电子场致发射体和与此相关的组合物的制作方法

文档序号:2909151阅读:146来源:国知局
专利名称:电子场致发射体和与此相关的组合物的制作方法
技术领域
本发明涉及由有效电子场致发射体这类物质形成的组合物。尤其是本发明涉及含有电子发射物质和膨胀材料的电子场致发射体。本发明进一步涉及一种通过膨胀材料的膨胀制造电子场致发射体的方法。
背景技术
场致发射电子源,常常称为场致发射材料或场致发射体,可以用于各种电子应用,例如,真空电子器件,平板型计算机和电视显示器,发射门信号放大器,和速调器以及用于照明。
显示屏有着广泛的应用,例如家用和工业用电视,膝上型计算机和台式计算机,室内和室外广告和信息显示。平板显示器与出现在大多数的电视机和台式计算机上的深度阴极射线管监视器大不相同的是,其厚度可以是英寸或更小。平板显示器是膝上型计算机的必需品,但也给许多其它方面的应用提供重量和尺度方面的优点。目前,膝上型计算机平板显示器采用液晶体,通过施加小的电信号,就可使其从透明状态转换成不透明状态。要可靠地生产这类比适用于膝上型计算机的显示器尺寸更大的显示器是困难的。
等离子体显示器已被提议作为液晶显示器的替代品。等离子体显示器应用电学上带电气体的极小的像素单元来产生图像,但它的运作要求比较大的电功率。
已提议平板显示器可具有一个阴极和一个磷光体,其中阴极采用场致发射电子源,亦即,场致发射材料或场致发射体,而磷光体当受到场致发射体发射的电子轰击时能发射光线。这类显示器具有能提供常规阴极射线管在直观显示方面的优点,和其它平板显示器在深度、重量和功率消耗方面的优点的潜在能力。US 4857799和US 5015912公开了利用由钨,钼或硅构成的微型尖头阴极的矩阵寻址平板显示器。WO 94/15352,WO 94/15350和WO 94/28571公开了若干种平板显示器,其中的阴极具有相对地平坦的发射表面。
已在二种纳米管碳结构中观察到了场致发射现象。L.A.彻诺赞托斯基等人[化学物理快报233期63(1995),和材料研究学会研讨会汇编第359卷99(1995)]利用石墨在10-5~10-6托真空度下的电子蒸发的方法已在各种基质上生产出纳米管碳结构的薄膜。这些薄膜由彼此相互紧挨着排列好的管状碳分子组成。形成了二种类型的管状分子(1)A型管形石(A-tubelites),其结构包含单层型石墨状细管,这些单层型石墨状细管形成直径10~30nm的长丝束;和(2)B型管形石(B-tubelites),它包含几乎全都是带有圆锥或园顶状端头的直径10~30nm的多层型石墨状细管。这几位作者报导说能从这些结构的表面具有大量的场致电子发射,并认为这是由于在纳米尺度级尖端处电场的高密度引起的。
B.H.菲希比内等人[材料研究学会研讨会汇编359卷,93(1995)]论述了针对开发的巴基管(buckytube)(亦即碳纳米管)冷场致发射体阵列阴极的实验和理论。A.G.赖因兹利尔等人[自然科学269期1550(1995)]报导了当纳米管尖头被激光蒸发或氧化浸蚀而显露出来时,提高了碳纳米管的场致发射性能。
W.B.乔伊等人[应用物理快报,75期3129(1999)]和D.S.琼格等人[真空科学技术杂志B18(2)]报导了利用单层型碳纳米管-有机粘结剂制作出4.5英寸平板场致显示器。单层型碳纳米管被垂直排列,方法是挤压糊剂使其通过金属网,进行表面打磨,和/或借助电场进行调整。这几位作者还制造出了多层型碳纳米管显示器。要指出的是,利用结晶浆料挤压和表面打磨技术,已研制出了具有良好均匀性的碳纳米管场致发射体。进而,已经发现从发射体上层表面除去金属粉末和通过表面处理使碳纳米管定位,提高了发射性能。发现了单层型碳纳米管具有的发射性能比多层型碳纳米管要好,但单层型碳纳米管薄膜表现出的发射稳定性比多层型碳纳米管薄膜要差。
