双平面返波振荡器的方法和装置的制作方法

文档序号:2924552阅读:465来源:国知局
专利名称:双平面返波振荡器的方法和装置的制作方法
本申请要求下列申请的优先权,即2004年2月6日提交的申请No.10/772,444;2003年8月12日提交的临时申请No.60/494,089和60/494,095。上述每一个申请都被整体包含到本申请中。
背景技术
返波振荡器(BWO)是相干辐射的可调辐射源。在常规返波振荡器中,电子枪发射电子束到慢波结构中。在电子枪附近提取电子束的输出功率。由于返波振荡器宽的调谐范围,所以返波振荡器已经被用于多种应用,包括作为用于检测亚毫米波辐射的外差式接收器中的本地振荡器。
亚毫米波区段通常从300到3000GHz,其中电磁辐射所具有的波长在1.0和0.1mm之间。在亚毫米波段以上是红外区,其中波长通常为几微米,并且电磁波的行为与光波相似。在亚毫米波段以下是毫米波段(从30到300GHz)和微波段(从1到30GHz)。在毫米波段和微波段中,电磁波的行为与普通低频电流和电压相似,重要的区别在于回路尺寸与波长具有可比性。在亚毫米波段中,电磁辐射具有微波和光的性质。适合于微波的结构对于亚毫米设备而言太小,而标准光学结构又太大。
除了尺寸的复杂性以外,对于亚毫米波段还有若干个物理限制,这些物理限制是由显著的大气衰减和大大增加的电导损耗所强加的。本质出现的分子气体的振动性和转动性共振的存在大大地增加了大气衰减,而金属表面的粗糙度使电导损耗有显著增加。因为许多涉及尺寸和损耗的问题在远低于300GHz的频率下变得非常重要,所以亚毫米区段经常延伸到100GHz。
通常地,真空电子设备在其中功率和效率是重要系统参数的应用的微波和毫米波区段中占主导地位。但是,在亚毫米区段范围内,常规微波结构通常是不适用的。固态设备在微波和低毫米波区段中被用作低功率信号源,但是并不适用于亚毫米波段。气体激光器可以在亚毫米波段中运行,但是它们只能被调谐为离散频率,并且它们通常是很大的设备。目前,没有商业上可利用的亚毫米波段中的电子可调谐信号源。

发明内容
因此,本发明的一个目的是提供具有叉指式慢波回路的BWO。
另一目的是提供包括金刚石(diamond)的BWO。
本发明还有另一目的是提供BWO的电子束和慢波回路之间新的空间关系。
本发明的再一目的是提供互阻抗大于1的BWO,其中互阻抗优选大于10,并且最优选为大于100。
本发明的另一目的是提供一种微型BWO,其重量小于10kg,并且优选小于1kg。
本发明还有另一目的是提供用于BWO的叉指式回路。
本发明还有另一目的是提供与电子源集成的BWO结构。
本发明的另一目的是提供电子源和BWO之间的耦合接口。
本发明的另一目的是提供一种集成BWO,其具有作为电子源的场致发射阴极。
本发明还有另一目的是提供具有位于第一平面和第二平面之间的电子束的BWO;第一和第二平面中的每一个定义聚焦电极、第一阳极、第二阳极(或慢波回路)中的至少一个以及一个或多个集电极。
本发明的另一目的是提供一种包括电子源的装置,其中电子源将电子束引向聚焦电极、第一阳极和第二阳极,从而一个或多个集电极收集电子。
还有另一目的是公开具有叉指式回路的BWO的制造方法。
本发明还有另一目的是提供一种BWO,其中电子源和叉指式回路是由相同金刚石制成的。
在另一实施例中,本发明涉及与慢波回路集成的电子枪。
本发明还有另一目的是提供一种BWO,该BWO与常规BWO相比较需要明显更低的操作电压。
本发明的另一目的是提供一种BWO,该BWO具有明显更高的慢波导和电子束之间相互作用效率。
这些和其它目的将会参照下列附图进行讨论。


图1A-C是本发明一个实施例的示意图;图2A-2B是根据本发明一个实施例的慢波导回路的示意图;图3A-3B是根据本发明同一实施例的返波振荡器的示意图;图4示出双平面叉指式回路的色散关系(ω-β图表);图5示出作为束隧道(beam tunnel)高度的函数的互阻抗;图6通过示意图示出了返波振荡器的示例性结构;图7示出介电指(fingers)高度的变化对色散图的影响;图8示出指高度变化所引起的衰减效应;图9示出指高度变化所引起的阻抗效应;图10示出在具有10%带宽设计的示例性实施例的束宽度上平均的大约12.5微米的电子束阻抗;图11示出对于βL=100度,作为中心工作频率处横向位置(z)的函数的场强;图12示出对于βL=100度,作为y的函数的场强;图13示出对于本发明具有10%带宽设计的实施例,作为回路长度的函数的起始振荡电流;图14示出对于本发明具有20%带宽设计的实施例,作为回路长度的函数的起始振荡电流;图15示出对于20%带宽设计,在0.5mA恒定电流的情况下,回路长度对效率的影响;
