面状光源装置以及使用其的显示装置的制作方法

文档序号:2926518阅读:67来源:国知局
专利名称:面状光源装置以及使用其的显示装置的制作方法
技术领域
本发明是涉及面状光源装置以及使用其的显示装置的发明,特别涉及使用发光二极管的面状光源装置以及使用其的显示装置。
背景技术
以往,作为将发光二极管(LEDLight Emitting Diode)作为光源的面状的光源装置,公知有计算机等使用的液晶显示装置的背光源。该面光源装置由封闭光用的导光板和光源部构成。而且,导光板由聚碳酸酯树脂或者丙烯酸树脂等透明且折射率大的树脂形成。发光部将多个发光二极管安装在衬底上,与导光板的侧面对置配置。
但是,为了得到稳定的亮度,需要进一步使用传感器测定来自发光二极管的光量,利用该测定结果,调节发光二极管的发光量。因此,在专利文献1所示的面状光源装置中,在导光板的端面上配设专用的光传感器,利用该传感器的检测结果来修正作为光源的发光二极管的发光量。
特开平11-260572号公报如专利文献1所示的面状光源装置,使用发光二极管作为光源的情况下,发光二极管的输出具有较强的温度依赖性。因此,存在色度以及亮度根据周围的温度变化而变化的问题。此外,发光二极管输出的温度依赖性因红色(以下还称为R)、绿色(以下还称为G)、蓝色(以下还称为B)的各色而不同。因此,在使用RGB3色的发光二极管发出白光的情况下,存在白平衡因周围的温度变化而变化的问题。进而,在同色的发光二极管之间也存在发光二极管的发光特性离散。此外,由于发光二极管的寿命特性各色也不同,所以存在由于老化而发光二极管的发光特性的离散各色变大的问题。
为了解决上述问题,在专利文献1中由专用的光传感器检测由于温度变化或者老化等产生的发光二极管的色度以及亮度的变化,基于所检测的结果修正发光二极管的发光量。因此,在以往的面状光源装置中,没有另外设置专用的光传感器。
但是,在面状光源装置上另外设置专用的光传感器的情况下,存在如下问题因为面状光源装置的部件数增加,组装步骤增加,所以,制作成本变高。此外,因为光传感器本身也昂贵,所以,还存在追加光传感器使面状光源装置本身成本上升的问题。

发明内容
因此,本发明的目的在于提供不使用专用的光传感器就可得到稳定的发光二极管的发光量的面状光源装置以及使用其的显示装置。
本发明的解决方案是面状光源装置具备光源部,将多个发光二极管作为光源的光源部;以及导光部,从光源部引导光并呈面状进行发光,非点亮时的发光二极管检测来自其它发光二极管的光量,基于该光量来调整其它发光二极管的发光量。
对于本发明中记载的面状光源装置来说,因为非点亮时的发光二极管检测来自其它发光二极管的光量,基于该光量调整其它发光二极管的发光量,所以,不使用专用的光传感器就可得到稳定的发光二极管的发光量,具有能够实现亮度、色度稳定的面状光源装置的效果。


图1是本发明的实施方式1的液晶显示装置的立体图。
图2是本发明的实施方式1的面状光源装置的平面图。
图3是本发明的实施方式1的面状光源装置的剖面图。
图4是本发明的实施方式1的光源单元的平面图。
图5是本发明的实施方式1的光源单元的布线图。
图6是说明本发明的实施方式1的发光二极管的动作的图。
图7是表示本发明的实施方式1的光源单元的点亮时间的图。
图8是表示本发明的实施方式1的光源单元的别的点亮时间的图。
图9是本发明的实施方式2的光源单元的平面图。
图10是本发明的实施方式2的光源单元的布线图。
图11是说明本发明的实施方式2的发光二极管的受光灵敏度特性的图。
具体实施例方式
(实施方式1)在本实施方式中,对利用面状光源装置作为液晶显示装置的背光源的方式进行说明。但是,本发明的面状光源装置并不限于所述的方式。首先,图1是表示本实施方式的液晶显示装置的结构的分解立体图。图1所示的液晶显示装置中设置液晶显示面板10,在像素中写入所希望的图像并进行显示;以及背光源20,从该液晶显示面板10的背面照射光。液晶显示面板10在对置的衬底11之间保持液晶,为了驱动该液晶,在一个衬底11上以矩阵状形成TFT(Thin FilmTransistor薄膜晶体管)(未图示)。而且,也以矩阵状形成与TFT连接的像素(未图示)。并且,本实施方式的液晶显示面板10是透射型的液晶显示装置。