泽特尔等人(U.S6057637)公开了一种包含一定量粘结剂和一定量的悬浮于该粘结剂中的BxCyNz纳米管的场致发射体材料,式中X.Y.Z.表示成比例关系的硼,碳和氮。
WO 01/99146公开了一种可利用针状发射物质制成电子场致发射体,以改善场致发射性能的方法。
N.M.罗德里格兹等人[催化剂杂志144期93(1993)]和N.M.罗德里格兹[材料研究杂志8期3233(1993)],论述了通过催化分解金属小颗粒上的某些烃类的方法,生产出的碳纤维的生长和性质。U.S.5149584,U.S.5413866,U.S.5458784,U.S.5618875和U.S.5653951公开了这类纤维的用途。
尽管提供了例如上面所论述的本领域中的那些公开内容,但存在着继续需要一种能使电子场致发射体中的电子发射物质,尤其是针状碳实现工业应用的技术。
发明概述本发明提供了由含有电子发射物质和膨胀材料的物质形成的组合物。膨胀材料可以是例如层间化合物。当薄膜是由这种组合物形成时,膨胀材料的膨胀典型地会引起薄膜的断裂或破裂。在膨胀材料发生膨胀之后,对薄膜表面典型地要求不作进一步处理,以便使这薄膜变得可用作场致发射体。利用这一类破裂薄膜制成的导体起着有效的电子场致发射体作用,因而能用于真空微电子器件。因此本发明的其它实施方案是关于一种已发生破裂或断裂的电子发射薄膜,和一种通过使准备用来制作场致发射体的薄膜中的膨胀材料发生膨胀以制作电子场致发射体的方法。
在一个优选的实施方案中,本发明提供用作场致发射的物质的组合物,这类组合物包括针状碳和膨胀材料,其中膨胀材料在热处理过程中发生膨胀,并产生足够的力,以便使由该组合物制成的电子发射薄膜发生破裂或重新排列。
碳纳米管优选针状碳。更优选单层型碳纳米管,而特别优选采用激光烧蚀或辐射生成的单层型碳纳米管。优选用于本方法的是,利用如下一种组合物制成的电子场致发射体,其中电子发射物质的含量约占该组合物总重量的0.1~20重量%,另一方面,可以约小于该组合物总重量的9重量%。更优选的是利用如下一种组合物质制成的电子场致发射体,其中电子发射物质的含量约小于该组合物总重量的5重量%。更加优选的是利用如下一种组合物质制成的电子场致发射体,其中电子发射物质的含量约小于该组合物总重量的1重量%。最优选的是利用如下一种组合物质制成的电子场致发射体,其中电子发射物质的含量为该组合物总重量的约0.01重量%~约2重量%。
优选的膨胀材料是石墨颗粒,这些石墨颗粒是插层型的和在加热时其体积发生膨胀。其它层间化合物例如粘土和云母也可起到这种作用。添加的膨胀材料,例如石墨颗粒,其含量是含有电子发射物质的组合物的总固体颗粒重量的1重量%~99重量%。其它材料,例如银颗粒,玻璃颗粒和有机载体可被添加到配方中,以便增加组合物的可印刷性,导电性或绝缘。
这组合物可制备成筛网可印刷的糊浆,其中含有属于固体颗粒之列的电子发射物质,例如碳纳米管,其中电子发射物质含量约为糊剂中固体颗粒总重量的0.1~20重量%,但可以小于总重量的9重量%。更优选的是这样一种组合物,其中电子发射物质的含量小于糊剂中固体颗粒总重量的5重量%。更加优选的是这样一种组合物,其中电子发射物质的含量小于糊剂中固体颗粒总重量的1重量%。最优选的是这样一种组合物,其中电子发射物质的含量约为糊剂中固体颗粒总重量的0.01~2重量%。这种糊剂特别适用于利用本发明的方法制作电子场致发射体。这一类发射体具有极好的发射性能,对基质良好的粘附力,以及具有制作简易和材料及加工成本比较低的优点。
本发明的改进型电子场致发射体利用了本发明的组合物制成,并适用于平板计算机,电视或其它类型的显示器,真空电子器件,发射门信号放大器,速调管以及用于照明器件。这类物质组合物和其制备方法是特别有利于生产供平板显示器用的大面积电子场致发射体,亦即尺寸大于30英寸(76cm)的显示器。这类平板显示器可以是平面的或曲面的。