图16示出本发明具有10%带宽设计并使用1.5mA电子束的实施例的电子效率;图17示出使用具有1.5mA电子束的20%带宽设计的示例性实施例的电子效率;图18示出使用具有1.5mA电子束的10%带宽设计的示例性实施例的输出功率;图19示出使用具有1.5mA电子束的20%带宽设计的示例性实施例的输出功率;图20示出Spindt型场发射器的典型发射特征;图21示出1.8kV(低频)实施例中的电子枪回路和集电极;图22示出6.6kV(高频)情况中的电子枪回路和集电极;图23示出根据本发明一个实施例的返波振荡器部件;图24A-B示出由一对NdFeB50条形磁铁所产生的磁场;图25示出根据本发明一个实施例的示例性回路制造过程;图26示出根据本发明一个实施例的显示金属化图案的横截面区域;图27示意地示出根据本发明一个实施例,具有金属底切(undercut)的双平面叉指式回路的3-D视图;图28A-E示出图27中所示叉指式回路的场图(field plot);图29是根据本发明另一实施例的叉指式回路的一个周期的场图;图30示出具有示例性底切的回路的顶视图。
具体实施例方式
图1A-1C是本发明一个实施例的示意图。更具体地,图1A-1C示出了一种双平面叉指式返波振荡器回路,其中叉指式回路被分成位于间隔很近的平行平面上的两片。这两个平面之间的间隔定义了通过电磁波传播路径的电子束的路径。这完全是一种新方法,与传统系统不同,在传统系统中,电子束传播通过位于平面回路上方的损耗波。
参照图1A所示,电子束105被插入到双平面叉指式慢波回路的板110和120之间。板110和120中的每一个分别定义回路115和125。电子路径105被显示为圆形(round)电子束。在图1B中更为显著地示出回路115和125。参照图1B,应该注意的是,顶板和底板(分别为110和120)是平行的。为了显示透视图而添加了表观角(apparentangle)。图1C是返波振荡器100的横截面示意图。慢波回路115和125在图1C中表现为交叠趾(overlapping digit)。如将更加详细地讨论的,在一个实施例中,设备100的主体可以通过金刚石来构造。
在一个实施例中,双平面数字回路可以被设计为在大约300GHz中运行。在设备100的设计中,第一步是定义最佳性能的回路尺寸。
图2A和2B图解了根据本发明一个实施例的回路的计算机生成的模型。如图2所示,返波振荡器200被传导侧壁210封装,并且回路在束传播方向(x轴方向)上是无限周期性的。传导侧壁210可以由相对介电常数为5.5的金刚石制成。叉指式“指状物”215也可以由金刚石制成。金属薄层220可以被沉积在金刚石回路215上。在一个实施例中,该结构可以被金刚石所环绕。但是,传导层边界的使用促进了计算不同参数的灵敏度,并且已经证明对工作频率的影响可以忽略。
图3A和3B是根据本发明另一实施例的返波振荡器的示意图。图3A和3B中示出了限定设备尺寸的回路示意图,并且在表1中列出了在所谓的参数研究期间所使用的预定尺寸。这些尺寸参数可以被调整以实现这里所描述的不同设计。
表1 300GHz双平面叉指式回路预定尺寸(参看图3)尺寸(微米)vaneridge 33.75vanew 18.4vanel 151vaneth 4diridge 75.5P 36.8xS 18.4
zS 18.4diht 46ridgeht20ygap 25为了执行参数研究,每个尺寸参数都通过与一个系数相乘而变化,该系数在0.5到1.5-或者在某些情况中是2.1-之间。例如,显示diht变化的图被标注diht=1,0.5,0.6等等。这就意味着,diht的标准值(46微米)被乘以1,0.5,0.6等。在其它参数保持为标定值的情况下,通过该变化范围为每一参数计算同轴互阻抗和衰减的分散。初步研究结果显示,金刚石高度(Diht)与电子枪的横向尺寸兼容,从而不需要附加的掩膜和蚀刻步骤。
频率控制的多个重要参数中的一个是“vanel”(参看图3A)。图4中示出了作为vanel变化的相位偏移的函数的频率绘图(ω-β图)。对于所提供的参数范围,该结构的变化被证明可在高达600GHz的频率中操作。
互阻抗是确定电子束和慢波回路之间耦合强度的关键方面。该阻抗可以用下式来表示K0=∫|E0|2dS2β2PS---(1)]]>其中,|E0|是基本n=0谐波的辐值,P是总功率,而S是电子束的横截面积。对于该回路,|E0|是通过在电子束横截面上在z和y的离散位置处沿着x(束传播方向)执行空间傅立叶分析来计算的。束横截面上这些数值的平均值必须被认为是阻抗。
平均值涉及在z和y上的离散空间求和,或者∫|E0|2dSS=ΣxΣy|Ex|2ΔzΔyS---(2)]]>其中,Δx和Δy是离散坐标位置的宽度。在参数变化时,束的横截面是未知的。因此,为所有变化计算同轴互阻抗。
图5示出作为束隧道高度的函数的互阻抗。特别感兴趣的是,作为ygap(参看图3A)或束隧道高度的函数的阻抗变化。这个关键参数定义了电子束必须通过的空间的尺寸。随着间隙减小,阻抗增加;选择25微米的数值作为有效电磁操作和要求低的束拦截(beaminterception)之间的折衷。正如将要讨论的,尺寸为25微米的ygap与所提出的电子枪和束聚焦系统的设计是兼容的。计算结果还证明,随着束隧道高度减少,互作用效率增加,而当隧道高度增加时,束拦截减少。
