显示设备的制作方法

文档序号:2945233阅读:101来源:国知局
专利名称:显示设备的制作方法
技术领域
本发明的示例性实施例涉及一种显示设备。更具体地讲,本发明的示例性实施例涉及一种改善了显示品质和减小了光损失的显示设备。
背景技术
液晶显示器通常包括显示图像的显示面板和将光提供到显示面板的背光单元。

背光单元包括发光的光源和将光引导到显示面板的导光板。作为光源,可以使用诸如冷阴极荧光灯的线光源或诸如发光二极管的点光源。导光板将来自线光源或点光源的光转换为来自面光源的光,并将面光源的光提供到显示面板。然而,点光源通常具有实质上减小的功耗和纤薄度。

发明内容
本发明的示例性实施例提供一种改善了显示品质和减小了光损失的显示设备。根据示例性实施例,一种显示设备包括至少一个光源、导光板和显示面板,所述至少一个光源发射光,导光板具有多个表面,并引导来自所述至少一个光源的光,显示面板接收来自导光板的光,并显不图像,其中,所述多个表面包括光入射表面和上表面,光入射表面面对所述至少一个光源,且光入射表面接收光,上表面连接到光入射表面,且上表面输出光,其中,导光板的光入射表面包括第一表面,第一表面沿预定的方向延伸;多个第二表面,所述多个第二表面在与光源对应的区域中自第一表面倾斜,从而在光入射表面上由第二表面限定具有多边形棱锥形状的至少一个光学凹槽。在示例性实施例中,从光源发射的穿过光学凹槽的光具有矩形的亮度分布,从而导光板的出射光分布具有矩形形状的出射光分布。因此,实质上减小了导光板的暗区域,因而实质上改善了显示设备的显示品质。


在结合附图进行考虑时,通过参照下面的详细描述,本发明的上述和其他的方面和特征将容易变得明显,在附图中图I是根据本发明的显示设备的示例性实施例的分解透视图;图2是在图I中示出的导光板的示例性实施例的透视图;图3是在图2中示出的导光板的I部分的放大透视图;图4A是在图2中示出的导光板的沿着11-11’线截取的截面图;图4B是根据本发明的导光板的可选示例性实施例的截面图;图5是在图2中示出的导光板的俯视图6A是示出入射到未设置光学凹槽的导光板的示例性实施例的光入射表面中的光的亮度分布的示图;图6B是示出穿过如下所述的导光板的示例性实施例的光学凹槽的光的亮度分布的示图,在所述导光板中,光学凹槽的角(α)为大约10度;图6C是示出穿过如下所述的导光板的示例性实施例的光学凹槽的光的亮度分布的示图,在所述导光板中,光学凹槽的角(α)为大约15度;图7Α是示出从没有设置光学凹槽的导光板的示例性实施例出射的光的出射光分布的示图;图7Β是示出光的强度(Iux)相对于在图7Α的kl线中的位置(毫米)的曲线图;图7C是示出光的强度(Iux)相对于在图7A的k2线中的位置(毫米)的曲线图; 图7D是示出设置有具有大约10度的角(α )的光学凹槽的导光板的示例性实施例的出射光分布的示图;图7Ε是示出光的强度(Iux)相对于在图7D的k3线中的位置(毫米)的曲线图;图7F是示出光的强度(Iux)相对于在图7A的k4线中的位置(毫米)的曲线图;图8是示出根据本发明的背光组件的示例性实施例的俯视图;图9是在图8中示出的背光组件的III部分的放大透视图;图10是沿图8中示出的背光组件的IV-IV’线截取的截面图;图11是示出穿过导光板的示例性实施例的光学凹槽的亮度分布的示图,其中,该导光板表现出图6B中示出的亮度分布并进一步包括图8中示出的楔型的反射器;图12A是示出图11的导光板的出射光分布的示图;图12B是示出光的强度(Iux)相对于在图12A的k5线中的位置(毫米)的曲线图;图12C是示出光的强度(Iux)相对于在图12A的k6线中的位置(毫米)的曲线图;图13是根据本发明的背光组件的可选示例性实施例的一部分的透视图;图14是本发明的背光组件的另一可选示例性实施例的俯视图;图15是在图14中示出的背光组件的V部分的放大透视图;图16是本发明的背光组件的另一可选示例性实施例的一部分的透视图。