在液晶显示面板10上设置按每个像素设置的使TFT导通/截止用的多个栅极布线驱动用驱动器12;通过TFT向各像素供给图像数据用的多个源极布线驱动用驱动器13。栅极布线驱动用驱动器12及源极布线驱动用驱动器13是在衬底11上安装例如作为半导体芯片另外形成的芯片的结构。而且,栅极布线驱动用驱动器12以及源极布线驱动用驱动器13由未图示的控制器控制,对各像素写入图像数据。另外,基于输入到控制器的图像信号进行向各像素的图像数据写入。而且,向设置在衬底11上的栅极布线(未图示)供给在预定的扫描周期使TFT导通的信号,在该信号的时间从设置在衬底11上的源极布线(未图示)供给图像数据,对像素写入图像数据。
然后,背光源20是从形成在壳体上的开口部射出均一的光的面状光源装置,从图1可知,配置在液晶显示面板10的背面侧。图2是表示背光源20的结构的平面图。此外,图3是图2所示的平面图的II-II面的剖面图。进而,图4是表示将多个发光二极管(LEDLightEmitting Diode)排列为一列的光源部的一例的图。图5是示意性地表示光源部的布线的布线图。
如图3所示,背光源20由壳体21以及光学片22、导光板23、反射片24、反射镜25、发光二极管26等构成。此处,壳体21是用于收纳保持背光源20的各构成部件的框架,使用强度以及加工性优良的合成树脂或者金属。特别是,从针对伴随发光二极管26的发光而产生的热量的放热性的观点来看,壳体21优选使用热传导性优良的铝或者铜。另外,在壳体21的前面设置开口部,以使来自光源部(发光二极管26)的光能够射出。
光学片22是使光扩散的扩散片或者形成有棱镜列的棱镜片等具有透光性的片状的光学部件。此处,扩散片是指使合成树脂或者玻璃等的透明部件的表面粗面化、混入细微的反射部的薄板。所述的光学片22是为调整射出光的亮度值而使用的,按照需要可组合多片使用多种。另外,光学片22配置在导光板23的前面侧。
导光板23是从配置在短边侧的光源部导入光并且使面状的光射出到设置有液晶显示面板10的前面侧的光学部件。该导光板23是有机树脂材料(丙烯酸树脂或者聚碳酸酯树脂等)或者玻璃等的具有透光性的平板状的部件。在导光板23的背面侧形成扩散图形(未图示)。该扩散图形是对在导光板23内传播的光进行扩散、在前面侧射出均一的光的光学单元。
具体地说,在导光板23的背面侧形成扩散图形的方法中,考虑了在导光板23的背面上丝网印刷含有氧化钛等的白色颜料的方法,或者,在形成导光板23时在成形时形成圆形或者圆锥状、四角形等细微图形的方法等。通过调整扩散图形,可使平行于导光板23的长边的方向的亮度分布成为所希望的分布。即,决定扩散图形的浓度或者形状、大小、深度等,以使从光源部射出的光的亮度分布最优。
然后,光源部由发光二极管26或者激光二极管(LDLaser Diode)等的发光元件构成。而且,这些发光元件能够是数纳秒(ns)以下的高速响应。另外,本实施方式的光源部组合多个发出单一颜色光的发光二极管,配置成一列。
此外,在本实施方式的光源部中,如图2所示,在电路衬底27上排列多个发光二极管26,构成一个光源单元28,在导光板23的各个短边上配置该光源单元28,由驱动器29控制驱动。
如图4所示,对于光源单元28来说,发出红色(R)、绿色(G)、蓝色(B)的单一颜色光的发光二极管26在矩形的电路衬底27上排列为一列。但是,发光二极管26的RGB各个的个数不一定需要均等,可以决定各自的个数,使得通过液晶显示面板11时的光成为所希望的白色色度。这样,组合多个单一颜色的发光二极管26,调整各自的发光亮度,由此,可容易地改变从背光源20射出的光的色度。