图6通过示意图示出了根据本发明一个实施例的返波振荡器的示例性结构。其中,该结构可以通过几个光刻步骤构造。可以通过建立电子枪和慢波回路的模型来进一步简化该过程。例如,电子枪和集电极绝缘体中的阶梯状结构趋向于减少沿介电表面的电击穿。后面将会看到,可以设计电子枪,使得枪中的电场大约为20V/mil(8kV/cm),这远低于该效应的经典阈值127V/mil或200V/mil。这使得电子枪绝缘体能够具有平滑表面,从而简化了用于制造硅模的光刻过程。此外,这里所提供的实施例能够实现小很多的BWO设计。
参照图6A中的示例性微型亚毫米BWO 600,正面视图示出了位于BWO 600一端的冷阴极发射极610,而集电极680位于相对的一端。通过使用冷阴极离子源,诸如Spindt型,场致发射阴极是随意选择的,并且使用其它电子发射源,而不脱离本发明的原理。场致发射阴极是优先的选择,因为其与热电子阴极相比,可以产生高得多的电流密度。二级电子发射抑制腔630位于电子源附近。它的用途是防止由于沿金刚石表面级联二级发射而引起的电击穿。在另一实施例中,电子枪被设计为具有平滑侧壁(从而不需要抑制腔)。
可以通过常规装置将电子源(例如,电子枪)连接到慢波回路。
例如,可以使用机械装置将电子枪连接到慢波回路。在一个实施例中,整个电子枪和慢波回路可以被制造成一个结构,从而消除对准的问题。
聚焦透镜640位于BWO的输出端用作为准光学传输系统的入口元件。BWO还可以通过采用传统微波技术与标准WR-3波导耦合。在图6中波导是不可见的。
叉指式波回路660被显示为具有向回路中心突出的指状物625的集成单元。在一个实施例中,叉指式波回路(或慢波回路)在其装配之前被制造成互补的两部分。叉指式回路的主体可以由优越(exceptional)导热率的材料制成。示例性的材料包括人造金刚石。因为人造金刚石提供了实现有效热传导的高导热率,所以该材料是特别合适的。金刚石还具有高的电介质强度,以承受电子枪电压,并且具有很低的损耗角正切,以使RF损耗最小化。
为了提高性能,叉指式回路的某些表面可以被涂上导电材料,诸如金、银或铜。金刚石结构和传导涂层(例如银,铬或钼)之间可以插入可选涂层。可以提供涂层,以增强金和金刚石结构之间的连接。
二级电子发射抑制腔630包括波纹金刚石(corrugateddiamond),这样构造是为了防止级联二级电子发射引起电击穿。同时该抑制腔可以与电子枪和慢波回路同时制造。
图7示出介电指的高度变化所引起色散图的影响。该曲线的斜率表示在回路上传播的波的群速,而从原点到曲线上的一点所绘制的直线斜率确定相速,直线越陡,则电压越高。相速线与色散曲线的交点确定了设备的工作点和电子速度,并且因此确定了电子束的电压。
图8示出指高度(参看图6中的指高度625)所引起的衰减变化。参照图8,可以看出,通过增加指高度就减少了较高频率处的衰减。这是有利的,因为这使得能够增加该参数以与电子枪的侧壁高度相符合,从而消除制造工艺中的一个光刻步骤。
前面的图示出了当每腔相移超过60度到80度时,群速变成负值。因此,当每腔相位移超过该值时,波的群速在与电子相反的方向传播;因此,使用术语返波。色散图的顶点通常表示不稳定工作的点。这在图9中通过色散曲线顶点附近的接近垂直的阻抗绘图说明的。
在一个示例性实施例中,使用参数扫描结果来设计双平面叉指式回路以工作在为阻抗优化的具有10%和20%带宽的300GHz处。在设计和优化过程中下列尺寸是固定的ygap=25微米
vaneth=4微米0.5ygap+vaneth+diht=100微米;(diht=83.5微米)此外,最大电压被设定为大约6000V,而每周期的最小相移被设定为大约85度。完成两个实施例,都具有300GHz的中心频率。第一实施例具有10%的带宽,在285-315GHz的频率范围中运行。第二实施例具有20%的带宽,在270-330GHz的频率范围中运行。下面的表2中列出了每个示例性设计的回路尺寸,如下所示表2 300GHz 双平面叉指式回路尺寸参数10%BW设计20%BW设计vaneridge 44.0 44.0vanew 17.2 16.4vanel 183.4 175.0vaneth 4.0 4.0diridge 87.5 87.5p 34.4 32.8xS 17.2 16.4zS 22.3 21.3diht83.5 83.5ridgeht 23.0 23.0ygap25.0 25.0为了定义设备的电子束要求以及估计效率和起始振荡电流,可以计算关于电子束平均的互阻抗(等式1和等式2所示)。计算平均阻抗作为束宽度的函数(z方向),同时将束高度(y方向)保持为大约12.5微米的常数。所有模拟都采用矩形束。图10中为多个频率绘出10%带宽设计的平均阻抗,其作为束宽度的函数。零宽度对应于同轴(on-axis)阻抗。频率对应于βL=70,80,100和110度的值。因为场增加接近指,所以12.5微米的情况略高于同轴的情况。随着束宽度增加,阻抗相当缓慢地下降,这表明设备可以以矩形或片状(sheet)束非常有效地运行。
图11中为y在-6.25和6.25之间的情况绘出了Ez场的n=-1空间谐波的辐值,作为z的函数。束中心被假定为在y=z=0处。场在z方向是对称的,因此图中仅显示了z值为正的部分。图12示出了z值在0和80微米之间的情况中场与y的图。虽然场在某些y值处随着z的增加而增加,但是对于某些y值,场也随着z的增加而减少。结果是平均值随着z的增加而减少。
