将该选择信息与编码数据一起传输到宽带解码装置。
图20是表示非线性预测单元102d的主要内部结构的方框图。
候补选择单元2001与实施方式1所示的最小化单元202同样地,选择使平方误差最小的一个分类用代码向量。并且,候补选择单元2001以平均误差小的顺序选择多个分类用代码向量(候补代码向量),对宽带码本220发出指示,以输出分别与选择的多个候补代码向量对应的多个宽带代码向量。另外,图20采用候补数为4的情况作为例子。在下述说明中候补数为4。
宽带码本220将候补选择单元2001指示的4个宽带代码向量输出到候补代码向量码本2002。
候补代码向量码本2002将输入的多个宽带代码向量存储在候补代码向量存储单元CVa~CVd中。此时,从由误差计算单元201计算出的误差较小的开始,按照CVa、CVb、CVc、CVd的顺序存储4个宽带代码向量。这4个宽带代码向量基于来自误差最小化决定单元2006的指示被每次一个地输出到误差计算单元2005。
误差计算单元2005与误差计算单元201同样地计算输入的宽带LSP与宽带代码向量之间的误差,并输出到误差最小化决定单元2006。
误差最小化决定单元2006从存储在候补代码向量码本2002的多个宽带代码向量中,通过反馈控制求与输入宽带LSP向量之间的误差最小的宽带代码向量。具体而言,误差最小化决定单元2006与实施方式1所示的最小化单元202同样地,从存储在候补代码向量码本2002的4个宽带代码向量中,选择一个使误差计算单元2005输出的误差最小的代码向量,并对候补代码向量码本2002发出指示,以将所选择的宽带代码向量输出到放大器103。另外,误差最小化决定单元2006也输出与所选择的宽带代码向量有关的信息(选择信息)。
图21是表示本实施方式的对宽带编码装置1900生成的编码数据以及选择信息进行解码的宽带解码装置2100的主要结构要素的方框图。宽带解码装置2100包括多个进行与实施方式1的宽带解码装置300相同的动作的结构要素,所以在本实施方式中仅说明与宽带解码装置300不同的结构要素,以避免重复。
非线性预测单元102e将从上述的非线性预测单元102d传输来的选择信息输入,并将基于该选择信息的非线性预测结果输出到放大器103。图22是表示非线性预测单元102e的主要内部结构的方框图。
选择信息解码单元2201以外的结构与上述的非线性预测单元102d相同,故省略其说明。选择信息解码单元2201对输入的选择信息进行解码,并向候补代码向量码本2002发出指示,以输出使用该选择信息确定的代码向量。
这样,根据本实施方式,从分类用码本选择多个候补,并从多个候补中进一步选择使预测误差或量化误差最小的代码向量,因此能够改善非线性预测的预测精度。
另外,本实施方式的非线性预测单元102d和102e也能够适用于实施方式3、4。
(实施方式7)图23是表示根据本发明的实施方式7的宽带编码装置2300的主要结构要素的方框图。宽带编码装置2300也与实施方式6同样地,包括多个进行与实施方式1的宽带编码装置100相同的动作的结构要素,所以仅说明与宽带编码装置100不同的结构要素,以避免重复。
在本实施方式中,非线性预测单元102f使用量化结果(误差最小化决定单元124f的输出)来选择码本映射的候补这一点与实施方式6不同。因此,不在非线性预测单元102f的内部使与宽带LSP之间的误差最小化,而是由非线性预测单元102f外部的误差最小化决定单元124f进行使与宽带LSP之间的误差最小化的反馈控制。
非线性预测单元102f基于来自误差最小化决定单元124f的指示,将规定数的非线性预测结果依序输出到放大器103。在图23的例子中,非线性预测单元102f使存储在Cva~CVd中的4个代码向量作为规定数的非线性预测结果输出到放大器103。
误差最小化决定单元124f决定在分别使用了该规定数的非线性预测结果时的第一级代码向量至第三级代码向量与预测系数的集。然后,在这些参数中求出使误差计算单元123输出的误差最小的非线性预测结果,并使该非线性预测结果以及在使用该非线性预测结果的情况下决定的第一级代码向量至第三级代码向量与预测系数的集作为编码数据输出到无线发送单元(未图示)等。
