灯控系统和方法与流程

文档序号:12511026阅读:549来源:国知局
灯控系统和方法与流程

本申请要求2014年4月29日提交的美国临时专利申请号61/985762、2015年1月21日提交的美国临时专利申请号62/105790、2014年10月9日提交的美国临时专利申请号62/061778、2014年11月3日提交的美国临时专利申请号62/074206以及2014年11月7日提交的美国临时专利申请号62/076695的权益,通过全面引用将每个的内容并入到本文。

本申请与2013年7月16日提交的美国临时专利申请号61/846738、2013年10月8日提交的美国专利申请号14/048505、2013年3月14日提交的并且被以US2013/0293722公开的美国专利申请号13/826177、2013年5月6日提交的并且以PCT公开号WO2013169635公开的PCT专利申请号PCT/US2013/039666、2012年5月7日提交的美国临时专利申请号61/643535、2012年8月17日提交的美国临时专利申请号61/684336、2013年2月5日提交的美国临时专利申请号61/760966、2013年6月28日提交的美国临时专利申请号61/840791、2012年9月4日提交的美国临时专利申请号61/696518、2013年6月28日提交的美国临时专利申请号61/840791、2014年6月27日提交的并且以US2015/0002391公开的美国专利申请号14/318019、2013年7月16日提交的美国临时专利申请号61/846738、2013年10月8日提交的并且以US2015/0002391A1公开的美国专利申请号14/048505、2014年6月27日提交的PCT/US14/044643、2014年7月16日提交的PCT/US14/046807相关,通过全面引用将每个的内容并入到本文。

技术领域

本发明构思通常涉及发光装置的领域,并且更具体而言,涉及用于采用并且控制一个或多个发光装置的输出的系统和方法。



背景技术:

诸如灯等的典型的光源发出在可见光光谱中的电磁辐射。用于提供大照明角度(120°~180°圆锥角)的光源为已知的。此外,典型地将通过发光光源提供的最亮光斑通常定位在光源的正下方,其具有到源的最短距离。亮斑被固定。因此,为了利用光斑的最亮区域,用户必须相对于亮斑身体上地移动他的位置。



技术实现要素:

在一方面,提供一种发光装置控制系统,包括:在第一表面位置处输出光束的光源模块;光束调向机构,所述光源模块耦合到所述光束调向机构用于在所述第一表面位置处导引所述光束,其中响应于导引的光束,在所述第一表面位置处形成照明区域;控制模块,其检测对应于手势的信号,与所述光源模块和所述光束调向机构相比,所述控制模块被定位在分开的位置,并且通过网络与所述光源模块通讯;以及控制光斑生成器,其在第二表面位置处生成控制光斑,所述控制模块检测在所述控制光斑处形成所述手势的手的存在,并且其中,响应于在所述控制光斑处的所述手势,所述光束调向机构移动所述照明区域。

在一些实施例中,所述发光装置控制系统进一步包含与所述控制模块通讯的第一Wi-Fi发射机/接收机和与所述光源模块和所述光束调向机构中的至少一个通讯的第二Wi-Fi发射机/接收机,所述第一和第二Wi-Fi发射机/接收机通过所述网络彼此通讯。

在一些实施例中,所述发光装置控制系统进一步包含耦合到所述控制光斑生成器和所述控制模块的用于移动所述控制光斑和在所述控制模块中的相机的视场的光束调向机构。

在一些实施例中,所述发光装置控制系统进一步包含与所述控制模块通讯的用于确定所述手势的位置的二维位置敏感探测器(PSD)模块。

在一些实施例中,所述控制模块包含追踪和控制传感器中的至少一个,其检测在所述控制光斑处形成所述手势的所述手的存在;以及相机,其追踪所述手势的运动并且识别所述手势。

在一些实施例中,所述追踪和控制传感器包含具有线性或区域焦平面阵列(FPA)的热成像仪,并且其中所述追踪和控制系统进一步包含用于所述线性阵列的扫描镜。

在一些实施例中,所述追踪和控制传感器包括透射可见光和热光的透镜、热探测器或阵列、以及耦合到所述热探测器或阵列的可见光FPA,所述可见光FPA被定位在所述热探测器或阵列与所述透镜之间。

在一些实施例中,所述追踪和控制传感器包含用于捕获做出所述手势的手的图像并且识别所述手势的热传感器和可见光相机,并且所述热传感器包含透镜和热探测器或探测器焦平面阵列。