此外,RGB单一颜色的发光二极管26与发出白色光的发光二极管26相比,发光效率高,液晶显示装置中使用的滤色片的各色(RGB)的透射特性和发光二极管26的发光光谱一致,由此,可提高液晶显示装置的色再现性。进而,因为RGB单一颜色的发光二极管26可独立地控制各颜色,所以,与发出白色光的发光二极管26相比,容易改变射出光的色调。另外,在表示图4的发光二极管26的圆圈中,记明了RGB的各个颜色。
在图5所示的光源单元28的布线图中,对于RGB的各个发光二极管26来说,按每种颜色串联连接。这是因为,发光二极管26以恒定电流进行驱动,由此,可使同色的发光二极管26间的发光量均一化。另外,在电路衬底27上由铜图形形成与发光二极管26相连接的布线30。此外,发光二极管26通过电路衬底27上的布线30与驱动器29连接,并且被驱动控制。
然后,对于图3所示的反射镜25来说,除了导光板23的端面侧还包含光源部,高效地将来自光源部的光反射到导光板23的端面侧。反射镜25由具有用银或者铝等形成的反射层的金属板、或者蒸镀有银或铝等的树脂片、白色的树脂片等材料构成。另外,为抑制在发射面上的损失,反射镜25的反射率优选为90%以上。
在导光板23的背面侧设置将来自导光板23的光反射到前面侧的反射片24。反射片24是蒸镀有银或者铝等的平板、或者由白色的树脂板构成的片状的光学部件。另外,为了有效地将来自光源部的光射出到液晶显示面板10上,反射片24的反射率优选为90%以上。
光源单元28设置在导光板23的短边侧,RGB的发光二极管26配置为一列。而且,驱动器29以光源单元28为单位进行驱动。
然后,使用图3所示的背光源20的剖面图,对本实施方式的面状光源装置的发光以及光的传播、受光(光量检测)进行说明。首先,通过由驱动器29进行驱动的一个光源单元28的发光二极管26发光,产生本实施方式的面状光源装置的发光。从光源单元28射出的光直接射出到导光板23或者由反射镜25反射后入射。入射到导光板23后的光在导光板23的前面与背面反复反射,由此,在导光板23内传播。而且,在导光板23内传播的很多的光被形成在导光板23的背面侧的扩散图形扩散。被扩散后的光直接或者在反射片24上反射后从导光板23的前面射出,入射到液晶显示面板10的背面。
未在扩散图形上扩散就在导光板23内传播的光由与入射的导光板23的端面对置的导光板23的端面射出。由导光板23的端面射出的光直接或者由反射镜25反射后入射到另外的光源单元28。而且,入射后的光由RGB各色的发光二极管26接收,并检测光量。在本实施方式的光源单元28中,如图4所示,因为设置多个RGB各色的发光二极管26,所以,可增加能够检测的光量,能够提高检测灵敏度。此外,因为发光二极管26直线状配置在导光板23的端面,所以,可使导光板23的面整体的光平均化并进行检测,难以受到部分的亮度不均或者颜色不均的影响。
如上所述,在本实施方式的面状光源装置中,将发光二极管26作为发光元件来使用,并且,在非点亮时也可以作为受光元件来使用。以下对将发光二极管26作为发光元件或者受光元件来使用的情况的动作原理进行说明。首先,在将发光二极管26作为发光元件来使用的情况下,如图6(a)所示,发光二极管26为热平衡状态时,因为能量势垒较高,所以,偏向于n型半导体的电子难以向p型半导体移动。但是,如图6(b)所示,如果向发光二极管26施加正向偏置电压,则因为能量势垒变低,所以,偏向于n型半导体的电子容易向p型半导体移动。因此,n型半导体的电子从能级较高的导带向能级较低的价带移动,与价带附近的空穴复合。而且,该复合时失去的能量作为光放出,由此,发光二极管26发光。
虽然未图示,但是,相反地光从外部照射发光二极管26,在该光能量大于导带和价带的能量差(即带隙能量)的情况下,价带的电子被激励到导带,在价带留下空穴。在n型半导体、p型半导体、耗尽层的各处都产生该电子-空穴对。而且,在耗尽层中,电子由于电场而向n型半导体加速、空穴向p型半导体加速。在n型半导体中产生的电子-空穴对中的电子与从p型半导体移动来的电子一起留在n型半导体的导带,n型半导体中产生的电子-空穴对中的空穴扩散到耗尽层中,并被加速,向p型半导体的价带移动。