图24是表示非线性预测单元102f的主要内部结构的方框图。对与实施方式6所示的非线性预测单元102d相同的结构,为避免重复而省略说明。
候补代码向量码本2002将来自误差最小化决定单元124f的指示信息输入,并基于该指示信息选择一个代码向量,将它输出到放大器103。
图25是表示本实施方式中对宽带编码装置2300生成的编码数据进行解码的宽带解码装置2500的主要结构要素的方框图。
在宽带编码装置2300生成的编码数据中,除了实施方式1所示的信息之外,还包括从非线性预测单元102f输出的非线性预测结果的选择信息。因此,索引解码单元324f从输入的编码数据解码上述选择信息,并输入到非线性预测单元102f。
非线性预测单元102f将基于输入的选择信息的非线性预测结果输出到放大器103。另外,非线性预测单元102f的内部结构与图24所示的结构相同。
这样,根据本实施方式,从分类用码本选择多个候补,并进一步从多个候补中选择使预测误差或量化误差最小的代码向量,因此能够改善非线性预测的预测精度。
另外,本实施方式的非线性预测单元102f和误差最小化决定单元124f以及索引解码单元324f也能够适用于实施方式4。
(实施方式8)图26是表示根据本发明的实施方式8的宽带编码装置2600的主要结构要素的方框图。宽带编码装置2600包括多个进行与实施方式3的宽带编码装置800(参照图8)相同的动作的结构要素,所以在本实施方式中仅说明与宽带编码装置800不同的结构要素,以避免重复。
非线性预测单元102g基于来自误差最小化决定单元124g的指示,从分类用码本选择多个候补代码向量,将与这些代码向量对应的宽带码本的代码向量输出到放大器103的同时,也将从分类用码本选择出的候补向量本身输出到放大器801。
误差最小化决定单元124g决定在使用规定数的宽带代码向量与分类用代码向量的集的情况下的第一级代码向量至第三级代码向量与预测系数的集。然后,在这些参数中,求使误差计算单元123输出的误差最小的分类用代码向量与宽带代码向量的集,生成该集与编码数据,该编码数据表示在使用该集的情况下决定的第一级代码向量至第三级代码向量以及预测集,并输入到无线发送单元(未图示)等。
图27是表示非线性预测单元102g的主要内部结构的方框图。对与实施方式7所示的非线性预测单元102f相同的结构,为避免重复而省略说明。
其结构为对实施方式7所示的非线性预测单元102f新增加了候补代码向量(分类用代码向量)码本2701的结构。候补代码向量码本2701以外的结构与非线性预测单元102f相同,故省略其说明。候补代码向量码本2701基于来自误差最小化决定单元124g的指示信息选择代码向量并输出到放大器801。
非线性预测单元102g将非线性预测结果(宽带代码向量)和与其对应的分类用代码向量输出到放大器103。被输出的宽带代码向量以及分类用代码向量并非一种,基于来自误差最小化决定单元124g的指示,规定数的宽带代码向量以及分类用代码向量被依序输入到放大器103和放大器801。
图28是表示本实施方式中对宽带编码装置2600生成的编码数据进行解码的宽带解码装置2800的主要结构要素的方框图。宽带解码装置2800包括多个进行与实施方式3的宽带解码装置1000相同的动作的结构要素,所以在本实施方式中仅说明与宽带解码装置1000不同的结构要素,以避免重复。
在本实施方式的宽带解码装置2800中,编码数据除了实施方式3的编码数据中所包含的信息之外,还包括从非线性预测单元102g输出的宽带代码向量和分类用代码向量之间的集的选择信息。索引解码单元324g从该编码数据解码上述选择信息,并输出到非线性预测单元102g。非线性预测单元102g基于输入的选择信息求宽带代码向量以及分类用代码向量,将宽带代码向量输出到放大器103,并将分类用代码向量输出到放大器801。非线性预测单元102g的内部结构基本上与图27所示的非线性预测单元102g相同,故省略其说明。