在一些实施例中,所述追踪和控制传感器包含通过距离分开的两个热相机。

在一些实施例中,所述热相机中的至少一个具有线性或区域焦平面阵列(FPA),并且所述追踪和控制系统进一步包含用于所述线性阵列的扫描镜。

在一些实施例中,所述追踪和控制传感器包含通过距离分开的两个可见光相机。

在一些实施例中,所述可见光相机中的至少一个具有线性或区域焦平面阵列(FPA),并且所述追踪和控制系统进一步包含用于所述线性阵列的扫描镜。

在一些实施例中,所述控制模块处理与所述手势和背景相关的用于从所述背景的图像数据分离所述手势图像数据的距离信息。

在一些实施例中,所述控制模块包含检测语声信号的麦克风,并且响应于所述语音信号,所述光束调向机构移动所述照明区域。

在一些实施例中,所述控制光斑生成器包含多个发光二极管(LED),每个LED被构造和设置为以不同波长发光。

在一些实施例中,所述控制模块被定位在墙表面上。

在另一方面,提供一种发光装置控制系统,包括:在第一表面位置处输出光束的光源模块;光束调向机构,所述光源模块耦合到所述光束调向机构用于在所述第一表面位置处导引所述光束,其中响应于导引的光束,在所述第一表面位置处形成照明区域;以及远程控制所述光源模块和所述光束调向模块的移动装置。

在一些实施例中,所述移动装置包括显示控制面板的显示器,所述控制面板包含照明光斑位置面板和光强调节杆,其中在所述位置面板中,所述照明区域被显示,并且可以被移动到在所述显示器处的一个或多个不同位置,并且其中所述光强调节杆允许用户通过滑动所述杆而改变光强。

在一些实施例中,所述移动装置包括与所述控制模块通讯的第一Wi-Fi发射机/接收机和与所述光源模块和所述光束调向机构中的至少其中一个通讯的第二Wi-Fi发射机/接收机,所述第一和第二Wi-Fi发射机/接收机通过所述网络彼此通讯。

在另一方面,提供一种控制发光装置的方法,包括:在第一表面位置处输出光束;在不同于所述第一表面位置的第二表面位置处生成控制光斑,所述照明区域被定位在第一表面位置处;确定在所述控制光斑处的手势;以及响应于与在所述第二表面位置处的所述控制光斑通讯的所述手势而移动所述照明区域。

在另一方面,提供一种发光装置控制系统,包括:生成光束的光源;和光束调向机构,所述光束调向机构包含用于在表面位置处折射所述光束并导引所述光束的相对彼此旋转的两个光学元件,其中响应于导引的光束在所述第一表面位置处形成照明区域,其中所述光束调向机构包含相对彼此旋转的两个折射的楔形棱镜,并且其中,通过相对彼此旋转所述两个楔形棱镜而获得相对于水平轴的所述光束的偏移角,并通过在相同方向中旋转两个楔形棱镜而获得所述光束的方位角。

在一些实施例中,所述表面位置包括道路表面。在一些实施例中,所述发光装置控制系统进一步包含生成照明所述表面位置的光束的车辆前灯,并且其中在通过所述车辆前灯的所述光束照明的所述表面位置处通过所述光束调向机构导引所述光源的所述光束。

在一些实施例中,在与通过所述车辆前灯的所述光束照明的所述表面位置不同的表面位置处,通过所述光束调向机构导引所述光源的所述光束。

在一些实施例中,所述系统进一步包含用于改变在扫描模式与非扫描模式之间的所述系统的状态的切换器。

在一些实施例中,所述系统进一步包含控制所述光束调向机构的移动的输入装置控制器和调节所述光束的亮度的电位器。

在一些实施例中,所述输入装置控制器和所述电位器中的至少一个被耦合到车辆的方向盘。

在一些实施例中,所述输入装置控制器和所述电位器中的至少一个被耦合到头饰。

在一些实施例中,所述输入装置控制器接收来自电子板、触摸板、鼠标或其它外围设备的输入。

在一些实施例中,所述电子板感测接触对象的位置。

在一些实施例中,所述系统可以被手动控制。

在一些实施例中,所述光学元件包括楔形棱镜。

在一些实施例中,所述光学元件包括围绕第一轴旋转的第一扫描镜和围绕与所述第一轴正交的第二轴旋转的第二扫描镜。

在一些实施例中,所述光学元件包括在一组导轨上安装的透镜。所述透镜在通过所述导轨的所述运动产生的平面内移动。

在一些实施例中,其中所述光束调向可以被手动进行。

在一些实施例中,其中所述系统被构造和设置为车辆灯。

在一些实施例中,权利要求1的所述发光装置控制系统进一步包含处理器,其进行计算以确定所需的光束调向的量并且发送所述计算结果到所述光束调向机构以进行光束调向运动。

在另一方面,提供一种电筒,包括:生成光束的光源;在目标处导引所述光束以在所述目标处形成照明区域的光束调向机构;以及控制所述光束调向机构以在所述目标处导引所述光束的输入装置控制器。