具体实施例方式在下文中,将参照附图对本发明的示例性实施例进行详细描述。图I是根据本发明的显示设备的示例性实施例的分解透视图。参照图1,显示设备100包括显示面板120、模制框架130、背光组件175、底部壳180和顶部壳110。显示面板120在显示面板120的一个表面上显示图像。显示面板120不是自发射型装置,例如,显示面板120可以是各种显示面板,诸如液晶显示面板和电泳显示面板。下文中,将详细描述显示面板120是液晶显示面板的示例性实施例。显示面板120具有矩形板状的形状。显示面板120包括第一基板122、第二基板124和设置在第一基板122和第二基板124之间的液晶层(未示出)。
在示例性实施例中,第一基板122可以包括多个像素电极(未示出)和按一对一的对应关系电连接到像素电极的多个薄膜晶体管(未示出)。每个薄膜晶体管因被驱动而导通或截止,以将驱动信号施加到像素电极中对应的像素电极。第二基板124可以包括公共电极(未示出),公共电极与像素电极一起形成电场,以控制液晶层中的液晶分子的取向。显示面板120基于电场的强度来控制液晶层的光透射率,因而显示图像。驱动芯片125可以设置(例如,安装)在第一基板122上,以将驱动信号施加到显示面板120。在示例性实施例中,驱动芯片125可以包括在驱动芯片125中构建的数据驱动器和栅极驱动器。然而,在可选的示例性实施例中,数据驱动器可以构建在驱动芯片125中,栅极驱动器可以通过薄膜工艺直接集成在第一基板上。在示例性实施例中,模制框架130具有与显示面板120的形状对应的矩形框架形状,并设置在显示面板120下方,以支撑显示面板120。

背光组件175设置在显示面板120下方,以将光提供到显示面板120。在示例性实施例中,背光组件175包括发光的光源160、将光引导到显不面板120的导光板150、改善光效率的光学片140和反射从导光板150泄漏的光的反射片170。在示例性实施例中,光源160可以包括至少一个发光二极管。下文中,将详细描述光源160包括一个发光二极管的示例性实施例。然而,本发明不限于此。所述至少一个发光二极管可以设置(安装)在电路板(未示出)上,并被设置为与导光板150的至少一个侧表面相邻。在示例性实施例中,电路板可以为柔性电路板。导光板150可以设置在显面板120下方,以将光引导到显面板120。将在后面参照图2至图5更加详细地对导光板150进行描述。光学片140设置在导光板150和显示面板120之间。光学片140可以包括顺序堆叠在导光板上的棱镜片144和保护片142。棱镜片144沿与设置在棱镜片144上方的显示面板120的显示表面基本垂直的方向将从导光板150出射的光会聚为入射到显示面板120中。穿过棱镜片144的光垂直入射到显示面板120中。保护片142设置在棱镜片144上。保护片142保护棱镜片144不受外部冲击的影响。虽然在图I中没有示出,但是光学片140还可以包括漫射片,以漫射从导光板150出射的光。在不例性实施例中,漫射片可以设置在导光板150和棱镜片144之间。反射片170设置在导光板150下方,以反射在没有被引导到显不面板120的情况下从导光板150泄漏的光,使得反射的光再次入射到导光板150中。在这样的实施例中,反射片170实质上增加了提供到显示面板120的光的总量。底部壳180设置在背光组件175下方,以容纳背光组件175。在这样的实施例中,底部壳180可以包括与反射片170的下表面基板平行的底部部分181和从底部部分181弯曲并从底部部分181向上延伸的侧部部分183。背光组件175容纳在由底部部分181和侧部部分183限定的空间中。顶部壳110设置在显示面板120上。顶部壳110可以挤压显示面板120的上表面的周边部分,并覆盖底部壳180或模制框架130的侧表面。顶部壳110设置有显示窗口111,显示窗口 111形成为穿透顶部壳110,以暴露显示面板120的显示区域。图2是在图I中示出的导光板的示例性实施例的透视图,图3是在图2中示出的导光板的I部分的放大透视图,图4A是沿图2中示出的导光板的11-11’线截取的截面图,图4B是根据本发明的导光板的可选示例性实施例的截面图。参照图2和图3,导光板150包括多个表面。