另外,本实施方式的非线性预测单元102g和误差最小化决定单元124g以及索引解码单元324g也能够适用于实施方式4。
以上,对本发明的各个实施方式进行了说明。
本发明的宽带编码装置等并不局限于上述各个实施方式,而是可以进行各种变更来实施。
本发明的宽带编码装置等可以装载在移动通信系统中的通信终端装置以及基站装置中。据此,可以提供具有上述作用和效果的通信终端装置、基站装置以及移动通信系统。
另外,LSP也被称为LSF(Line Spectral Frequency)。虽然有时会对LSP和LSF加以区别(例如在ITU-T建议G.729中将从LSF移除余弦后的结果定义为LSP),但在本说明书中不对两者加以区别而将其视为同义词。换言之,也可将LSP读作LSF。
另外,这里虽然以本发明的预测和编码对象为LSP的情况为例进行了说明,但也可以适用于LSP以外的频谱包络参数的预测和编码。作为频谱包络参数的具体例,可举出FFT(快速傅立叶变换)功率频谱和MDCT(ModifiedDiscrete Cosine Transforms,改进式离散余弦变换)的包络信息等。此时,窄带-宽带变换单元101的上采样是使窄带的频谱包络参数作为低频率域的频谱包络参数,并且一般是对高频部分进行填0来实现。并且,作为能够与LSP相互变换的参数的LPC(线性预测系数)、PARCOR系数(偏自相关系数)、自相关函数、LPC倒谱、反射系数等也包含在频谱包络信息中。此时,关于窄带-宽带变换单元101的上采样,可以先将这些参数变换为LSP,在LSP的区域进行如实施方式说明的上采样,也可以通过在LPC区域或自相关函数的区域中进行数据的内插(插值)来实现上采样。关于数据的内插已知有几个插值方法,较被普遍利用的是以使用SINC函数的插值滤波器来实现的方法。由使用SINC函数的插值滤波器进行的数据的内插处理例如在ITU-T建议G.729中也有公开,这也用于自适应码本的声源向量生成或音调搜索时的自相关函数的内插等。关于窄带-宽带变换单元101之外的区块的动作,将实施方式中的LSP替换成各个参数即可。
另外,在本说明书中虽然使输入非线性预测单元102的量化窄带LSP为经由窄带-宽带变换单元101上采样后的LSP,但也可以是不通过窄带-宽带变换单元101而被上采样之前的量化窄带LSP。
再有,这里以硬件构成本发明的情况为例进行了说明,但本发明也能够以软件实现。例如,可以用编程语言记述本发明的宽带LSP预测方法的算法,将此程序存储于存储器中,通过用信息处理单元执行,可以实现与本发明的宽带LSP预测装置相同的功能。
再有,用于上述各实施方式的说明中的各功能块可实现为一般作为集成电路的LSI。这些块既可是每个块分别集成到一个芯片,或者可以是部分或所有块集成到一个芯片。
并且,虽然此处称为LSI,但根据集成程度,可以称为IC、系统LSI、超大LSI(Super LSI)、或特大LSI(Ultra LSI)。
另外,实现集成电路化的方法不仅限于LSI,也可使用专用电路或通用处理器来实现。在LSI制造后可利用可编程的FPGA(Field Programmable GateArray),或者可以使用可重构LSI内部的电路单元的连接或设定的可重构处理器。
再有,随着半导体的技术进步或随之派生的其他技术的出现,如果能够出现替代LSI集成回路化的新技术,当然可利用此技术进行功能块的集成化。并且存在着适用生物技术等的可能性。
本说明书根据2004年12月10日申请的日本专利特愿2004-358260、2005年3月29日申请的日本专利特愿2005-095345号以及2005年9月30日申请的日本专利特愿2005-286532。其内容全部包含于此以资参考。