在一些实施例中,所述电筒进一步包含调节所述光束的亮度的电位器。

在一些实施例中,所述电筒进一步包含手持式壳体,其中所述光源和所述光束调向机构在所述壳体内,并且所述输入装置控制器被耦合到所述壳体的外部。

在一些实施例中,所述输入装置控制器包括鼠标或触摸板,并且其中当接触所述鼠标或所述触摸板时,手控制所述光束调向机构。

在另一方面,提供一种雾穿透装置,包括:包括透镜、透镜壳体以及多面镜的聚焦光学元件;生成短波红外(SWIR)光束的用于穿透雾的光源;在短波红外线频谱中操作的焦平面阵列(FPA)装置,以及在热光谱中操作用于感测目标的热信号的FPA。

在另一方面,所述雾穿透装置进一步包含在用于去除后向散射背景的所述FPA装置的前面的滤光轮。

在一些实施例中,光束调向机构调向所述传感器的视场以增加它的覆盖范围。

在另一方面,发光装置控制系统包含生成光束的光源;光束调向机构,其包含用于在表面位置处导引所述光束的诸如菲涅耳透镜的透镜和相对于所述透镜移动所述光源或相对于所述光源移动所述透镜的一组导轨;以及沿或平行所述透镜的光轴移动所述光源的光束尺寸调节机构。

在另一方面,提供一种发光装置控制系统,包括:至少一个光源;可移动的第一轨,所述光源耦合到所述第一轨;第二轨,所述第一轨和所述光源为可沿所述第二轨在第一方向上移动;一对平行的第三轨,所述第一轨、所述第二轨以及所述光源可沿所述第三轨在正交于所述第一和第二方向的第二方向上移动,其中根据在所述第一方向和所述第二方向中的至少一个中的所述第一轨和所述第二轨中的至少一个的至少移动,通过所述光源形成的光斑为可调节的。

在一些实施例中,所述发光装置控制系统进一步包含菲涅耳透镜。

在另一方面,提供一种发光装置控制系统,包括:生成光束的光源;沿第一方向延伸的第一轨,所述光源耦合到所述第一轨并且沿所述第一轨在所述第一方向中为可移动的;在垂直于所述第一方向的第二方向中延伸的一对第二轨;透镜,被定位在一对所述第二轨上并且沿所述第二轨为可移动的;垂直于所述第一轨和一对所述第二轨中的每个的一对平行的第三轨,所述第二轨和所述透镜在沿所述第三轨的所述第三方向上为可移动的,其中,根据在相对于所述透镜的所述第一方向中的所述光源的移动,通过所述光源形成的光斑尺寸为可调节的,并且其中,通过沿所述第二与第三轨方向的至少所述透镜的移动,所述光斑为可调向的。所述透镜沿所述第二和第三轨移动以调向所述所述光束,所述第一轨没有被附着到所述第二轨。

在一些实施例中,所述发光装置控制系统进一步包含菲涅耳透镜,其响应于相对于所述菲涅耳透镜的所述第三轨和第二轨中的至少一个的移动,用于在目标处导引所述光束。

在一些实施例中,所述菲涅耳透镜沿所述第二和第三轨移动。

在另一方面,提供一种发光装置控制系统,包括:每个生成光束的多个光源;每次激活所述光源中的至少一个的切换器;提供所述光源的所述光束的光束调向的菲涅耳透镜;其在平行于所述光源安装板的平面内移动所述菲涅耳透镜的一组导轨;以及移动所述光源板朝向和远离所述透镜的所述焦点的垂直轨。

在另一方面,提供一种触摸板控制器,包括:控制光束的尺寸的光束尺寸控制器;控制所述光束的强度或亮度的调光器;以及控制所述光束的方向的触摸板光束调向控制器。

在另一方面,提供一种发光装置控制系统,包括在第一表面位置处输出光束的照明光源模块;光束调向机构,所述光源模块耦合到所述光束调向机构用于在所述第一表面位置处导引所述光束,其中响应于导引的光束在所述第一表面位置处形成照明区域,所述光束调向机构包括菲涅耳透镜;垂直导轨,在其上安装有所述照明光和控制光。所述导轨的移动允许所述照明光斑的所述光束尺寸被调节;控制模块,其检测对应于手势的信号,所述控制模块被定位在不同于所述光源模块和所述光束调向机构的分开的位置,并且通过网络与所述光源通讯;以及控制光斑生成器,其在外部到所述第一表面位置的第二表面位置处生成控制光斑,所述控制模块检测在所述控制光斑处形成所述手势的手的存在,并且其中响应于在所述控制光斑处的所述手势,所述光束调向机构移动所述照明区域。