本发明的另一个实施方案是一种这样的物质组合物,它包含(a)电子发射物质,和(b)膨胀材料,其体积可膨胀至少约0.03倍。
本发明的再一个实施方案是一种这样的物质组合物,它包含(a)电子发射物质和(b)层间化合物。
本发明的另外又一个实施方案是一种电子发射薄膜,它包含(a)电子发射物质,和(b)膨胀材料,其中电子发射薄膜已因膨胀材料膨胀而破裂。
本发明的另外又一个实施方案是一种制作电子发射薄膜的方法,该方法包括(a)利用包含以下物质的组合物形成电子发射薄膜,(1)电子发射物质,和(2)膨胀材料,其体积可膨胀约0.03倍;和(b)使膨胀材料膨胀。
附图简述

图1表明在加热处理之前和之后的本发明组合物的表面显微结构。
图2表明利用本发明的组合物制成的薄膜(实例1)在经热处理后的I~V曲线。
图3表明利用非本发明所述的组合物制成的薄膜(对照例A)在经热处理后的I~V曲线。
图4表明实例1和对照例A的I~V曲线之比较。
图2表明利用本发明的组合物制成的薄膜(实例2)在经热处理后的I~V曲线。
发明详述本发明提供一种具有改善了场致发射性能的物质形成的组合物,它包含电子发射物质和膨胀材料。这种组合物可用来制作电子场致发射体。这组合物除了电子发射物质和膨胀材料之外,还可包含玻璃原料,金属粉末或金属涂料,或它们的混合物,因为它们有助于电子场致发射体附着在基质上,这可正是所希望。因此,制作电子场致发射体所用的组合物的总重量中的确包括例如玻璃原料,金属粉末或金属涂料这类材料的重量,但是不包括承载电子发射体的基质的重量。
当电子发射物质是例如碳一类的针状发射物质、半导体、金属或它们的混合物时,本文中的组合物是特别有效的。针状物质是长粒型的,所含颗粒具有的形状比为10或更大。针状碳可以是各种类型的。碳纳米管是优选的针状碳,而单层型碳纳米管更是优选的。各个单层型碳纳米管的直径均是极小的,典型地约为1.5nm。碳纳米管有时被说成是石墨状的,大概是由于sp2杂化碳。可将单层型碳纳米管的管壁想象成是由graphene薄板卷起来形成的圆筒。多层型碳纳米管具有由多于1块的graphene薄板形成的多层圆筒形管壁,故也可用于本发明。
小金属颗粒上方的含碳气体催化分解生成的碳纤维,也可用作针状碳。催化生长型碳纤维是一种小金属颗粒上方的含碳气体催化分解生成的碳纤维,并具有许多以相对于纤维轴线成某一角度排列的graphene片晶,以致这碳纤维的周边基本上是由这些graphene片晶的边缘组成。这角度可能是90°或可能与相对于纤维轴的垂直面成锐角。
其它的针状碳的实例是聚丙烯腈基(PAN-基)碳纤维和树脂基碳纤维。
这膨胀材料可能是一种层间化合物,例如插层型石墨,云母,粘土,或蛭石。层间化合物是一种这样的化合物,其中结晶物质把其它物质的分子,原子,或离子引入了它的晶格的间隙或层间。这结晶晶格起着电子供体作用,和将“外来”电子受体原子散置或弥散在晶格平面之间的作用。石墨对这种现象特别敏感,这是由于晶体它的有序堆积层。这膨胀材料的体积可以膨胀约0.03~约199倍,优选地,这膨胀材料的体积可以膨胀至少约0.03倍。通常这体积的膨胀是由诸如热处理引起的。在一个替代实施方案中,膨胀材料可以是可发泡的材料。这种膨胀材料可以用于本发明的组合物中,以组合物总重量为基准,其含量为约1重量%~约99重量%。优选其含量为约2重量%~约30重量%,更优选其含量为约5重量%~约20重量%。