这样,发光二极管26与入射光量成比例地产生电子-空穴对,该电子-空穴对分别蓄积在n型半导体以及p型半导体中。由此,因为p型半导体带正电、n型半导体带负电,所以,电子从n型半导体、空穴从p型半导体分别流向相反侧的电极,产生电流。发光二极管26通过测定该的电流可检测受光的光量。另外,如果向发光二极管26施加反向偏置电压,则入射的光量和输出电流的关系为线性,因为改善了上限范围,所以,可测定的发光强度的范围变大。
由此可知,若施加正向偏置电压,则发光二极管26作为发光元件而起作用,若非点亮或者施加反向偏置电压,则作为受光元件而起作用。
作为受光元件的发光二极管26,p型半导体的导带和价带的能量差(带隙能量)越大,电子从导带落入到价带时产生的光的能量越大。此外,因为光的颜色因波长而变化,所以,光的能量越大越放出短波长的光。因此,如本实施方式所示,在利用RGB各色的发光二极管26的情况下,主波长按照B、G、R的顺序变大,带隙能量按照R、G、B的顺序变大。
作为受光元件的发光二极管26,如上所述,如果所吸收的光的能量不比受光元件的带隙能量Eg大,则不产生光电动势。对此,一般公知受光灵敏度特性的临界波长λh(nm)与带隙能量Eg(eV)的关系为λh=1240/Eg。
如本实施方式,在利用RGB各色的发光二极管26的情况下,因为带隙能量Eg以R、G、B的顺序变大,所以,临界波长λh以B、G、R的顺序变大。另外,较短波长的入射光在发光二极管26表面的扩散层内被吸收的比例急剧增加,所以,发光二极管26扩散层越薄、pn结越接近表面,其灵敏度越高。这样,由于发光二极管26的RGB各色受光灵敏度特性不同,所以,在某波长的光入射到光源单元28上的情况下,不仅能够求出入射光的亮度,也能够求出色度。但是,为了求出色度,需要向RGB的发光二极管26施加反向偏置电压,计算电压变动。
然后,与光源单元28连接的驱动器29基于由作为受光元件而起作用的发光二极管26检测的光量,调整作为发光元件而起作用的发光二极管26的发光量。此处,发光二极管26的点亮、非点亮可通过驱动器29以光源单元28为单位进行控制。在一个光源单元28点亮的期间,设置另外的光源单元28为非点亮的期间,在该期间向其它光源单元28的发光二极管26施加反向偏置电压,使该发光二极管26作为受光元件而起作用。
通过增加输入到发光二极管26的电流或者电压、占空比可进行发光量的调整。例如,根据作为受光元件而起作用的发光二极管26的检测结果判断为红色(R)的光量降低的情况下,驱动器29使作为发光元件而起作用的发光二极管26内、R的发光二极管26的发光量增加。通过进行这样的反馈控制,本实施方式的面状光源装置可将射出光的亮度以及色度维持一定。
图7(a)、(b)中示出本实施方式的面状光源装置的点亮时间。图7(a)、(b)所示的时间是具备2个光源单元28的情况下的点亮时间的一例,图7(a)所示的时间表示图2的左侧所示的光源单元28(以下,也仅称为光源单元28L)的点亮时间,图7(b)所示的时间表示图2的右侧所示的光源单元28(以下,也仅称为光源单元28R)的点亮时间。另外,在图7(a)、(b)中,分别示出RGB的发光二极管26。
以下,使用图7(a)、(b)对本实施方式的面状光源装置的动作进行说明。首先,如图7(a)、(b)所示,只使光源单元28L在T1期间点亮。即,光源单元28L在T1期间设为点亮期间、光源单元28R在T1期间设为非点亮期间。然后,在T2期间将光源单元28L设为非点亮期间、在T2期间将光源单元28R设为点亮期间。在本实施方式的驱动器29中,重复T1期间和T2期间进行驱动。此处,光源单元28的点亮频率f为f=1/(T1+T2),但是,为消除目视的闪烁,需要60Hz以上的频率,优选120Hz以上。