在一些实施例中,所述光束调向机构包含导轨系统和菲涅耳透镜。

在一些实施例中,所述发光装置控制系统进一步包含热传感器和邻近所述光源模块的一对相机,其中所述热传感器提供视场,其通过所述光束调向机构被移动用于追踪所述手势,并且所述相机提供用于跟随所述照明光斑的视场。所述热传感器被用于检测在所述控制光斑内的所述手热信号。所述相机被用于识别在所述控制光斑内的手势。

在另一方面,提供一种装置,包括:包括透镜和一组导轨的光束调向机构,所述导轨包括垂直导轨,所述导轨的平面运动允许光束调向,以及所述垂直导轨的垂直运动允许光束尺寸调节用于照明光斑。

在另一方面,提供一种用于允许热辐射被从一个地方调向到另一方向的加热控制系统,包括:用于生成热辐射的加热器,用于在热加热光斑中集中光的IR菲涅耳透镜,用于调节所述加热器的所述热加热光斑的垂直导轨,用于光束调向所述热辐射光斑的一组指导平面运动轨,用于去除将热从所述IR菲涅耳透镜去除的风扇;以及使用手势用于调向所述加热光斑的非接触控制器。

在一些实施例中,所述加热控制系统进一步包含诸如触摸板的以调向所述热加热光斑的接触控制器。

在另一方面,提供一种使用颜色组合用于切换代码的非接触切换机构,包括:用于手热信号检测的多频道热传感器;和照明所述多频道热传感器的所述视场(FOV)的控制光斑生成器;将所述热传感器的所述FOV对准到所述控制光斑生成器的照明圆锥体的分束器;以及用于比较存储的颜色代码与输入的颜色代码的处理器。

在另一方面,提供一种光束调向机构,包括:透镜,和位于在所述透镜的焦平面内的至少一个光源。所述至少一个光源和所述透镜中的一者相对于所述至少一个光源和所述透镜中的另一者而移动。所述至少一个光源在所述透镜处输出光束,所述透镜由所述光束在表面上形成照明光斑。所述照明光斑在响应于所述至少一个光源和所述透镜中的一者的移动的方向上移动。

在一些实施例中,所述透镜为固定的并且所述至少一个光源相对于固定的透镜而移动,并且所述照明光斑在与所述至少一个光源的移动方向相对的方向中移动。

在一些实施例中,所述光束调向机构进一步包含第一轨、垂直于所述第一轨的第二轨、位于在所述第一轨和所述第二轨中的至少一个上的所述至少一个光源,以及至少一个电机,所述至少一个电机沿所述第一轨和所述第二轨中的所述至少一个移动所述至少一个光源。

在一些实施例中,所述至少一个光源为固定的并且所述透镜相对于所述至少一个光源移动,并且其中,所述照明光斑以与所述透镜的移动的方向相同的方向移动。

在一些实施例中,所述光束调向机构进一步包含第一轨、垂直于所述第一轨的第二轨、位于在所述第一轨和所述第二轨中的至少一个上的所述透镜,以及至少一个电机,所述至少一个电机沿所述第一轨和所述第二轨中的所述至少一个而移动所述透镜。

在一些实施例中,所述至少一个光源移动远离或朝向所述透镜的所述焦点,这改变所述照明光斑的尺寸。

在一些实施例中,所述透镜包括菲涅耳透镜。

在另一方面,提供一种光束调向机构,包括:透镜、位于所述透镜的焦平面内的光源模块;以及导轨系统,所述导轨系统包括垂直轨、至少一个内轨以及至少一个外轨,其中所述透镜和所述光源模块中的一个被安装到所述导轨系统,并且其中,所述光源在所述透镜处输出光束,所述透镜由所述光束在表面上形成照明光斑。