工业实用性本发明的宽带编码装置等具有下述效果,即,在语音信号的频带可扩展编码或其解码中,虽然使用能够以有限的存储量实现的非线性预测,却能够实现高预测性能的预测器并改善量化器的量化效率,作为可利用的存储量受到限制且被迫进行低速的无线通信的便携式电话等的通信终端装置等,本发明的宽带编码装置等极为有用。
权利要求
1.一种宽带编码装置,其使用语音信号的量化窄带LSP对宽带LSP进行编码,它包括变换单元,通过上采样,将所述量化窄带LSP变换为具有该量化窄带LSP的信息的宽带的第一LSP;预测单元,通过非线性预测处理,使用所述第一LSP或所述量化窄带LSP来预测宽带的第二LSP;生成单元,使用所述第一LSP与所述第二LSP的加权和来生成预测宽带LSP;以及编码单元,求使所述预测宽带LSP与所述宽带LSP之间的误差最小的编码数据。
2.如权利要求1所述的宽带编码装置,其中所述预测单元使用码本映射的向量量化作为非线性预测处理。
3.如权利要求1所述的宽带编码装置,其中,所述预测单元包括分类用码本,包含多个作为基准向量的分类用代码向量而构成,该基准向量表示所述第一LSP或所述量化窄带LSP;误差计算单元,计算所述第一LSP与所述分类用代码向量之间的误差,或所述量化窄带LSP与所述分类用代码向量之间的误差;最小化单元,从所述分类用码本中确定使在所述误差计算单元的误差最小的分类用代码向量;以及第一宽带码本,包含多个与所述分类用代码向量对应的宽带代码向量而构成,并输出与所述最小化单元确定的分类用代码向量对应的宽带代码向量。
4.如权利要求3所述的宽带编码装置,其中所述生成单元使用所述第一LSP与所述第二LSP与以所述预测单元的分类用代码向量进行向量量化的第一LSP的加权和,以取代所述第一LSP与所述第二LSP的加权和。
5.如权利要求3所述的宽带编码装置,其中所述生成单元使用该第一LSP与以所述预测单元的分类用代码向量进行向量量化的第一LSP之间的差,以取代所述第一LSP。
6.如权利要求3所述的宽带编码装置,其中所述分类用码本所包含的分类用代码向量或所述第一宽带码本所包含的宽带代码向量为多级结构。
7.如权利要求1所述的宽带编码装置,其中,所述预测单元包括分类用码本,包含多个作为基准向量的分类用代码向量而构成,该基准向量表示所述第一LSP或所述量化窄带LSP;第一误差计算单元,计算所述第一LSP与所述分类用代码向量之间的误差,或所述量化窄带LSP与所述分类用代码向量之间的误差;选择单元,从所述分类用码本中,从误差小的开始选择规定数的所述第一误差计算单元中的误差小的分类用代码向量;第一宽带码本,包含多个与所述分类用代码向量对应的宽带代码向量而构成,并输出与所述选择单元选择的规定数的分类用代码向量对应的规定数的宽带代码向量;第二误差计算单元,计算所述语音信号的宽带LSP与所述规定数的宽带代码向量之间的误差;以及最小化单元,从所述规定数的宽带代码向量中选择使所述第二误差计算单元中的误差最小的宽带代码向量,同时输出与所选择的宽带代码向量相关的选择信息。
8.如权利要求1所述的宽带编码装置,其中,所述预测单元包括分类用码本,包含多个作为基准向量的分类用代码向量而构成,该基准向量表示所述第一LSP或所述量化窄带LSP;误差计算单元,计算所述第一LSP与所述分类用代码向量之间的误差,或所述量化窄带LSP与所述分类用代码向量之间的误差;选择单元,从所述分类用码本中从误差小的开始选择规定数的所述误差计算单元中的误差小的分类用代码向量;以及第一宽带码本,包含多个与所述分类用代码向量对应的宽带代码向量而构成,并输出与所述选择单元选择的规定数的分类用代码向量对应的规定数的宽带代码向量,所述编码单元从所述规定数的宽带代码向量中选择并输出使所述预测宽带LSP与所述宽带LSP之间的误差最小的宽带代码向量,同时输出与该宽带代码向量对应的加权系数。
9.如权利要求8所述的宽带编码装置,其中所述生成单元使用所述第一LSP和所述第二LSP及以所述预测单元的分类用代码向量进行了向量量化的第一LSP的加权和,以取代所述第一LSP与所述第二LSP的加权和。