也计算出近似的起始振荡条件。图13中绘出了10%带宽设计的起始振荡电流,而图14中绘出了20%设计的起始振荡电流,作为总回路长度I的函数。图13-14表示,对于10%和20%带宽设计实施例,将束流(beam current)限制在0.5毫安、将回路长度限制在5毫米可能不适合于。此外,为了实现最大效率,可能必须以两倍的起始振荡电流运行。回路长度可以被随意扩展。从图15中可以看到,从增加效率的角度看,选择增加束流可能更有吸引力的,图15中示出了0.5mA电子束的计算结果。从图13-14中所示的结果中可以看出,使回路长度最小化可以导致电子效率的最大化。例如,在l大约为5mm的情况下,图13和图14示出,在整个带宽上,可能需要大约1.5mA的电流,以便以两倍的起始电流运行。图16-19中为1.5mA电流绘出了电子效率和输出功率。可以看出,窄带设计可以传递较多的功率。这里所公开的设计数据库使本领域普通技术人员能确定对于任何束流值的最小回路长度。
电子枪和集电极设计能够提供上述300GHz设计中所指定的电流的电子枪设计是通过使用EGUN编码(参看“SLAC-166”,W.B.Harmammsfeldt,Standford Linear Accelerator Center,1973)来执行的。图21和22中示出了结果。电子枪被设计以与指定尺寸和所提出的制造工艺限制相符合,其中作为光刻工艺,所提出的制造工艺只考虑垂直和水平表面。正如参照图25所要讨论的,电子枪可以被设计为只产生水平和垂直表面。电子枪被设计成浸在恒定磁场中操作。设计还要受沿着不超过20V/mil(8kV/cm)的真空内绝缘表面的电压限制控制。最为重要的是,为了满足上述典型运行条件,电子枪必须使传递电压范围为1.8kV到6.6kV的束通过只有25微米高的束隧道。
为电子枪设计所选择的阴极是Spindt型薄膜场发射极。该阴极类型对于传递低总电流的小阵列表现高达2000A/cm2的电流密度。已经观察来自单个发射端(tip)的100μA的发射;但是,这对于数千个发射端的大阵列会大大减少。前面的分析表明(i)在10%和20%带宽上可得到相当均衡的恒定输出功率(图18-19);(ii)场配置对于片状电子束的应用是有利的(图11);(iii)通过更短的回路可以获得更高的输出功率和效率,但是需要更高的起始振荡电流(图13-19);(iv)更高的互阻抗和更高的衰减在频带的高端相互竞争(图8和9);以及(v)更高频率的回路可容易地缩放(图4)。
场发射极产生具有显著横向速度的电子束。已经确定横向能量是具有FWHM值的近似高斯分布,其中FWHM值是由栅极电压和归一化到特定工作点的几何因子的乘积确定的。所利用的发射模式的特征是图20中所示的发射曲线。这里所公开的应用是针对76V,而不是64V的FWHM几何因子进行的。构造一种包括99%的束流并且被引入到EGUN编码中的发射模型。束被传输通过25微米的束隧道。对于5mm回路长度,可以使用0.7mA的最小起始振荡电流。可以通过增加束宽度使束流加倍,而不增加电流密度或磁场。
在一个按照这里所公开的原理的实施例中,电子枪在大约1.8到6.6kV的电压范围上提供恒定电流的束。电子枪还可以被形成为CVD金刚石慢波回路主体的集成部分。电子枪被设计成具有两个阳极。第一阳极保持在对于最低电压(这种情况中是1.8kV)阴极的恒定电势,使得电子发射不受束电压变化的影响。慢波回路用作第二阳极,并且其电压相对于阴极在1.8kV到6.6kV的范围内变化。
上面所提到的慢波回路分析要求1.5mA的电子束,从而在所有情况下都实现两倍起始振荡电流的最小值。在用EGUN试验多次以后,采用包括具有1.5微米间距的2×50结构的100个端阵列的阴极。间距和每端电流15μA都在典型地通过SRI所实现的参数内。长方形(oblong)阴极利用慢波回路内的场分布,以提供所需电流,同时限制电流密度,这有利于束传输。如果有必要,慢波回路几何形状可以允许阴极的宽度至少为其两倍。必须将场发射极切割,以适合由BWO主体末端所形成的光刻控制的尺寸,从而将发射极准确定位在电子枪中心,以便传输通过慢波结构。在一个实施例中,BWO主体的光刻确定的横向尺寸被用来对准阴极。在另一实施例中,聚焦电极可以与栅极接触,而基极接触可以在阴极后部进行。图21中的EGUN生成图示出了1.8kV实施例的电子枪设计,而图22示出了6.6kV实施例的电子枪设计。
图21-22中的垂直比例被夸大了。该图的底部是电子枪轴的中心线2100(2100指向场发射阴极的位置)。因为该结构和电子束是矩形形状,所以使用直角坐标来构造模型。由于EGUN是二维编码,所以该模型可以计算垂直效应和轴向尺寸;可以以无限延伸的横向尺寸构造模型。如上所述,为电流密度建模。参照图23可以更好地理解图21和22。