导光板的多个表面可以包括光入射表面151、相对表面152、第一连接表面153、第二连接表面154、上表面155和下表面156。光入射表面151设置为与光源160相对,例如,光入射表面151设置为面对光源160,从光源160发射的光入射到光入射表面151中。相对表面152设置为与光入射表面151相对,以反射入射到光入射表面151中的光。在一个不例性实施例中,例如,相对表面152具有弧形形状。第一连接表面153和第二连接表面154分别将光入射表面151的侧端部与相对表面的侧端部连接。上表面155与光入射表面151、相对表面152、第一连接表面153和第二连接表面154的上端部连接,并输出被导光板150引导的光。下表面156面对上表面155,并将入射光反射到上表面155。参照图3,导光板150的光入射表面151包括第一表面15Ia和多个第二表面151b。第二表面151b在与光源160对应的区域中从第一表面151a朝向相对表面152倾斜。在这 样的实施例中,在导光板150的光入射表面151处,具有多边形棱锥的形状的至少一个光学凹槽151c由多个第二表面151b限定。在这样的实施例中,光学凹槽151c从光入射表面151朝向相对表面152凹进,以具有多边形棱锥的形状。在一个不例性实施例中,例如,光入射表面151包括四个第二表面151b,光入射表面151设置有一个光学凹槽151c,该光学凹槽151c具有由四个第二表面151b限定的四棱锥形状。然而,在可选的示例性实施例中,光学凹槽151c的形状不限于四棱锥形状。在示例性实施例中,光学凹槽151c的尺寸可以大于光源160的尺寸。在示例性实施例中,限定光学凹槽151c的每个第二表面151b的底边Lt的长度大于光源160的尺寸,因此,基本上从光源160发射的光的整个部分在穿过光学凹槽151c之后入射到导光板150中。在示例性实施例中,第二表面151b的底边Lt可以在光入射表面151上共同地限定棱形形状。如图2中所不,相对表面152面对光入射表面151,并具有弧形形状。在这样的实施例中,因为相对表面152具有弧形形状,所以即使光沿各种方向传播到相对表面,被反射表面152反射的光也是沿着特定的方向传播的。在示例性实施例中,相对表面152基本上均勻地将沿各种方向传播到相对表面152的光朝向上表面155和下表面156反射。在这样的实施例中,光源160可以定位在距相对表面152的距离等于相对表面152的焦距的位置。在不例性实施例中,上表面155与显不面板120基本平行,下表面156面对上表面155。在这样的实施例中,因为通过上表面将通过光入射表面入射到导光板150的光提供到显不面板120,所以上表面155可以被称为光出射表面。第一连接表面153连接光入射表面151的一个侧端部和相对表面152的一个侧端部,第二连接表面154连接光入射表面151的另一侧端部和相对表面152的另一侧端部。在这样的实施例中,第一连接表面153和第二连接表面154可以是彼此基本平行的。参照图4A,在导光板150的上表面155和下表面156之间的距离可以随着其从光入射表面151到相对表面152而增加。当上表面155和下表面156之间的位于靠近光入射表面151的位置的距离被称为第一距离dl、且上表面155和下表面156之间的位于靠近光出射表面152的位置的距离被称为第二距离d2时,第二距离d2大于第一距离dl。在不例性实施例中,如图4A中所不,导光板150具有上表面155是平坦的且下表面156相对于上表面155倾斜的结构。然而,导光板150的结构不应受限于此。在可选的不例性实施例中,导光板150可以具有下表面156是平坦的且上表面155相对于下表面156倾斜的结构。在导光板150是楔形的菲涅尔(Fresnel)透镜板的示例性实施例中,通过光入射表面151入射的光被上表面155、下表面156和相对表面152反射数次,并通过上表面155出射。通过光入射表面151入射的光被相对表面152反射,然后,反射的光反复地被上表面155和下表面156反射。如图4A中所示,相对表面152可以是不平坦的表面,例如,相对表面152可以是波浪形的表面或锯齿形的表面。在示例性实施例中,相对表面152可以具有峰和谷交替排列的形状。