当本发明的组合物用来制备电子场致发射体时,可以采用多种方法将组合物粘附在基质上。因此,当将制成的电子场致发射体引入装置例如场致发射体阴极时,在组合物和基质之间的粘附物在上述装置的制造条件下和使用条件下,都必须能经受住并保持其完整性。那些条件典型地是真空条件和高达约450℃的温度。因此,有机材料通常不适合用来将电子场致发射体粘附到基质上,而很多无机材料对碳的粘附力较低,进一步限制了对可加以使用的材料的选择。一种优选的粘附方法是将任选包含玻璃原料,金属粉末或金属涂料或它们的混合物的呈糊剂状的组合物网板印刷在基质上印成要求的图案,然后焙烧这干的带图案的糊剂。对于各种各样的应用,例如那些要求较精确分辨率的应用,优选的方法涉及用网板印刷法印刷含有光敏引发剂和可光硬化的单体的糊剂,对所述干糊剂影印制图,和焙烧带图案的糊剂。
所述基质可以是与糊剂组合物粘附的任何材料。如果糊剂和所使用的基质均是非导电的,则需要有起阴极作用的导电体薄膜,和提供将电压施加到电子发射基质上的方法,以及提供向电子发射基质供应电子的方法。硅,玻璃,金属或耐火材料例如氧化铝可以起基质的作用。对于显示器的应用,优选的基质是玻璃,尤其优选的是钠钙玻璃。为了在玻璃面上有最佳的导电率,可以在500~550℃下,在空气或氮气中,但优选在空气中,将银糊剂预焙烧在玻璃上。然后,再用糊剂状组合物罩印在上述所形成的导电层上。
用于网板印刷的糊剂含有膨胀材料,电子发射物质例如针状碳。它还经常含有有机介质,溶剂,表面活性剂,低软化点玻璃原料,金属粉末和/或金属涂料,或者任何上述物质中的混合物。有机介质和溶剂的作用是使颗粒状组分,亦即固体颗粒,悬浮和弥散在糊剂中,使其具有典型的图案印刷方法例如网板印刷所要求的适当的流变学。有许多本领域内熟知的这类有机介质。可以用于上述目的的树脂类实例是纤维素树脂类,例如各种分子量的乙基纤维素和醇酸树脂。丁基卡必醇,二甘醇丁醚醋酸酯,二丁基卡必醇,邻苯二甲酸二丁酯和萜品醇都是可用的溶剂实例。在组合物中配置这些和其它的溶剂,以便获得组合物所需的粘性和挥发性要求。表面活性剂可用来改善颗粒的弥散。有机酸类例如油酸和硬脂酸,和有机磷酸盐,例如卵磷酯或加法克磷酸盐都是典型的表面活性剂。
典型地使用这样的玻璃原料,这种玻璃原料在焙烧温度下软化到足以能粘附在基质上和电子发射物质上。可以使用铅或铋玻璃原料以及其它具有低软化点的玻璃,例如钙或锌硼硅酸盐。在这类玻璃里,具体的组合物通常不是关键。如果希望可网板印刷的组合物具有较高的导电率,则糊剂典型地还包含导电金属,例如银或金。以糊剂的总重量为基准,这糊剂典型地包含约40重量%~约80重量%的固体颗粒。这些固体颗粒包含电子发射物质,若有需要,加之玻璃原料和/或金属组分。组合物的变化可用来调整印刷材料的粘度和最终厚度。
发射体糊剂典型地采用三辊式粉碎机碾磨由以下物质组成的混合物的方法制成,这混合物包含电子发射物质,膨胀材料,和若需要,还包含有机介质,表面活性剂,溶剂,低软化点玻璃原料,金属粉末,和/或金属涂料,或它们的混合物。这糊剂混合物可采用众所周知的网板印刷技术,例如采用165-400-筛孔的不锈钢筛网进行网板印刷。可使糊剂沉积成连续薄膜或呈要求的图案形态。当基质是玻璃时,将糊剂置于温度约350℃~约550℃下,优选约450℃~约525℃下,在氮气中焙烧约10分钟。只要是没有氧气的环境,基质能忍受较高的温度,那么就可以和基质一起采用较高的焙烧温度。可是,在糊剂中的有机组分会在350℃~450℃下有效地挥发,于是留下了包含电子发射物质和其它组分例如玻璃原料和/或有机导体的复合物涂层。
如果网板印刷糊剂是被用于影印制图的,那么这糊剂可含有光敏引发剂,可展开的粘结剂,和/或可光硬化的单体,例如至少一种可聚合的烯键式不饱和的加成化合物,它具有至少一种可聚合的烯基。
用作可网板印刷的糊剂的优选组合物是含有固体颗粒的糊剂,而这固体颗粒包含电子发射物质,例如碳纳米管,其中电子发射物质含量小于糊剂中固体颗粒总重量的9重量%。更优选的组合物是其中的电子发射物质含量小于糊剂中固体颗粒总重量的5重量%。更加优选的组合物是其中的电子发射物质含量小于糊剂中固体颗粒总重量的1重量%,最优选的组合物是其中的电子发射物质含量是糊剂中固体颗粒总重量的0.01重量%~2重量%。