参照图21,该模型模拟了低压、低频情况中的电子束轨道,其中第一阳极和第二阳极近似处于相同的电势。在图21中,2100表示阴极;2114示出聚焦电极的位置;2113是第一阳极;2116是第一阳极和第二阳极(可互换地,慢波回路)之间的介电空间;2115是慢波回路;垂直线2112和2117分别表示阴极和第一阳极之、以及慢波回路和集电极之间的等势线;2118是金刚石介电支座(standoff);2121指集电极,而2120表示电子束包络。最后,2119示出慢波回路和集电极之间的绝缘。在图21中,间距“1/2 ygap”是底端边缘2101到第一阳极底部2113之间的距离。
电子束的包络包含99%的束流。电子枪和慢波回路被浸入在5000高斯的均匀场中。聚焦电极、第一阳极和回路与中心线的距离相同,即1/2ygap(参看图3)。同样地,图21-22的顶线与中心线间隔的距离等于1/2ygap+diht+vaneth=100微米。图22示出与图21相似的模拟,区别在于图22中示出了6600V的高频率实施例。
阴极可以安装在图21-22的左侧,并且可以与聚焦电极相对放置,其中聚焦电极提供与阴极栅极(cathode gate)的电接触,并且用于整形电子束。在图21和图22中,聚焦电极可以位于图的最左端,而集电极可以位于右端。
在一个实施例中,电子枪的聚焦电极可以与场发射极的栅极接触,而场发射极的后部可以定义基极连接。集电极并不是光刻形成的,因此可以被设计成凹状结构以增强对废束的俘获。集电极被连接到图最右端的金刚石绝缘表面。集电极已经被加偏压到阴极与回路的电势的90%。控制磁场可以携带电子束通过慢波回路,并且进入到集电极。集电极可以用各向同性(POCO)石墨制造,各向同性石墨由于其非常低的二次电子产生率而常用在空间行波管(TWT)的制造中。集电极可以简单地是一块具有大高宽比孔的石墨,或者可以是具有例如50V偏压用于抑制二次电子的两块平板石墨。
磁路-在一个实施例中,磁场可以通过两个平行的条形磁铁接收电子束,以电连接至BWO和RF输出,从而到达结构的侧面。磁路可以由两块在每一端具有磁极片的矩形条形磁铁形成,并且由铝或不锈钢框架支撑。图23中示出了部件BWO电子枪、磁替、慢波回路和集电极的一个示例性实施例的视图。参照图23,分解图示出条形磁铁3010,其具有插入在其之间的配对双平面叉指式结构(回路)3040。Spindt阴极3030与集电极3020相对放置,以提供电子束(未示出)。在一个实施例中,磁铁由非磁性框架(未示出)支撑,其中非磁性框架将BWO定位在磁场的中心。可以使磁性材料更厚,以增加磁通量。在另一实施例中,磁体之间的最小间距可以是2.5mm,该间距可以容纳标准WR3波导的短部分。
参照图23中的实施例,在配对双平面结构3040上形成支架结构。在一个实施例中,该结构被制造成互补的两部分,然后被结合以形成BWO。参照图23中的分解图,在聚焦电极3009和第一阳极3012之间显示金刚石介电支座3011。第一和第二阳极之间的介电绝缘被标识为3013。慢波回路3015被显示为多个被涂有传导材料的叉指式结构(指状物)。慢波回路3015还可以用作第二阳极。可以通过改变第一阳极和慢波回路之间的电压差来控制振荡器的频率。条形磁铁3010接受装配后的BWO,其中装配后的BWO在图23的示例性实施例中包括Spindt阴极3030和集电极3020。第一和第二阳极之间的电压差越低,振荡器的频率就越低。
参照图23的装配图,在电子通过第一阳极3011和慢波回路3015的互补结构以后,被集电极3020所俘获。集电极3020可以被偏压到电势与阴极比与第一或第二阳极更接近。当电子到达集电极3020时,产生较少热量,并且电子束的大部分功率被集电极3020俘获。在一个示例性实施例中,Spindt阴极接收-6.6kV,第一阳极被设定为-4.8kV,而慢波回路3015被接地到零电势。图23所示的实施例与常规设备相比的特别有利之处在于,其显著地更小。在一个实施例中,设备被测量为大约30gm。(常规设备大约为20kg)。
通过使用MAXWELL编码(Maxwell,Ansoft Corporation,Pittsburgh,PA)来这样的计算,即该计算表明实现所场的需磁可行性,并且提供对磁体重量的估计。磁路的重量被确定为大约29克。在图24中示出通过该示例性结构获得的磁场。具体地,图24(A)示出了18mm长,5.0mm宽,5.25mm厚,并且间隔2.5mm的一对NdFeB50条形磁铁所产生的磁场。图24A的轮廓图中仅示出0.35和0.75特斯拉(3500-7500高斯)之间的磁场。图24B中示出同轴磁场。
进行附加的计算,以设计微型300GHz返波振荡器,在至少10%的频率范围内电压可调,具有至少10mW的功率输出。作为试验的结果,发现,功率输入小于1.275W的情况下,在300GHz处在20%调谐范围上可以获得超过20mW的功率输出。对于这些实验,通过使用SmCo28(在电子管工业中通常使用的材料)和NdFeB50作为永磁体,对回路进行分析。普通真空设备在操作中达到相对高的温度,从而需要使用具有优秀温度稳定性的磁性材料,诸如SmCo。但是,金刚石BWO的低散热将导致磁路的可忽略的加热。NdFeB提供更高的磁场,更大的机械强度,并且可以被制造成SmCo更大的形状。它可以用于高达200℃的温度,并且经常在汽车应用中使用。