在一些实施例中,所述光源模块被安装在所述垂直轨上,所述垂直轨移动所述光源模块朝向或远离所述透镜以调节所述照明光斑的所述尺寸。

在一些实施例中,所述垂直轨和所述光源被安装在所述内轨上,并且沿所述内轨而一起移动。

在一些实施例中,所述至少一个内轨被安装在两个外轨上,并且所述光源模块、所述垂直轨以及所述内轨沿所述两个外轨而移动。

在一些实施例中,所述光源模块被安装在所述垂直轨上,并垂直地移动,并且其中,所述透镜被安装在所述至少一个内轨上,所述内轨在正交于所述垂直方向的方向上移动所述透镜。

在一些实施例中,所述内轨和所述透镜被安装在所述外轨上,所述光束调向机构沿所述两个外轨在水平方向上移动所述透镜和所述内轨。

在一些实施例中,所述光束调向机构进一步包含控制所述光源模块和所述导轨系统中的至少一个的接触控制器或手势控制器。

在一些实施例中,所述接触控制器具有用于控制所述灯的所述光束调向的光束调向控制器、用于控制所述光强的调光器,以及用于调节所述光束的所述尺寸的光束尺寸控制器。

在一些实施例中,所述透镜为菲涅耳透镜,并且所述光源模块被安装在在所述菲涅耳透镜之上的所述导轨系统上。

在一些实施例中,在所述表面处形成发射机光束光斑、所述照明光斑以及控制光斑,其中所述控制光斑通过手势或接触控制器而控制所述照明和发射机光斑。

在一些实施例中,所述光源模块包括用于生成形成所述照明光斑和所述发射机光束光斑的光束的照明光源和Li-Fi发射机光源。

在一些实施例中,所述发射机光束包括LiFi通讯光束并且其中所述照明光束和LiFi通讯光束被在光谱中分开但是空间上共同位于相同的光斑中,其中所述照明光束在可见光光谱中而所述LiFi通讯光束在IR光谱中,其中当所述照明光源被用于照明和LiFi通讯时,在所述光斑中仅存在一种光束。

在一些实施例中,所述发射机光束光斑的尺寸被通过沿所述垂直轨移动所述光源模块而增大以容纳多用户共享相同Li-Fi网络。

在一些实施例中,所述透镜包括菲涅耳透镜阵列,所述导轨系统包含导轨系统阵列和轨道,以及所述光源模块包含被安装在所述导轨系统上的多个光源,所述导轨系统进而被安装在所述轨道上。

在另一方面,提供一种轨道灯系统,包括非机动化轨道灯阵列,所述非机动化轨道灯阵列包括位于在多个轨上的多个光源;邻近所述非机动化轨道灯阵列的至少一个机动化轨道;以及沿所述至少一个机动化轨道而移动用于调向所述轨道灯阵列的各光源的调向车。

在另一方面,提供一种车辆光束调向系统,包括:光源;在表面导引来自所述光源的光束的光束调向机构;接收外部输入用于光束调向控制的输入装置控制器;用于调节光强的电位器;以及进行计算以确定所需要的光束调向的量并且根据所述计算发送信号到所述光束调向机构以进行光束调向运动的处理器。

在另一方面,提供一种光束调向机构,包括:被构造和设置以相对彼此反向旋转的一对菲涅耳棱镜,其中,根据所述两个棱镜的所述反向旋转和共同旋转,通过所述棱镜接收的光束被导引在方位方向。

在另一方面,提供一种光束调向机构,包括:透镜;在所述透镜之上的光源阵列;所述光源被安装在其上的板,其中来自所述光源的光源分布允许在目标表面处的不同区域的或来自相对于所述透镜的焦平面的不同位置的照明,而没有必要移动,并且其中,每次激活一个所述光源,每次可以照明在所述目标表面的一个区域。

在一些实施例中,所述光源阵列在垂直轨上移动,而所述透镜可以在导轨系统上横向移动,这允许光束调向和光束尺寸调节。

在另一方面,提供一种雾穿透传感器,包括:角锥镜;短波红外(SWIR)LED光源;SWIR焦平面阵列(FPA);以消除背景的聚焦和散焦轮;非冷却热FPA;在所述透镜的焦点处通过所述光源、所述SW1频道以及所述非冷却热频道而共享的孔径透镜,共享的孔径透镜同时允许所述相同目标区域的照明和成像来允许照明光的更有效使用,诸如雾的更长波长SWIR光被通过气溶胶而较少地散射,因此,看见进一步允许通过所述SWIR频道的所述目标的主动成像和通过所述热频道的所述目标的被动成像;以及光束调向机构,其调向到所述目标的所述照明光和来自所述目标的成像光以允许所述目标场景的扫描。

附图说明

从优选的实施例的更具体说明,本发明构思的实施例的上述和其它对象、特征和优势将显而易见,如附图所示;其中,贯穿不同视图中的相同参考字符指相同的元件。绘图无需按比例,而是将重点放在说明优选实施例的原理。

图1和2为依照一些实施例的定位在车辆上的发光装置控制系统的视图;

图3为依照一些实施例的定位在车辆上并且被配置为用于扫描模式的发光装置控制系统的视图;

图3A为依照其它实施例的光束调向机构的视图;

图3B为示出图3A的光束调向机构的特征的图;

图4为依照一些实施例的发光装置控制系统的方框图;

图5A和5B为包括两个正交扫描镜的光束调向机构的说明;

图6为依照一些实施例的在方向盘上安装的发光装置控制系统的鼠标控制器和电位器的视图;

图6A为依照一些实施例的鼠标控制器的视图;

图6B为图6A的鼠标控制器的编码器的视图;

图6C为图6A和图6B的编码器的光学编码盘的视图;

图7为依照一些实施例的车辆光束调向构思的流程图;

图8为依照一些实施例的光束调向头灯的视图;

图9为依照一些实施例的光束调向头灯构思的流程图;

图10为依照一些实施例的光束调向电筒的视图;