以上所述的糊剂特别适用于采用本发明的方法制作电子场致发射体。具有低密度电子发射物质的组合物,当采用本发明的方法制成时,能形成极好的电子场致发射体。作为典型的实例,一种含有电子发射物质,膨胀材料,玻璃原料和银的糊剂,以糊剂的总重量为基准,它包含约0.01重量%~6.0重量%的电子发射物质,约5重量%~约10重量%的膨胀材料,约3重量%~约15重量%的玻璃原料,和约40重量%~约75重量%的呈细颗粒状的银。
本发明的组合物可用于制作具有改善场致发射性能的电子场致发射体,和这类组合物除包含膨胀材料之外还包含电子发射物质例如针状碳,针状半导体,针状金属,或它们的混合物。有一种电子场致发射体是利用电子发射薄膜制成的,而电子发射薄膜本身又是利用本发明的组合物制成的。在本发明的方法中,需对电子发射薄膜进行处理,例如热处理,在进行这种处理时,膨胀材料发生膨胀,并产生足以使一部分场致发射薄膜破裂或重新排列的位移和力,借此形成新的场致发射薄膜表面。在图1上,表明了膨胀材料在膨胀之前和之后的薄膜的表面。膨胀之前的表面表明在图1a上(放大率50),和膨胀之后的表面表明在图1b上(放大率500),和图1c上(放大率3000)。图1b和图1c表明在薄膜表面上有许多裂纹。在这种破裂或断裂状态下,这种场致发射薄膜与没有发生破裂或断裂的薄膜相比,具有改善的场致发射性能。据信,场致发射薄膜的这种最新成形表面具有突出表面的电子发射颗粒,例如针状颗粒。
电子场致发射体借助于引入的已经本发明的方法处理过的薄膜而改善了发射性能。因此,本发明的方法不仅是用于制作电子发射薄膜的方法,而且也是用于制作电子场致发射体的方法,因为场致发射体中包含了薄膜。本发明的改善了的电子场致发射体可用于例如场致发射三极管之类的电子器件的阴极,尤其可用于场致发射显示器器件。这一类显示器器件包含(a)阴极,它采用经本发明的方法改善了的电子场致发射体,(b)带有图案的光学透明导电薄膜,它用来起着阳极的作用和起着与阴极相隔一定间距的作用,(c)当受到电子场致发射体发射的电子轰击时能发射光的磷涂层,它靠近阳极,介于阳极和阴极之间和(d)配置在磷涂层和阴极之间的一个或多个门电极。利用本发明的组合物很适合于制作大尺寸的电子场致发射体,可用于大尺寸平板显示器的阴极。
使用本发明的供制作电子场致发射体用的组合物十分有助于制作网板印刷三极管。电子场致发射体的电子发射薄膜中的膨胀材料,在经网板印刷和焙烧之后,或优选地,在任何介电材料和门电极已被网板印刷在阴极上并经焙烧之后,会立即发生膨胀。
利用网板印刷达到的精确度和清晰度是有限的。所以,难以制作出具有尺寸小于100μm的三极管。由于印刷不精确,要防止门电极和发射体涂层之间发生电气短路是困难的。此外,因为每一层上的不同特性必须一次一层地印成,所以要将不同的网板重复放在原位上,这进一步降低了配准。为了防止短路,门电极涂层的开孔,相对于电介质通路,通常被扩大了,而由于增大了门电极和发射体之间的距离,故大大地降低了门控转换电场的效率。。
可光成像的厚膜方法可以解决所有上述问题,并可用来形成一排标准门三极管,以及可用来形成一排倒置门三极管。标准门三极管在物理上具有介于场致发射体阴极和阳极之间的门电极。倒置门三极管在物理上具有介于门电极和阳极之间的场致发射体阴极。可光成像的厚膜配方,例如福迪尔银和介电糊剂组合物(依次为DC206和DG201)可从特拉华州维明顿市的杜邦公司购得。它们包含呈细颗粒形态的银或电介质和少量溶于有机介质中的低溶解玻璃原料,在有机介质中包含有诸如光敏引发剂和光单体之类的可光成像的辅料。典型地用网板印刷法在基质印上一层控制厚度的福迪尔糊剂的均匀涂层。在低加热条件下烘烤涂层至干燥。具有要求图案的光掩模的接触面被放置成与薄膜紧密接触,并使其经受紫外线照射。然后,将这种薄膜展现在弱的含水碳酸钠中。通过使这些网板印刷厚膜光成像能产生小到10μm的特征尺寸。所以,尺寸小于25μm的三极管可以制得。