制造-在2004年2月6日提交的美国专利申请10/772,444(标题为“Free-Standing Diamond Structure and Methods”)中公开了适合于与本发明结合使用的返波振荡器的示例性制造工艺,该申请的公开内容在这里作为背景信息而被全部包括进本申请。
图25示出根据本发明一个实施例的示例性回路制造工艺。图25中的步骤1是生成金刚石结构的硅底片(silicon negative)。除了其它方法,该步骤可以通过利用绝缘硅(SOIsilicon on insulator)晶片来实现。SOI晶片是一种硅晶片,其中二氧化硅层被嵌入。氧化层的深度通常可以在宽范围尺寸上被控制到一微米的公差(或另一预期公差)。通过使用光刻,如步骤1所示地对晶片构图,以产生双级硅结构。氧化层可以用作停止蚀刻层,其中停止蚀刻层可以导致晶片上均匀分布的平滑表面,其中通过步骤2在该表面上沉积化学汽相沉积(CVD)金刚石。可以通过单一光刻操作产生大量硅模。
在步骤2中,可以在硅模上沉积金刚石。由步骤3中所涂的环氧涂层来结构地支撑金刚石,而在步骤4中,硅衬底将通过化学方法被蚀刻,以暴露金刚石结构。可以选择性地金属化三维双平面叉指式结构。图25中示出需要金属化的表面。通过物理汽相沉积工艺来执行金属化。可以使用掩膜技术来确保叉指式回路的垂直表面和整个结构的水平底座保持不被金属化。
可以通过在沉积前应用物理荫罩(shadow mask)来实现将结构的底座掩膜以防止蒸发物。聚焦电极与第一阳极的间隔(2.4mm)和第一阳极与第二阳极的间隔(5.4mm)允许在这些区域使用物理荫罩。可以通过使用显微镜执行荫罩布置,以确保底座被完全覆盖。物理荫罩的使用可以在底座上产生一些沉积材料,这些沉积材料将在沉积以后通过激光被清除。
慢波回路的垂直壁和水平底座区域也可保持不被金属化。慢波回路中趾之间的间隔阻止了荫罩的使用或光掩膜上的旋转(spun)。为了确保慢波回路顶面以下区域保持不被金属化,通过溅射沉积或在例如具有约10-3Torr部分压力的Ar气背景中的对抗性蒸发(resistiveevaporation),来进行沉积。提高的压力范围处Ar中的沉积将实现三维结构-诸如聚焦电极以及第一和第二阳极-的完全涂覆,同时避免了顶表面以下慢波回路内区域被涂覆。众所周知的是,提高的压力环境中的物理汽相沉积导致三维结构的保形涂覆。同时,慢波回路中的叉指式间距小于所需的最小间距,以允许蒸发剂渗入到该区域中。
提高的背景中的金属沉积可能得到密度减少的金属层和潜在的差的粘附。在提高的Ar背景中的沉积期间,可能有必要施加1-3kV范围内的DC偏压,以实现离子镀效应。这将确保金属层与金刚石叉指式结构表面的良好粘附。可能有必要沉积Cr中间层以提高粘附。
步骤6示出回路半部分(circuit halves)的连接。该过程可以通过液晶制造技术实现。通过使用步进电机驱动设备,使两个回路半部分靠近和对准。对于高度发达的制造工艺,例如计算机显示,在15英寸上可以保持3微米的公差。在一个实施例中,然后通过使用工业上已经为此特定目的开发的高粘性(tack)、低挥发(out-gass)的UV固化胶(cured glue)将两个结构连接起来。可以通过使用丝网印刷或胶印工艺来涂胶。对于BWO回路所需要的小结构,预测小于1微米的对准公差。对于大批量生产,可以获得用来改进公差的加工。在一个实施例中,电子枪可以被加工成为慢波回路的部分,而在另一实施例中,可以在慢波回路已经被装配之后连接电子枪。
可以加工匹配的硅结构,以产生匹配的CVD金刚石回路半部分。
步骤1中所示的级之间具有相同间距的两个回路半部分并不产生希望的结构。如步骤6所示,回路半部分之间可以有隔离件(spacer)。为了实现希望的尺寸,隔离件可以等于束隧道高度加上两倍的金属化厚度。这将通过加工两层SOI晶片来实现,从而为另一回路半部分产生三层硅模。在一个实施例中,BWO是在真空室内被操作的。在另一实施例中,为了对称并为了获得在同一光刻过程中由同一晶片制造两个半部分的优势,这两个半部分由两层SOI晶片制造。在另一实施例中,BWO被配置以具有带有金刚石壁的真空密封结构。
上述制造步骤相对于常规真空电子设备工艺有重大的不同,其中常规真空电子设备工艺部分地基于容易被微量污染物弄坏(poison)的热电子源所强加的高真空要求。常规设备还处理相对高的功率,并且必须耐高温。这里所公开的BWO实施例可以消耗最多大约1瓦特的功率,并且将利用不易弄坏的场发射阴极。通过使用金刚石-已知的热导率最高的材料一从设备传导所消耗的功率。虽然典型的真空电子设备在高温下运行,但是这里所公开的实施例实质上处于环境温度中。在真空中的材料都与环境兼容。返波振荡器可能要求高的工作电压,这将要求保持足够的真空以避免气体击穿。
图26示出根据本发明一个实施例的金属化图案的横截面区域。可以应用适当的掩膜技术以产生所需图案。
图27是根据本发明一个实施例的双平面慢波回路的横截面示意图。参照图27,图示的BWO 2700具有双平面叉指式回路2710。在一个实施例中,双平面叉指式回路的每一平面包括金刚石。图27中还示出沉积在叉指式回路的指状物上的传导涂层2720。虽然多种涂层成分可被用于该应用,但是在一个实施例中,涂层是金、银、铜、铬或这它们的混合物。