可任意地变更所述的T1期间和T2期间的分配。即,在光源单元28R的总光量比光源单元28L的总光量大的情况下,如果T1期间和T2期间相同,则光源单元28R的附近变亮,产生亮度不均或者颜色不均。因此,使T1期间比T2期间长,使光源单元28L和光源单元28R的总光量相等,抑制亮度不均或者颜色不均的产生。
此外,通过交替点亮光源单元28L和光源单元28R,T1期间中光源单元28L的发光二极管26作为发光元件而起作用,光源单元28R的发光二极管26作为受光元件而起作用。T2期间的情况与T1期间的情况相反。如图7(a)、(b)所示,在驱动光源单元28的情况下,点亮发光二极管26的时间与始终点亮的情况相比,为一半以下。因此,在本实施方式中,在发光二极管26中流过通常的2倍左右的电流,由此,使面状光源装置的射出光的亮度与始终使发光二极管26点亮的情况的亮度相同。由此,不增加发光二极管26的数目就能以与始终点亮发光二极管26的情况同等的功耗进行驱动。
图8(a)、(b)中示出本实施方式的面状光源装置的别的点亮时间。图8(a)表示光源单元28L的点亮时间,图8(b)表示光源单元28R的点亮时间。而且,在图8(a)、(b)所示的点亮时间中,在T3期间设置点亮期间和非点亮期间,点亮频率f为f=1/T3。即,在光源单元28L的情况下,如图8(a)所示,以在T3期间的起点RGB各色的发光二极管26全部点亮、最后在T4期间设定为非点亮期间这样的时间进行驱动。另一方面,在光源单元28R的情况下,如图8(b)所示,以最初T5期间设定为非点亮期间、在T3期间的终点RGB各色的发光二极管26全部熄灭这样的时间进行驱动。另外,图8(a)、(b)所示的光源单元28也是通过电流调整亮度的结构。
在使T3期间中的95%点亮的情况下,可求出作为非点亮期间的T4期间以及T5期间为(1-0.95)×T3。T5期间中,因为光源单元28R的发光二极管26非点亮,所以,可检测来自光源单元28L的发光二极管26的光。另一方面,相反地,因为T4期间中光源单元28L的发光二极管26为非点亮,所以,可检测来自光源单元28R的发光二极管26的光。
在本实施方式的面状光源装置中,示出了导光板23的左右分别设置光源单元28的结构,但是,本发明并不限于此,为了进一步增大面状光源装置的射出亮度,可以是设置3个以上的光源单元28的结构或者设置1个光源单元28的结构。
此外,在如上所述的光源单元28中,作为1个单位进行驱动控制,但是,本发明并不限于此,可以是将光源单元28划分为多个光源驱动控制块、以该光源驱动控制块为单位进行驱动控制的结构。各光源驱动控制块的点亮时间以图7(a)、(b)以及8(a)、(b)所示的时间进行驱动。具体地说,采取如下结构在设置1个光源单元28的结构的情况下,将光源单元28内分为2个光源驱动控制块,按每个该光源驱动控制决将向发光二极管26的电源供给路径作成不同的系统。通过这样构成,1个光源单元28可起到发光作用和受光作用。另外,在设置2个以上的光源单元28的情况下也可将光源单元28内分为多个光源驱动控制块,在1个光源单元28内起到发光作用和受光作用。
进而,本发明中也考虑安装只检测光量不发光的发光二极管26的结构。此种情况下,因为检测光量的专用发光二极管26不产生因发光引起的热量,所以,具有受光灵敏度特性不受该热量影响的优点。此外,在同一电路衬底27上安装负责发光的发光二极管26和负责受光的发光二极管26的情况与分别在各个电路衬底上安装负责发光的发光二极管26和其他部件的光传感器的情况相比,可简化组装操作、减少制造成本。
另外,本实施方式的面状光源装置组合RGB各色的发光二极管26构成白色的光源,但是,本发明并不限于此,可以使用白色的发光二极管26。
此外,在本发明中,除了负责受光的发光二极管26以外还可以另外设置光传感器。通过另外设置光传感器,组合由负责受光的发光二极管26得到的信息和由光传感器得到的信息,由此,可进一步准确控制发光二极管26的发光状态,可得到更稳定的亮度、色度。