图11为示出对于大雾的大气透射光谱的图;

图12为依照一些实施例的雾穿透传感器的侧视图;

图13为依照一些实施例的雾穿透传感器的顶视图;

图14为依照一些实施例的控制短波红外(SWIR)光束的雾穿透系统的视图;

图15-19为依照一些实施例的各种光束调向结构的视图;

图20A和20B分别为依照一些实施例的用于平面运动的导轨系统和线性导轨的透视图;

图21为依照一些实施例的移动光源的光束调向机构的侧视图;

图22为图21的透镜移动光束调向机构的顶视图;

图23为依照一些实施例的移动透镜的光束调向机构的侧视图;

图24为图23的透镜移动光束调向机构的顶视图;

图25-27为依照一些实施例的多光斑光生成系统的视图;

图28为依照一些实施例的控制光束调向机构的触摸板控制器的视图;

图29为依照一些实施例的用于控制光束调向的方法的流程图;

图30为依照一些实施例的发光装置控制系统的图;

图31为依照一些实施例的发光装置控制系统的侧视图;

图32为依照一些实施例的手势可调向灯系统的顶视图;

图33为依照其它实施例的手势可调向灯系统的视图;

图34、34A以及34B为依照一些实施例的手势控制器的视图;

图34C为依照一些实施例的多光谱相机模块的视图;

图35为依照一些实施例的可调向灯系统的视图;

图36、36A、36B以及36C为依照一些实施例的灯系统的视图;

图37为依照一些实施例的照明源和发射机组装的视图;

图38为依照一些实施例的示出透射可见光并反射IR光的镜的图表和视图。

图39为依照一些实施例的可调向加热器的操作的视图;

图40为图39的可调向加热器的侧视图;

图41为图39和40的可调向加热器的顶视图;

图42为依照一些实施例的用于密码锁的非接触切换器的视图;

图43为依照一些实施例的透镜调向系统的视图;

图44A和B为依照一些实施例的光束调向机构的视图;

图45为依照一些实施例的轨道可调向灯系统的视图;

图46为依照一些实施例的透镜阵列的视图;

图47为依照一些实施例的可调向灯系统组装的视图;

图48为依照一些实施例的轨道可调向灯系统的视图;

图49为依照一些实施例的导轨系统的视图;

图50为依照一些实施例的透镜阵列的视图;

图51为依照一些实施例的单一可调向灯系统的视图;

图52为依照一些实施例的多个可调向轨道光源的视图;

图53为依照一些实施例的可调向轨道灯系统的视图;以及

图54为依照一些实施例的可调向轨道灯系统的视图。

具体实施方式

本文所采用的术语旨在描述特定实施例,并不旨在限制发明构思。如本文所采用,单数形式“一”、“一个”以及“这个”旨在也包括复数形式,除非上下文清楚说明。进一步将理解,当在本文采用术语“包含”、“包括”、“包括”和/或“包含”时,指定所说明的特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其它特征、整体、步骤、操作、元件、部件和/或及其组合的存在或添加。

将应了解,尽管本文可能采用术语“第一”、“第二”、“第三”等来描述各种限制、元件、部件、区域、层和/或段,但不得通过这些术语限制这些限制、元件、部件、区域、层和/或段。这些术语仅用于将一种限制、元件、部件、区域、层或段与另一种限制、元件、部件、区域、层或段区别开来。因此,下文描述的第一限制、元件、部件、区域、层或段可在不脱离本申请的教导下被称为第二限制、元件、部件、区域、层或段。

应进一步了解,当元件被称为“在另一元件上”或“与另一元件连接”或“耦合到另一元件”时,其可以直接位于另一元件上或之上、或与其连接或耦合,或可以存在介入元件。于此相反,当元件被称为“直接在另一元件上”或“直接与另一元件连接”或“直接与另一元件耦合”时,不存在介入元件。用于描述各元件之间关系的其它词应以类似的方式加以解释(例如,“在……之间”与“直接在……之间”、“邻近”与“直接邻近”等)。当元件在本文被称为“在另一元件之上”时,其可位于另一元件之上或之下,或直接耦合到另一元件,或可存在介入元件,或元件可通过空隙或间隙分隔开来。

参考上文通过引用并入的2013年5月6日提交的、以PCT公开号WO2013169635公开的PCT申请号PCT/US2013/039666,LED灯或相关光源可以输出能够被光束调向机构导引以在表面处形成照明区域的光。光束调向机构包括相对彼此旋转以允许光束被以任方向输出的一对反向旋转楔形。该结构允许光束调向机构被实施在小结构中。在一些实施例中,如本文相对于图21-24所描述的,光束调向机构可以被这样实施,其包括在导轨系统上的光源和透镜,但是不限于于此。