在示例性实施例中,峰和谷可以沿与上表面155和下表面156彼此分开所沿的方向基本垂直的方向(即,定义第一距离dl或第二距离d2的方向)延伸。在示例性实施例中,峰和谷中的每个均具有弧形形状。在示例性实施例中,在图4A中示出的沿图2中的导光板150的11-11’线截取的相对表面152的截面形状可以为之字形形状。相对表面152 向上表面155或下表面156反射传播到相对表面152的光。在示例性实施例中,导光板150的厚度从光入射表面151至相对表面152线性地变化,因此改变了从导光板150的上表面155出射的光的传播方向。在这样的不例性实施例中,即,在导光板150的厚度从光入射表面151至相对表面152逐渐增加的情况下,可以会聚从导光板150的上表面155出射的光,从而光沿与显不面板120的下表面基本垂直的方向传播。如图4B中所不,设置在导光板150的上表面155上方的棱镜片144可以是倒置棱镜(reverse prism)片,倒置棱镜片的棱镜突起(例如,棱镜图案)被设置为与导光板150的上表面155相对,例如,面向导光板150的上表面155。倒置棱镜片包括设置在倒置棱镜片的面向导光板150的上表面155的表面上的棱镜图案。棱镜图案可以以彼此平行的方式布置在所述表面上。倒置棱镜片改变通过导光板150的上表面155出射的光的光路。从上表面155出射的光沿相对于上表面155倾斜的方向传播,倒置棱镜片改变光的光路,以允许从上表面155出射的光沿与(在图I中示出的)显示面板120的下表面基本垂直的方向传播。图5是在图2中示出的导光板的俯视图。参照图5,光源160设置在与导光板150的光学凹槽151c对应的位置处。从光源160出射的光入射到光学凹槽151c中,然后,第二表面151b改变入射到光学凹槽151c中的光的光学路径。在示例性实施例中,当将从光源160发射的光经过光学凹槽151c前与第一表面151a的法线形成的出射角称为Θ C、并将每个第二表面151b和第一表面151a之间的角称为α时,穿过光学凹槽151c后的光与第一表面151a的法线形成的出射角0t满足下面的式I O[式I]Θ t = Θ c+a在式I中,出射角Θ c表不从光源发射并经过光学凹槽151c前的光和与第一表面151a垂直的虚设的法线之间的角。
根据式1,随着角α增加,穿过光学凹槽151c后的光与第一表面151a的法线形成的出射角Θ t增加。在如图2和图3中所示的在光入射表面151中设置了具有四棱锥形状的光学凹槽151c的示例性实施例中,从光源160出射的光传播通过四个第二表面151b,因此,出射角Θ t沿四个第二表面151b的方向增加。在这样的实施例中,从光源160发射的出射角Θ t沿相对于第一表面151a的上下方向Dl和左右方向D2增加。图6A是示出入射到未设置光学凹槽的导光板的示例性实施例的光入射表面中的光的亮度分布的示图,图6B是示出穿过具有大约为10度的角(α)的光学凹槽的导光板的示例性实施例的光学凹槽的光的亮度分布的示图,图6C是示出穿过具有大约为15度的角(α)的光学凹槽的导光板的示例性实施例的光学凹槽的光的亮度分布的示图。在如参照图I至图5所描述的包括楔型的导光板的示例性实施例中,从导光板150的上表面155出射的光的亮度分布与入射到导光板150的光入射表面151中的光的亮度分布对应。在示例性实施例中,在图6Β和图6C中示出的光学凹槽151c具有由第二表面151b限定的四棱锥形状,每个第二表面151b的底边Lt的长度是大约2毫米(mm),光源160的尺 寸是大约I平方毫米(mm2),例如,ImmX 1mm。参照图6A,在未在导光板150中设置光学凹槽151c的不例性实施例中,光具有圆形的亮度分布。然而,在导光板150的光入射表面151中设置有光学凹槽151c的不例性实施例中,光具有矩形的亮度分布。在这样的实施例中,随着角α增加,从导光板150出射的光的亮度分布的形状逐渐变化得趋向于矩形形状。参照图5和式1,在该光入射到导光板150中之前,从光源160发射的光的出射角Θ t在穿过第二表面151b的同时沿着上下方向Dl和左右方向D2增加,并且基本可以减小在以俯视观看时存在于导光板150的角落处暗区域。