图28A-E示出图27所示的叉指式回路的一个周期的电场和磁场以及表面电流的箭头绘图。图28A-B从不同视点示出电场,图28C示出磁场,而图D和图E从不同视点示出表面电流。最后,图29是根据本发明另一实施例的叉指式回路的一个周期的表面电流轮廓图。
制造公差和金底切-在回路指状物上沉积金膜期间(参看图25中的步骤5),可能希望不允许金属沉积到指状物的侧面。可以考虑在指状物边缘上金属的底切。假设底切在每个侧面上是0.5微米。图30中示出具有底切的回路的顶视图,该图指示了底切边缘的位置。在图30中放大了底切(2微米)以便显示底切的位置。所预测的0.5微米底切的影响可能不重要。
功率平衡-在下面的表3中为10%带宽实施例示出了300GHz返波振荡器的功率平衡的极限。虽然功率输出在频率上相对均匀,但在相同范围的频率上,直流功率输入和RF损耗是变化的。
表3-20%BW实施例的典型功率平衡研究

示例性实施例的典型功率平衡如下所示·功率输出在1.8kV是24mW,在6.6kV是30mW;·RF回路损耗在1.8kV是53mW,在6.6kV是137mW;·束拦截(1%)在1.8kV是27mW,在6.6kV是99mW;·集电极耗散(90%效率)在1.8kV是260mW,在6.6kV是963mW;·总功率耗散在1.8kV是340mW,在6.6kV是1.199W;·总效率在1.8kV是6.6%,在6.6kV是2.4%。
600GHz BWO的设过-这里所公开的关于300GHz的原理对于中心在600GHz的10%和20%带宽BWO重复。表4中所示的600GHz情况的尺寸差不多是表2中所示的300GHz设计的一半。但是,所使用的阴极与300GHz情况中的完全相同。最不利的情况中的两倍起始振荡电流大约为1.8mA。束隧道内可以包含大约99%的束,但是磁场必须被增加到9000高斯。
表4-600GHz回路尺寸(微米)

为减小横向速度而开发具有芯片上聚焦的场发射阴极可增强该设计。
虽然本发明的原理已经参照示例性实施例被公开,但是要注意的是,本发明的原理并不局限于那些实施例,并且原理中包括这里没有具体公开的任何改变或变动。
权利要求书(按照条约第19条的修改)1.一种返波振荡器,包括用于接收从电子源发射的电子的输入端、叉指式回路、以及用于接收所述从电子源发射的电子的电子集电极;其中所述叉指式回路定义双平面回路。
2.一种用于提供亚毫米波长处振荡的便携式返波振荡器,包括电子束发生器,包括定向电子源、电子集电极、以及用于在所述集电极方向上加速从所述电子源发射的电子的装置;用于聚焦所述电子束的磁场聚焦装置;设置在所述源和所述集电极中间的慢波回路,所述回路具有人造金刚石的双平面叉指式周期几何结构,其中所述双平面叉指式周期几何结构与所述束相邻的表面被金覆盖,所述叉指式结构包括两组趾,每一组位于不同平面中,所述电子束在所述两个平面之间通过,从而与在所述慢波回路中由所述束感应的电磁能的全传播强度相互作用;以及用于电调谐振荡频率的控制回路。
3.根据权利要求2所述的返波振荡器,具有适于手持操作的尺寸和重量。
4.根据权利要求2所述的返波振荡器,包括用于使来自所述源的在所述集电极方向上被加速的电子在已经通过所述慢波回路以后减速的回路;并且其中所述集电极的电压相对于所述源的电压被降低。
5.根据权利要求2所述的返波振荡器,其中所述平面是平行的。
6.一种用于提供亚毫米频率处振荡的便携式返波振荡器,包括
电子束发生器,包括电子源、电子集电极、以及用于朝向所述集电极加速从所述源发射的电子的装置;设置在所述源和所述集电极中间的慢波回路,所述电子束通过所述慢波回路,所述回路具有非导电材料的双平面叉指式周期几何结构,其中所述双平面叉指式周期几何结构与所述束邻近的表面被金属化;用于聚焦所述电子束的磁场聚焦回路;以及用于电调谐振荡频率的控制回路。
7.根据权利要求6所述的振荡器,其中所述电子源是定向的。
8.根据权利要求6所述的振荡器,其中所述控制回路包括用于选择所述源的电压的装置。
9.根据权利要求6所述的振荡器,其中所述聚焦回路充分地防止聚焦束撞击所述慢波回路。
10.根据权利要求6所述的振荡器,其中所述电子束在所述双平面慢波回路的两个平面之间通过。
11.根据权利要求6所述的振荡器,其中所述叉指式回路包括在两个不同平面中每一个上的一组趾。
12.根据权利要求11所述的振荡器,其中所述平面是平行的。
13.根据权利要求6所述的振荡器,其中所述电子束穿过在所述慢波回路中由所述束感应的电磁能的全传播强度。
14.根据权利要求6所述的振荡器,其中所述结构的非导电材料是金刚石。
15.根据权利要求14所述的振荡器,其中所述金刚石是人造的。
16.根据权利要求6所述的振荡器,其中所述金属化表面的金属是从由金、银、白金和铜所组成的组中选择的。
17.一种用于提供电磁振荡的设备,包括电子束发生器,包括电子源、电子集电极、以及用于在所述集电极方向上加速从所述源发射的电子的装置;设置在所述源和所述集电极中间的慢波回路,所述电子束足够接近所述慢波回路地穿过,以在所述慢波回路中感应电磁波振荡,并且与所述感应的振荡相互作用,以提供电磁振荡;改进措施,其中所述慢波回路是双平面的。