如在图1-3中所示,光束调向机构中的一个应用,例如,可以为被安装到车辆的发光装置控制系统101的部分。发光装置控制系统101可以包括光源302和光束调向机构304,例如,与上文通过引用并入的PCT公开号WO2013169635中描述的那些相类似或相同。光束调向机构304可以接收来自例如灯、LED等等的光源302的光并将其重新导引到表面位置以形成具有控制光斑的照明区域。如上文所描述的,光束调向机构304可以包括可以相对于彼此旋转的楔形棱镜352A、352B,允许光束调向机构304被实施在小结构中。

光束调向机构304可以以两个步骤操作。在第一步骤中,相对于水平轴x的接收的光束的偏移角0可以被通过相对于彼此旋转(即,反向旋转)两个楔形棱镜352A、352B而获得。例如,第一楔形棱镜352A可以在旋转的第一方向中旋转,并且第二楔形棱镜352B可以在与旋转的第一方向的相对的第二方向中旋转。在第二步骤中,光束的方位角可以被通过在相同方向中旋转楔形棱镜352A、352B二者而获得。因此,分别通过棱镜352A、352B的相对旋转和共同旋转,可以在任何方向中输出光束。

相应地,从控制系统101的光源(例如,LED灯)生成的光束L2可以被光束调向机构导引以在道路表面上形成照明光斑102,其可以提高或补足通过前灯或其它光源输出的光L1,尤其在欠佳的能见度的环境中。

如在图2中所示,控制系统101的光束调向机构可以被控制以导引LED灯向上、横向和/或沿和/或在X、Y和/或Z轴之间的其它方向。因此,从控制系统101的光源生成的光束102可以在交通标志203、路标或其它对象而不是道路表面处形成照明区域102。该特征允许例如具有有限的或欠佳的视力的车辆操作员以将从光源输出的光束调向到舒适的距离用于更好地观察道路表面、前面车辆或其它对象。如在图2中所示,从控制系统101的光源生成的光束L2不需要相交、增大或照明从如在图1的实例的前灯输出的光束L1的照明表面的相同表面。代替地,光束L2可以被在与前灯光束L1的不同方向中输出,并且照明不同的表面。在其它实施例中,如在图1中所示,光束L2可以与从前灯输出的光束L1相交、重叠和/或将其增大。在一些实施例中,如在图3中所示,发光装置控制系统101可以被配置为以扫描模式操作。再次参考在图1中的光束调向机构304,当例如在图3A中的反向旋转楔形303A的一对光学元件以相同或类似角度反向旋转304A时,光束302A被以偏离原始方向(例如,沿x-轴)的角度θ输出。随着反向旋转角从0°增加到90°,角度θ可以从0度变化到最大角度。随着两个楔形的反向旋转角度从90°增加到180°,角度θ可以从最大角度回到0度。在扫描模式下,两个楔形303A连续反向旋转,从而角度θ在0与最大预定角之间连续振荡。回想楔形的共同旋转引起输出光束在方位方向上旋转。在扫描模式,仅存在楔形的反向旋转而不存在共同旋转。因此,当楔形如通过在图3中的照明光斑102的运动所示出的连续反向旋转时,输出光束仅以直线来回移动。

扫描模式也可以被通过进行其它光束调向技术而获得,例如,在通过全面引用将其并入到本文的PCT公开号WO2013169635和美国专利号62/061778中描述的本文。在一些实施例中,光束调向机构包括如相对于图15到24中更详细地描述的透镜。例如,从光源输出的光束可通过沿导轨系统的轨而连续地来回移动透镜或者光源来连续地来回移动,以扫描例如在图3中示出的在位置102'与102"之间的扫描的区域的接收光的表面区域。这在诸如大雾或雨399的可能有时发生的欠佳的能见度的情况中是有用的,,因为扫描操作可以增加场景对比度用于定定位有发光装置控制系统101的车辆的驾驶员。

图4为依照一些实施例的发光装置控制系统400的方框图。发光装置控制系统400可以相同于或类似于图1-3的控制系统101,但不限于此。发光装置控制系统400可以被用在除了车辆灯光束调向之外的应用。

在一些实施例中,如在图4的流程图中所示,发光装置控制系统400包含诸如车辆光束调向LED灯402的光源、光束调向机构404、用于光束调向控制的输入装置控制器406、用于调节光强的电位器408以及用于处理与系统101的其它元件相关的数据的处理器410。车辆光束调向LED灯402中的至少一个或多个、光束调向机构404、输入装置控制器406、电位器408以及处理器410可以被设置在相同的壳体下,进而可以被安装到车辆或其它对象。例如,灯402和光束调向机构404可以在相同的壳体下并被安装到车辆或其它对象,例如,被安装在车辆的顶上、车辆的前面、车辆的侧面或车辆的其它位置。输入装置控制器406和电位器408可以处于分开的位置,例如,如在图6中所示的方向盘。