10.如权利要求1所述的宽带编码装置,其中,所述预测单元包括分类用码本,包含多个作为基准向量的分类用代码向量而构成,该基准向量表示所述第一LSP或所述量化窄带LSP;加权系数决定单元,计算将多个所述分类用代码向量与加权系数相乘后的乘法运算结果相加的相加结果与所述第一LSP之间的误差,或所述相加结果与所述量化窄带LSP之间的误差,并决定使计算出的误差最小的所述加权系数;以及第二宽带码本,包含多个与所述分类用代码向量对应的宽带代码向量而构成,并将由所述加权系数决定单元决定的加权系数与所述宽带代码向量相乘的乘法运算结果相加。
11.如权利要求1所述的宽带编码装置,其中,还包括延迟单元,延迟所述预测宽带LSP,所述生成单元使用所述第一LSP和所述第二LSP以及由所述延迟单元延迟后的前面的预测宽带LSP的加权和,以取代所述第一LSP与所述第二LSP的加权和。
12.一种宽带LSP预测装置,其从语音信号的量化窄带LSP预测宽带LSP,它包括变换单元,通过上采样将所述量化窄带LSP变换为具有该量化窄带LSP的信息的宽带的第一LSP;预测单元,通过非线性预测处理,从所述第一LSP预测宽带的第二LSP;以及生成单元,使用所述第一LSP与所述第二LSP的加权和来生成预测宽带LSP。
13.一种频带可扩展编码装置,包括窄带编码单元,对语音信号的窄带LSP进行编码,生成量化窄带LSP;宽带编码单元,使用所述量化窄带LSP,对所述语音信号的宽带LSP进行编码;所述宽带编码单元包括变换单元,通过上采样,将所述量化窄带LSP变换为具有该量化窄带LSP的信息的宽带的第一LSP;预测单元,通过非线性预测处理,使用所述第一LSP或所述量化窄带LSP来预测宽带的第二LSP;生成单元,使用所述第一LSP与所述第二LSP的加权和来生成预测宽带LSP;以及编码单元,求使所述预测宽带LSP与所述宽带LSP之间的误差最小的编码数据。
14.一种频带可扩展解码装置,包括窄带解码单元,对表示语音信号的量化窄带LSP的编码数据进行解码,生成量化窄带LSP;解码单元,对有关所述语音信号的量化宽带LSP的编码数据进行解码;以及宽带解码单元,根据有关由所述解码单元所解码的量化宽带LSP的信息,从所述量化窄带LSP生成量化宽带LSP,所述宽带解码单元包括变换单元,通过上采样,将所述量化窄带LSP变换为具有该量化窄带LSP的信息的宽带的第一LSP;预测单元,通过非线性预测处理,使用所述第一LSP或所述量化窄带LSP来预测宽带的第二LSP;以及生成单元,根据所述信息,使用所述第一LSP与所述第二LSP的加权和来生成量化宽带LSP。
15.一种通信终端装置,包括如权利要求1所述的宽带编码装置。
16.一种基站装置,包括如权利要求1所述的宽带编码装置。
17.一种使用语音信号的量化窄带LSP对宽带LSP进行编码的宽带编码方法,包括以下步骤通过上采样,将所述量化窄带LSP变换为具有该量化窄带LSP的信息的宽带的第一LSP;通过非线性预测处理,使用所述第一LSP或所述量化窄带LSP预测宽带的第二LSP;使用所述第一LSP与所述第二LSP的加权和来生成预测宽带LSP;以及求使所述预测宽带LSP与所述宽带LSP之间的误差最小的编码数据。
全文摘要
提供能够抑制使窄带LSP和宽带LSP相关联的变换表的大小,同时以高量化效率和高精度从窄带LSP预测宽带LSP的宽带LSP预测装置等。在该装置中,非线性预测单元(102)使用从窄带-宽带变换单元(101)输入的变换宽带LSP进行非线性预测,将该非线性预测结果输入到放大器(103)。变换宽带LSP被输入到放大器(104)。加法器(122)将从放大器(103、104)分别输入的乘法运算结果(向量)相加。
文档编号G10L19/00GK101076853SQ20058004248
公开日2007年11月21日 申请日期2005年12月9日 优先权日2004年12月10日
发明者江原宏幸, 吉田幸司, 森井利幸 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1