此外,可以在多层涂层上进行成像从而省去了精确对准问题。在制作标准门三极管时,这是有益的,因为银质门和电介质涂层可一并成像,以实现门和电介质开孔之间精确对准,而在制作倒置门三极管时,也是有益的,因为发射体,银质阴极,和电介质涂层可以一并成像,以实现电介质加强筋的精确封顶又避免了形成短路。
本发明的供制作电子场致发射体用的组合物,也能用来制作照明器件。这一类器件包含(a)阴极。它采用由本发明方法制成的电子场致发射体,和(b)光学透明导电薄膜,它起阳极作用和起到与阴极相隔一定的间距的作用,(c)当受到电子场致发射体发射的电子轰击时能发射光的磷涂层,它靠近阳极,介于阳极和阴极之间。这阴极可由以下形状的电子场致发射体组成,方形,矩形,圆形,椭圆形,或任何其它所希望的形状,只要在这形状内均匀地分布着电子场致发射体,或者电子场致发射体可以是带图案的。虽然网板印刷法是用来形成电子场致发射体的简便方法,但其它的图案形成技术例如油墨喷涂,型板印刷或接触印刷也可采用。本发明的供制作电子场致发射体用的组合物还能用来制作真空电子器件。
本发明的优点由下述一系列的实例来说明。基于本发明的实施方案的这些实例仅起说明作用并不限制本发明的范围。这些实例的意义(实例1和实例2)通过对本发明的这些实施方案与对照配方(对照例A)的比较有了较好的理解,这对照例不具有本发明的特点。
用作试件的电子场致发射体利用本发明的组合物和采用本发明的方法制成。场致发射试验在所制得的试件上采用平板发射测试仪器进行,这测试仪器包含二个电极,一个起阳极或集电极作用,而另一个起阴极作用。这阴极由固定在一个聚四氟乙烯(PTFE)支承器上的铜块组成。这铜块被置于面积为1英寸×1英寸(2.5cm×2.5cm)的PTFE的凹处,而试件基质被固定在铜块上,借助于铜条,使铜块与试件基质之间发生电接触。将高压引线连接到铜块上。保持阳极平行于试件并隔开一段距离,这距离可以改变,但是一旦选定,就保持不变,以便测得试件的一组测量结果。除非另有说明,采用的间距为1.25mm。阳极是一块玻璃平板,其上用化学气相沉积法涂以熔敷的氧化铟锡。接着涂以标准的ZnS基磷,磷P-31,型号139,可以从国际宇宙电子产品公司购得。电极附着在氧化铟锡涂层上。
将试验装置加入真空系统中,这系统被抽空到底压低于1×10-5托(1.3×10-3Pa)。将具有标准脉冲宽度3微秒频率60Hz的负电压脉冲加到阴极上,测出平均发射电流随外加电压的变化。
实施例1本实例证实了采用本发明的组合物和方法制得的电子场致发射体显示出具有良好的发射性能。
发射体糊剂采用混合三种组分的方法制得一种是含有单层型碳纳米管的悬浮体,一种是含有10%的乙基纤维素和90%的β-萜品醇的典型有机介质,和一种是含有银的典型糊剂。激光烧蚀生长型单层型碳纳米管,作为一种采用激光烧蚀法生产出的未纯化的粉末,可从德克萨斯州休斯敦市的莱斯大学购得。纳米管悬浮体采用超声处理法制成,亦即采用超声波混合含有1重量%的纳米管粉末和99重量%的三甲苯的混合物。所采用的超声波搅拌器是杜凯恩92196型,它有一个直径为1/4英寸的搅拌杆,在40kHz和20瓦特下运作。银糊剂是一种型号为7095的银糊剂组合物,可从特拉维州维明顿市的杜邦公司购得,它含有65.2重量%的呈细颗粒状的银和少量的溶于有机介质中的玻璃原料。