参照图7A和图7B,暗区域的减小是明显的。图7A是不出从未设置光学凹槽的导光板的不例性实施例出射的光的出射光分布的示图,图7B是示出光的强度(Iux)相对于在图7A的kl线中的位置(mm)的曲线图,图7C是示出光的强度(Iux)相对于在图7A的k2线中的位置(毫米)的曲线图,图7D是示出设置有具有大约为10度的角(α)的光学凹槽的导光板的示例性实施例的出射光分布的示图,图7Ε是示出光的强度(Iux)相对于在图7D的k3线中的位置(毫米)的曲线图,图7F是示出光的强度(Iux)相对于在图7A的k4线中的位置(毫米)的曲线图。在这样的实施例中,图7D涉及的光学凹槽151c具有由第二表面151b限定的四棱锥形状,每个第二表面151b的底边Lt的长度为大约2mm,光源160的尺寸为大约I X 1mm2。参照图7A和图7C,在未在导光板150中设置光学凹槽151c的示例性实施例中,当以俯视观看时在导光板150的角落出现暗区域。然而,在导光板150中设置有角α为大约10度的光学凹槽151c的可选的示例性实施例中,如图7D至图7F中所示,角落处的暗区域的尺寸减小。S卩,因为穿过光学凹槽151c的光的亮度分布具有类矩形形状,所以在从导光板150出射的光的出射光分布中可以减小暗区域的尺寸。在这样的实施例中,由第二表面151b限定的光学凹槽151c的形状和角α可以改变,因此,可以改变导光板150的出射光分布。图8是根据本发明的背光组件的示例性实施例的俯视图,图9是在图8中示出的背光组件的III部分的放大透视图,图10是沿图8中示出的背光组件的IV-IV’线截取的截面图。参照图8至图10,背光组件176可以进一步包括在导光板150和光源160之间的楔型的反射器190。楔型的反射器190设置在第二表面151b与光源160之间。楔型的反射器190包括与第一表面151a基本平行的第三表面191、从第三表面191向光源160倾斜的多个第四表面192、与第三表面191基本垂直以与第四表面192 —起用作楔型的反射器190的侧表面的多个第五表面193、以及与第三表面191基本平行并面对光源160的第六表面194。在一个示例性实施例中,例如,楔型的反射器190可以包括两个第四表面192和两个第五表面193。两个第四表面192沿相对的方向(例如,上下方向)彼此面对,两个第五表面193沿相对的方向(例如,左右方向)彼此面对。在这样的实施例中,两个第五表面193分别与导光板150的第一连接表面153和第二连接表面154基本平行。 在示例性实施例中,第三表面191和第六表面194中的每个表面均具有矩形形状,但是第三表面191的尺寸大于第六表面194的尺寸。当将在每个第四表面192和与第三表面191垂直的虚设的法线之间的角称为Y、并将从光源160发射的光的相对于与第三表面191垂直的虚设的法线的出射角称为0 c时,从每个第四表面192反射的光的相对于与第三表面191垂直的虚设的法线的出射角0 m满足下面的式2。[式2]9m= 0 c-2 y从光源160发射的光入射到楔型的反射器190中,入射到楔型的反射器160中的光被第四表面192和第五表面193反射。在示例性实施例中,当从光源160发射的光的出射角0 c为大约41度、并且每个第四表面192和与第三表面191垂直的法线之间的角Y为大约6度时,从每个第四表面192反射的光的出射角0 m变为大约29度。在这样的实施例中,入射到第五表面193的光以与入射角相同的出射角被第五表面193反射。从光源160发射的沿上下方向的光可以被第四表面192会聚。因此,可以有效地防止从光源160发射的光沿垂直方向(例如,如图8中所示的X方向)通过导光板150的上表面155上的特定区域出射,因而实质上改进了通过导光板150的上表面155出射的光