如上所述,在本实施方式的面状光源装置中,非点亮时的发光二极管26检测来自其它发光二极管26的光量,可基于该电流调整其它发光二极管26的光量,所以,可得到稳定的发光二极管的发光量,实现可得到稳定的亮度、色度的面状光源装置。
(实施方式2)图9是表示本实施方式的面状光源装置的光源单元28的结构的图。图10是图9所示的光源单元28的布线图。本实施方式的光源单元28在矩形电路衬底27上安装一列RGB的发光二极管26,进而,安装波长比R的发光二极管26长的发光二极管31。在图9中,在左侧第三个发光二极管26的右斜上和右侧第三个发光二极管26的左斜上设置发光二极管31。而且,在本实施方式中,采用红外波长(780nm以上)作为主波长的IR(红外)的红外发光二极管31。另外,在表示图9的发光二极管31的圆圈中记明IR。
可以是对于1个光源单元28安装1个IR发光二极管31的结构,但是,为了没有颜色不均或亮度不均的影响、检测平均的光,优选安装2个以上。进而,在安装多个发光二极管31的情况下,如图10所示,通过串联连接发光二极管31可提高检测精度。另外,IR发光二极管31排列为与图9所示的RGB的发光二极管26不同的列、排列为同一列都可以。此外,IR发光二极管31的形状可以与RGB的发光二极管26的形状不同。
如图10所示,RGB的发光二极管26以及IR发光二极管31按颜色由布线30串联连接。这样,通过串联连接,可恒流驱动发光二极管26、31,可使各自的发光量均一。在本实施方式中,RGB的发光二极管26如在实施方式1中所说明的那样反复发光和受光,但是,IR发光二极管31只进行受光。另外,IR发光二极管31检测光量的时间与RGB的发光二极管26检测光量的时间相同、不同都可以。此外,在本实施方式中,IR发光二极管31只受光,但是,本发明并不限于此,可以与RGB的发光二极管26相同反复发光和受光。
在图9中示出了1个光源单元28,但是,通过在面状光源装置上配置多个光源单元28,可在各光源单元28间反复发光和受光,检测相互的发光量。而且,基于该检测结果调整发光二极管26的发光量。
在图11中示出RGB各色的发光光谱和RGB的发光二极管26以及IR发光二极管31的受光灵敏度特性。将发光二极管26作为受光元件来利用的情况下的临界波长λh与带隙能量Eg的关系如在实施方式1中叙述的那样为λh=1240/Eg。此外,在将发光二极管26作为发光元件来利用的情况下,发光峰波长λp与带隙能量Eg的关系也为λp=1240/Eg。因此,相同颜色的发光二极管26的临界波长λh与发光峰波长λp相等。
因此,可接收来自R的发光二极管26的发光峰波长λp(在图11中约630nm)的光的、具有临界波长λh的发光二极管26限于同色的R的发光二极管26。从图11还可知,R的发光二极管26的受光灵敏度特性和R的发光光谱部分重叠。
从图11可知,R的发光二极管26的受光灵敏度特性与G的发光光谱以及B的发光光谱的大部分重叠,G的发光二极管26的受光灵敏度特性与B的发光光谱的大部分重叠。因此,关于G的发光光谱以及B的发光光谱,同色的发光二极管26的受光灵敏度特性只部分重叠,即使不能充分受光也能够由其它颜色的发光二极管26补充。
但是,关于R的发光光谱,不能由其它颜色的发光二极管26补充受光。因此,进行调光降低亮度等情况下,R的发光光谱的检测离散变大,存在面状光源的射出亮度以及色度的控制不稳定的情况。
因此,在本实施方式的面状光源装置中,如图9所示,在光源单元28上设置I R发光二极管31。如图11所示,因为I R发光二极管31的受光灵敏度特性的临界波长λh是1000nm,所以,与R的发光光谱大部分重叠。因此,与只设置RGB的发光二极管26的情况相比,R的发光光谱的检测离散变小,面状光源的射出亮度以及色度的控制稳定。