格拉弗加德160-150B可膨胀石墨片,作为一种膨胀材料,可从俄亥俄州克利夫兰市的格拉特希公司购得。将0.28克的格拉弗加德片放在空气中在250℃下加热10分钟,然后加到4克含有上述碳纳米管的糊剂中。将这组合物放入三辊式粉碎机中混合碾压10道次,以形成发射体糊剂。然后利用200号网筛将发射体糊剂网板印刷在预焙烧过的镀银玻璃基质上,形成2cm2的方形图案,接着将这试件置于125℃下干燥10分钟。然后将这干燥后的试件放在空气中在350℃下焙烧1分钟。在焙烧之后,这厚膜复合物在基质上形成一层粘附涂层。这可膨胀石墨使薄膜的一些局部表面上产生破裂。
按照详述中所述,对电子场致发射体的场致发射性能进行试验。图2是借助画出的发射电流随外加电场而变的关系曲线来表明实例1的电子场致发射体发射试验的结果。
对照例A本实例证实了含有单层型碳纳米管兼有颗粒状材料的电子场致发射体,当这种颗粒状材料在由含碳纳米管的组合物所形成的薄膜中没有膨胀时,这种电子场致发射体显示出具有较差的发射性能。
发射体糊剂采用混合三种组分的方法制得一种是含有单层型碳纳米管的悬浮体,一种是含有10%的乙基纤维素和90%的β-萜品醇的典型有机介质,和一种是含有银的典型糊剂。激光烧蚀生长型单层型碳纳米管,作为一种采用激光烧蚀法生产出的未纯化的粉末,可从德克萨斯州休斯敦市的莱斯大学购得。纳米管悬浮体采用超声处理法制成,亦即采用超声波混合含有1重量%的纳米管粉末和99重量%的三甲苯的混合物。所采用的超声波搅拌器是杜凯恩92196型,它有一个直径为1/4英寸的搅拌杆,在40kHz和20瓦特下运作。银糊剂是一种型号为7095的银糊剂组合物,可从特拉维州维明顿市的杜邦公司购得,它含有65.2重量%的呈细颗粒状的银和少量的溶于有机介质中的玻璃原料。
将从田纳西州诺克斯维市的三M技术公司内购得的0.28克SiC片晶加到4克含有上述碳纳米管的糊剂中。其粒径非常类似于加到实例1中的石墨颗粒的粒径。将这组合物放入三辊式粉碎机中混合碾压10道次,以形成发射体糊剂。然后利用325号网筛将发射体糊剂网板印刷在预焙烧过的镀银玻璃基质上,形成2cm2的方形图案,接着将这试件置于120℃下干燥10分钟。然后将这干燥后的试件放在氮气中在450℃下焙烧10分钟。在焙烧之后,这纳米管糊剂在基质上形成一层粘附涂层。在这种情况下,含有纳米管的薄膜上没有裂纹。
按照详述中所述,对电子场致发射体的场致发射性能进行试验。图3是借助画出的发射电流随外加电场而变的关系曲线来表明对照例A的电子场致发射体发射试验的结果。图4比较了实例1和对照例A的发射试验结果。注意到,与对照例A相比,实例1表明具有高得多的发射电流,这表现出有工业实用价值。
实施例2这实例证实了采用本发明的组合物和方法制得的电子场致发射体显示出具有良好的发射性能。
发射体糊剂采用混合三种组分的方法制得一种是含有单层型碳纳米管的悬浮体,一种是含有10%的乙基纤维素和90%的β-萜品醇的典型有机介质,和一种是含有银的典型糊剂。商标为海普科的经特殊处理过的单层型碳纳米管,作为一种采用催化分解一氧化碳的方法生产出的未纯化的粉末,可从德克萨斯州休斯敦市的碳纳米技术制品公司购得。纳米管悬浮体采用超声处理法制成,亦即采用超声波混合含有1重量%的纳米管粉末和99重量%的三甲苯的混合物。所采用的超声波搅拌器是杜凯恩92196型,它有一个直径为1/4英寸的搅拌杆,在40kHz和20瓦特下运作。银糊剂是一种型号为7095的银糊剂组合物,可从特拉维州维明顿市的杜邦公司购得,它含有65.2重量%的呈细颗粒状的银和少量的溶于有机介质中的玻璃原料。
格拉弗加德160-150B可膨胀石墨片可从俄亥俄州克利夫兰市的格拉特希公司购得。将0.28克的格拉弗加德片放在空气中在250℃下加热10分钟,然后加到4克含有上述碳纳米管的糊剂中。将这组合物放入三辊式粉碎机中混合碾压10道次,以形成发射体糊剂。然后利用200号网筛将发射体糊剂网板印刷在预焙烧过的镀银玻璃基质上,形成2cm2的方形图案,接着将这试件置于125℃下干燥10分钟。然后将这干燥后的试件放在空气中在350℃下焙烧1分钟。在焙烧之后,这厚膜复合物在基质上形成一层粘附涂层。这可膨胀石墨使薄膜的一些局部表面上产生破裂。