18.根据权利要求17所述的设备,其中所述源是定向的。
19.根据权利要求17所述的设备,其中所述振荡器是返波振荡器。
20.根据权利要求17所述的设备,其中所述振荡是亚毫米的。
21.根据权利要求17所述的设备,具有适于手持操作的尺寸和重量。
22.一种用于产生亚毫米波长电磁振荡的设备,包括电子束发生器,用于在相关慢波回路中感应电磁振荡,改进措施,其中所述电子束与所述感应的电磁振荡的全传播强度相互作用。
23.根据权利要求22所述的设备,具有适于手持操作的尺寸和重量。
24.一种用于提供亚毫米波长电磁振荡的设备,包括电子束发生器,用于在相关慢波回路中感应电磁振荡,改进措施,其中所述电子束与所述感应的电磁振荡的渐消形式相互作用。
25.根据权利要求24所述的设备,其中所述振荡器是返波振荡器。
26.一种用于提供电磁振荡的设备,包括用于在相关慢波回路中感应电磁振荡的电子束发生器,其中所述相关慢波回路位于所述源和所述集电极之间,改进措施,其中所述电子束与所述感应的电磁振荡的全传播强度相互作用;以及其中所述慢波回路是非螺旋状的。
27.根据权利要求26所述的设备,其中所述振荡是亚毫米的,并且所述设备是便携式的。
28.一种用于提供亚毫米电磁振荡的设备,包括电子束发生器和慢波回路,改进措施,其中所述设备的效率大于1%。
29.根据权利要求28所述的设备,其中所述振荡器是返波振荡器,并且是便携式的。
30.一种用于提供亚毫米波长电磁振荡的设备,包括电子束发生器、用于聚焦电子束的磁场聚焦装置和慢波回路,改进措施,其中所述设备是便携式的。
31.根据权利要求30所述的设备,具有适于手持操作的尺寸和重量。
32.一种用于提供亚毫米波长电磁振荡的设备,包括电子束发生器、用于聚焦电子束的磁场聚焦装置、和慢波回路,改进措施,其中所述设备的重量小于500克。
33.根据权利要求32所述的设备,其效率大于约1%。
34.一种用于提供电磁振荡的设备,包括电子束发生器、用于聚焦电子束的磁场聚焦装置、和慢波回路,其中所述慢波回路具有非导电材料的叉指式结构,其中所述叉指式结构具有被金属化的与所述束邻近的表面,改进措施,其中所述非导电材料是人造金刚石。
35.根据权利要求34所述的设备,其中所述振荡器是亚毫米返波振荡器。
36.一种用于提供电磁振荡的设备,包括电子束发生器、用于聚焦电子束的磁场聚焦装置、和慢波回路,其中所述慢波回路具有非导电材料的叉指式结构,所述叉指式结构具有被金属化的与所述束邻近的表面,改进措施,其中所述非导电材料是人造材料。
37.根据权利要求36所述的设备,其中所述材料是金刚石。
38.根据权利要求36所述的设备,具有适于手持操作的尺寸和重量,并且效率大于约1%。
39.一种用于提供电磁振荡的设备,包括电子束发生器、用于聚焦电子束的磁场聚焦装置、和慢波回路以及集电极,改进措施包括用于使来自所述源的、在所述集电极方向上被加速的电子在已经通过所述慢波回路以后被减速的回路,以及所述集电极的电压相对于所述源的电压降低。
40.根据权利要求39所述的设备,其中所述振荡器是返波振荡器,并且是便携式的。
41.根据权利要求39所述的设备,其中所述慢波回路是双平面的,并且是由人造材料制成。
42.一种用于提供亚毫米波长振荡的返波振荡器,所述振荡器具有适于手持操作的尺寸和重量,并且在至少1%的效率下产生至少1毫瓦的功率,所述返波振荡器包括电子束发生器,包括定向电子源;电子集电极,具有相对于所述源的电压降低的电压;和用于在所述集电极方向上加速从所述源发射的电子、并且用于在这些电子已经穿过所述慢波回路以后使来自所述源的电子减速的装置;设置在所述源和所述集电极中间的慢波回路,所述回路具有人造金刚石的双平面叉指式周期几何结构,其中所述双平面叉指式周期几何结构的与所述束邻近的表面被从由金、银和铜组成的组中选择出的金属覆盖,所述叉指式结构包括位于不同但平行的平面上的两组趾,所述电子束从所述两个平行平面之间穿过,以与所述束在所述慢波回路中所感应的电磁能的全传播强度相互作用;以及磁场聚焦装置,用于聚焦所述电子束,以充分防止所述束与所述慢波回路发生碰撞,用于电调谐振荡频率的电压控制回路。
权利要求
1.一种返波振荡器,包括用于接收从电子源发射的电子的输入端、叉指式回路、以及用于接收所述从电子源发射的电子的电子集电极;其中所述叉指式回路定义双平面回路。
全文摘要
本发明涉及亚毫米返波振荡器(100)。本发明尤其涉及具有双平面叉指式回路(115,125)的微型返波振荡器(100)。在一个实施例中,叉指式回路(115,125)包括金刚石,并且被涂上一层导电材料。
文档编号H01J25/46GK1871764SQ200480029002
公开日2006年11月29日 申请日期2004年8月12日 优先权日2003年8月12日
发明者小詹姆斯·A·戴顿 申请人:曼哈顿技术有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1