此外,在本实施方式的面状光源装置中,因为利用4种发光二极管26作为受光元件,所以,与利用3种发光二极管26作为受光元件的情况相比,提高了受光精度。特别是,发光二极管26的发光峰波长λp由于发光二极管26的温度而移动。以良好精度稳定地得到亮度以及色度,面状光源装置需要准确地知道发光峰波长λp的移动量。但是,在利用3种发光二极管26作为受光元件的情况下,准确捕捉发光峰波长λp的移动量较难。因此,如本实施方式,在利用4种发光二极管26作为受光元件的情况下,可利用发光元件以外的发光二极管31的检测结果,所以,可准确地捕捉发光峰波长λp的移动量。
另外,虽然在本实施方式中,利用了IR发光二极管31,但是,本发明并不限于此,可以是只进行光检测的光电二极管等。但是,该光电二极管等需要具有可检测比R的发光二极管26的临界波长λh长的波长的受光灵敏度特性。此外,除了作为发光元件而起作用的发光二极管26以外,还可以设置受光灵敏度特性不同的2种以上的发光二极管31。此种情况下,可提供能够以良好精度进行亮度以及色度的控制的面状光源装置。
以上,利用实施方式1或者实施方式2中所说明的面状光源装置作为背光源,在其上设置显示所希望的图像的显示元件,由此,可提供能够得到稳定的亮度以及色度的显示装置。另外,作为显示元件,考虑使用例如液晶显示元件等非发光显示元件。
权利要求
1.一种面状光源装置,具备光源部,将多个发光二极管作为光源;以及导光部,从所述光源部引导光并呈面状进行发光,其特征在于,非点亮时的所述发光二极管检测来自其它所述发光二极管的光量,基于该光量来调整其它所述发光二极管的发光量。
2.如权利要求1记载的面状光源装置,其特征在于,所述发光二极管在预定的时间反复点亮期间和非点亮期间。
3.如权利要求1或权利要求2记载的面状光源装置,其特征在于,所述光源部具备多个所发出的光的波长不同的所述发光二极管,按每个所述波长,非点亮时的所述发光二极管检测来自其它所述发光二极管的光量,基于该所述光量来调整其它所述发光二极管的发光量。
4.如权利要求3记载的面状光源装置,其特征在于,所述光源部具备发出红色、蓝色以及绿色单色光的波长的所述发光二极管。
5.如权利要求4记载的面状光源装置,其特征在于,所述光源部还具备发出比所述红色单色光的波长长的长波长光的所述发光二极管。
6.如权利要求5记载的面状光源装置,其特征在于,所述长波长的光是红外光。
7.如权利要求1记载的面状光源装置,其特征在于,所述光源部被划分为2个以上的光源驱动控制块,按每个该所述光源驱动控制块来进行所述发光二极管的发光或者光量检测。
8.如权利要求7记载的面状光源装置,其特征在于,在安装于所述光源驱动控制块上的所述发光二极管是非点亮的情况下,该所述发光二极管进行光量检测,基于该所述光量,对安装于其它所述光源驱动控制块上的所述发光二极管的发光量进行调整。
9.如权利要求7或权利要求8记载的面状光源装置,其特征在于,所述发光二极管以所述光源驱动控制块为单位在预定的时间反复点亮期间和非点亮期间。
10.如权利要求9记载的面状光源装置,其特征在于,所述发光二极管在多个所述光源驱动控制块间以预定的期间重复点亮期间以及非点亮期间。
11.一种显示装置,其特征在于,具备权利要求1记载的面状光源装置;以及显示元件,配置在所述面状光源装置的射出面一侧,显示所希望的图像。
12.如权利要求11记载的显示装置,其特征在于,所述显示元件是液晶显示元件。
全文摘要
本发明提供不使用专用的光传感器即可得到稳定的发光二极管的发光量的面状光源装置以及使用其的显示装置。本发明是具备将多个发光二极管(26)作为光源的光源部和从光源部引导光并呈面状进行发光的导光板(23)的面状光源装置,非点亮时的发光二极管(26)检测来自其它发光二极管(26)的光量,基于该光量来调整其它发光二极管(26)的发光量。
文档编号F21S2/00GK1869787SQ200610077840
公开日2006年11月29日 申请日期2006年5月8日 优先权日2005年5月23日
发明者境诚司, 米田俊之 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1