按照详述中所述,对电子场致发射体的场致发射性能进行试验。图5是借助画出的发射电流随外加电场而变的关系曲线来表明本实例的电子场致发射体发射试验的结果。注意到了测得的结果类似于实例1,也就是具有良好的发射性能。
权利要求
1.一种物质的组合物,它包含(a)电子发射物质,和(b)膨胀材料,其体积可膨胀至少约0.03倍。
2.权利要求1的组合物,其中膨胀材料的体积可膨胀约0.03~约199倍。
3.一种物质的组合物,它包含(a)电子发射物质,和(b)层间化合物。
4.权利要求1和3的组合物,其中层间化合物是石墨,粘土或蛭石。
5.权利要求1和3的组合物,其中电子发射物质是针状碳。
6.权利要求1和3的组合物,其中电子发射物质是碳纳米管。
7.权利要求1和3的组合物,以该组合物的总重量为基准,其中电子发射物质的含量为约0.1重量%~约20重量%。
8.权利要求1和3的组合物进一步包含导电金属。
9.权利要求1和3的组合物进一步包含一种或更多种光敏引发剂,可展开的粘结剂,和可光硬化的单体。
10.权利要求1和3的组合物呈可印刷的糊剂形态。
11.权利要求1和3的组合物呈电子发射薄膜形态。
12.一种电子发射薄膜,它包含(a)电子发射物质,和(b)膨胀材料,其中电子发射薄膜已因膨胀材料膨胀而破裂。
13.权利要求12的电子发射薄膜,其中电子发射物质是单层型碳纳米管。
14.权利要求12的电子发射薄膜,其中膨胀材料是插层型石墨,粘土或蛭石。
15.权利要求12的电子发射薄膜进一步包含导电金属。
16.权利要求12的电子发射薄膜进一步包含一种或更多种光敏引发剂,可展开的粘结剂,和可光硬化的单体。
17.一种包含权利要求12的电子发射薄膜的场致发射三极管,场致发射显示器,照明器件,或真空电子器件。
18.一种制作电子发射薄膜的方法,它包含(a)利用包含以下物质的组合物形成电子发射薄膜,(1)电子发射物质,和(2)膨胀材料,其体积可膨胀至少约0.03倍;和(b)使膨胀材料膨胀。
19.权利要求18的方法,其中膨胀材料的体积可膨胀约0.03~约199倍。
20.权利要求18的方法,其中膨胀材料受热膨胀。
21.权利要求18的方法,其中使膨胀材料发生膨胀的步骤包含使薄膜破裂的步骤。
22.权利要求18的方法,其中形成电子发射薄膜的步骤包含网板印刷利用电子发射物质和膨胀材料的组合物制成的糊剂。
23.权利要求18的方法进一步包含形成电子发射物质的步骤,该步骤是利用小金属颗粒上方的含碳气体催化分解的方法生成电子发射物质。
24.权利要求18的方法进一步包含利用激光照射的方法形成电子发射物质的步骤。
25.权利要求18的方法,其中电子发射物质是碳纳米管。
26.权利要求18的方法,其中膨胀材料是插层型石墨,粘土或蛭石。
全文摘要
本发明提供了由含有电子发射物质和膨胀材料的物质形成的组合物。膨胀材料可以是例如层间化合物。当薄膜是由这种组合物形成时,膨胀材料的膨胀典型地会引起薄膜的断裂或破裂。在膨胀材料发生膨胀之后,对薄膜表面典型地不要求作进一步处理,以便获得良好的发射性能。利用这一类破裂薄膜形成的表面起着有效的电子场致发射体作用,因而能用于真空微电子器件。
文档编号H01J9/02GK1650384SQ03809180
公开日2005年8月3日 申请日期2003年4月24日 优先权日2002年4月24日
发明者L·-T·A·程, D·H·罗奇 申请人:纳幕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1