的光量。图11是示出穿过导光板的示例性实施例的光学凹槽的亮度分布的示图,其中,该导光板表现出图6B中示出的亮度分布并进一步包括图8中示出的楔型的反射器;图12A是示出图11的导光板的出射光分布的示图;图12B是示出光的强度(Iux)相对于在图12A的k5线中的位置(mm)的曲线图;图12C是示出光的强度(Iux)相对于在图12A的k6线中的位置(mm)的曲线图。如图11中所示,在背光组件176进一步包括楔型的反射器190的示例性实施例中,穿过光学凹槽的光的亮度分布实质上具有比在图6B中示出的光的亮度分布的形状更接近于矩形的形状。在这样的实施例中,楔型的反射器190的第四表面192沿上下方向会聚穿过光学凹槽的光,可以减少导光板150的上表面155上的沿垂直方向(在图8中示出为X)的部分泄漏的光的量和热点(hot spot) o在示例性实施例中,当图12B的X坐标具有100或-100的值时,光的强度分别降低得比当图7E的X坐标具有100或-100的值时的光的强度低。在背光组件176进一步包括楔型的反射器190的不例性实施例中,实质上减少了靠近光入射表面151和相对表面152的区域上的热点。图13是根据本发明的背光组件的可选的示例性实施例的一部分的透视图。在图13中,相同的标号表示与图3中的元件相同的元件,且在下文中将省略或简化任何重复性的详细描述。参照图13,不例性实施例的背光组件包括光源160和导光板158,导光板158包括光入射表面151、相对表面、第一连接表面153、第二连接表面154、上表面155和下表面156。背光组件还可以包括在图8至图10中示出的楔型的反射器190。光入射表面151面对光源160,从光源160发射的光入射到光入射表面151中。导光板158的光入射表面151包括第一表面151a和在与光源160对应的区域中从第一表面151a向相对表面152倾斜的多个第二表面151b。在不例性实施例中,在导光板 158的光入射表面151处,由第二表面151b限定了均具有多边形棱锥的形状的多个光学凹槽151d。在这样的实施例中,光学凹槽151d从光入射表面151向相对表面152凹进,并具有多边形棱锥的形状。在一个不例性实施例中,例如,光入射表面151包括四个第二表面151b,光入射表面151设置有多个光学凹槽151d,每个光学凹槽151d均具有由四个第二表面151b限定的四边形棱锥的形状。在示例性实施例中,每个光学凹槽151d可以具有比光源160的尺寸小的尺寸。在这样的实施例中,限定光学凹槽151d的每个第二表面151b的底边的长度小于光源160的尺寸。虽然每个光学凹槽151d的尺寸均小于光源160,但是从光源160发射的光可以被光学凹槽151d漫射。因为每个光学凹槽151d具有与在图2和图3中示出的光学凹槽151c的结构和功能相同的结构和功能,所以将省略对光学凹槽151d的详细描述。图14是根据本发明的背光组件的另一可选的示例性实施例的俯视图,图15是图14中示出的背光组件的V部分的放大透视图。参照图14和图15,背光组件包括光源160和导光板159,导光板159包括从导光板159的光入射表面151向光源160突出的楔型的突起195。楔型的突起195包括从光入射表面151向光源160倾斜的多个倾斜表面196、与光入射表面151基本垂直以与倾斜表面196 —起形成楔型的突起195的侧表面的多个垂直表面197、以及与光入射表面151基本平行并连接到倾斜表面196和垂直表面197的平面表面198。光源160设置为面对楔型的突起195的平面表面198。在一个示例性实施例中,楔型的突起195具有两个倾斜表面196和两个垂直表面197。从光源160发射的光在穿过平面表面198之后入射到入射表面196,光传播所沿的方向根据每个倾斜表面196的倾斜角Y而改变。在这样的实施例中,楔型的突起195可以会聚从光源160发射的光,可以有效地防止从光源160发射的光朝向特定的区域出射,因此增强了通过导光板159的上表面出射的光的光量。图16是根据本发明的背光组件的另一可选的示例性实施例的一部分透视图。在图16中,相同的标号表示与图15中的元件相同的元件,且在下文中将省略或简化任何重复性的详细描述。参照图16,导光板159包括从导光板159的光入射表面151向光源160突出的楔型的突起195。楔型的突起195包括从光入射表面151向光源160倾斜的两个倾斜表面196、与光入射表面151基本垂直的两个垂直表面197、以及与光入射表面151基本平行并连接到倾斜表面196和垂直表面197的平面表面198。光源160被设置为面对楔型的突起195的平面表面198。楔型的突起195设置有从平面表面198向内凹进的多个光学凹槽198a。每个光学凹槽198a可以具有多边形棱锥的形状。在一个示例性实施例中,例如,每个光学凹槽198a具有四棱锥形状。

从光源160发射的光被光学凹槽198a散射,每个光学凹槽198a均具有与在图2和图3中示出的光学凹槽151c的结构和功能相同的结构和功能,因此将省略对光学凹槽198a的详细描述。虽然已经描述了本发明的示例性实施例,但是应该理解的是,本发明不应受限于这些示例性实施例,且本领域普通技术人员可以在要求保护的本发明的精神和范围内进行各种修改和改变。
权利要求
1.一种显示设备,所述显示设备包括至少一个光源、导光板和显示面板,所述至少一个光源发射光,导光板具有多个表面,并引导来自所述至少一个光源的光,显不面板接收来自导光板的光,并显示图像, 其中,所述多个表面包括光入射表面和上表面,光入射表面面对所述至少一个光源,且光入射表面接收光,上表面连接到光入射表面,且上表面输出光, 其中,导光板的光入射表面包括 第一表面,第一表面沿预定的方向延伸; 多个第二表面,所述多个第二表面在与光源对应的区域中自第一表面倾斜,从而在光入射表面上由第二表面限定具有多边形棱锥形状的至少一个光学凹槽。
2.如权利要求I所述的显示设备,其中,当从光源发射并经过光学凹槽前的光与第一表面的法线形成的出射角为0 C、且每个第二表面与第一表面之间的角为a时,穿过光学凹槽后的光与第一表面的法线形成的出射角e t满足下面的等式 Qt= 9 c+ a。
3.如权利要求2所述的显示设备,其中,光学凹槽具有四棱锥形状。
4.如权利要求3所述的显示设备,其中,所述多个表面还包括相对表面,相对表面与光入射表面相对以反射光,相对表面具有弧形形状, 其中,光源包括定位在距相对表面的距离等于相对表面的焦距的位置的发光二极管。
5.如权利要求4所述的显不设备,其中,发光二极管的尺寸小于光学凹槽的尺寸。
6.如权利要求4所述的显示设备,其中,导光板具有从光入射表面向相对表面逐渐增加的厚度。
7.如权利要求4所述的显示设备,所述显示设备还包括在导光板和显示面板之间的倒置棱镜片,其中,倒置棱镜片包括在倒置棱镜片的表面上的与导光板的上表面相对的多个棱镜图案。
8.如权利要求4所述的显示设备,其中,所述多个表面还包括两个连接表面,所述两个连接表面设置在光入射表面和相对表面的两侧处,其中所述两个连接表面彼此基本平行。
9.如权利要求I所述的显示设备,所述显示设备还包括光学构件,该光学构件包括 第三表面,第三表面在光入射表面和光源之间,并与光入射表面的第一表面基本平行; 第四表面,第四表面与第三表面相对,并面对光源; 多个第五表面,所述多个第五表面自第三表面倾斜并连接第三表面与第四表面; 多个第六表面,所述多个第六表面与第三表面基本垂直,且所述多个第六表面将第三表面与第四表面连接。
10.如权利要求9所述的显示设备,其中,第六表面与光入射表面基本垂直。
全文摘要
本发明提供一种显示设备,该显示设备包括光源和导光板,导光板包括光入射表面,面对光源且接收光;相对表面,与光入射表面相对且反射光并具有弧形形状;连接表面,在光入射表面的相对的边处且将光入射表面与相对表面连接;上表面,连接到光入射表面、相对表面和连接表面且输出光;下表面,与上表面相对。导光板的光入射表面包括第一表面,沿预定的方向延伸;第二表面,在与光源对应的区域中自第一表面倾斜,从而由第二表面限定具有多边形棱锥形状的光学凹槽。
文档编号F21S8/00GK102789091SQ20121005966
公开日2012年11月21日 申请日期2012年3月8日 优先权日2011年5月19日
发明者普罗德尼科夫·奥莱格, 郑炳昊, 金局炫, 金泳灿 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1