LED灯402可以与本文描述的光源相类似于或相同,例如,上文通过引用并入的PCT公开号WO2013169635中说明的光源模块。例如,LED灯42可以被构造和设置为窄光束LED,包括复合LED芯片、窄光束光器件、透镜、用于散去热的散热器或及其组合。

光束调向机构404可以相同于或类似于本文描述的光束调向机构,例如,在表面处导引来自光源402的光束。在一些实施例中,需要两个电机用于使用反向旋转楔形的光束调向。在一些实施例中,需要三个电机用于使用反向旋转楔形的光束调向。在一些实施例中,光束调向机构404可以为常平架类型,例如,在上文通过引用并入的PCT公开号WO2013169635中描述的。在一些实施例中,光束调向机构404可以为移动透镜类型,例如,在本文的图21-24中描述的。

在一些实施例中,如在图5A和5B中所示,光束调向机构500可以包含具有正交旋转轴的两个扫描镜522A、B。例如,一个扫描镜522B可以围绕x-轴旋转,同时扫描镜522B可以围绕y-轴旋转。从例如LED灯的光源524输出到光束调向机构的光束可以被在镜522A、B扫描范围内的任何方向上调向,例如525。

回到图4,输入装置控制器406和电位器408可以被安装在车辆的方向盘620上,例如,如在图6中所示。在其它实施例中,输入装置控制器406和电位器408可以被安装在车辆的其它位置上。车辆驾驶员可以控制从在方向盘620处的输入装置控制器406控制光束调向机构404的移动。驾驶员也可以通过电位器408调节光束强度和/或其他光束相关参数。

图6A-C为依照一些实施例的输入装置控制器406的示出。输入装置控制器406可以接收和处理来自鼠标、智能平板电脑、触笔、操纵杆、触摸板或本领域中那些普通技术人员已知的其它输入装置的外部输入。在实施例中,输入装置控制器406为鼠标控制器,鼠标控制器可以包含轨迹球432和两个编码器434A、434B(通常,434)。编码器434A可以处理与光束调向机构404的反向旋转有关的数据,而编码器434B处理与光束调向机构404的共同旋转有关的数据。编码器数据可以包括编码器角度,其在处理器410中被转换为反向旋转和共同旋转角度。然后,处理器410将值输出到光束调向机构404,其响应于角度数据可以旋转或移动。

每个编码器434可包括通过摩擦与球432通讯的滚轴。当车辆驾驶员或其它用户滚动鼠标球432时,至少一个编码器滚轴434也旋转。除了滚轴438,编码器434还可以包含光学编码盘444、一个或两个光探测器446以及一个或两个LED 442。当轨迹球432与滚轴438啮合时,滚轴438移动并且光学编码盘444旋转,导致光孔450将相对于照片探测器446交替地阻挡LED 442。鼠标406的力学的实例可以被在美国专利号5912661中发现,通过全面引用并入到本文。在一些实施例中,操纵杆控制器(未示出)可以代替输入装置控制器406。在一些实施例中,如在图28中所示,具有显示器、处理器以及存储器的触摸板屏幕或其它电子装置可以被用于控制光束调向机构404。

图7为示出车辆光束调向灯操作构思的流程图。在操作期间,诸如车辆驾驶员的用户可以移动鼠标,例如,如在图6A-6C中所示,旋转鼠标轨迹球432,其进而旋转编码器434的滚轴438。可以备选地采用其它外围装置,诸如在智能设备上的触摸屏、操纵杆等。处理器410进行计算以确定所需的光束调向的量并且将信号发送到光束调向机构404以进行光束调向运动。驾驶员通过视觉上观察照明的表面的位置而检查光束光斑位置。如果没有达到目标位置,用户可以确定是否需要轨迹球432的更多旋转。操作可继续直到光束被调向在预期目标位置。驾驶员也可以采用电位器408调节光束的亮度。电位器408可以通过LED驱动器调节LED电流。参考图3,在本文描述的扫描操作中,驾驶员没有必要控制光束位置;光束可以在扫描运动中连续地来回移动。在一些实施例中,系统101包括模拟或数字模式切换器407(图6),其用于在扫描模式与非扫描模式之间改变系统101的状态。切换器407可以被配置为发送信号到在图5中示出的扫描镜422或在图1中示出的扫描楔形352用于控制这些扫描元件的移动。如在图6中所示,切换器407可以为模拟切换器,其位于方向盘或其它位置,以便用户可以在扫描模式与非扫描模式之间手动改变。在其它实施例中,数字切换器或在处理器410或其它处理器等等处执行的软件应用可以被实施用于在扫描模式与非扫描模式之间自动切换。

图8为依照实施例的光束调向头灯800的视图。头灯800可以包括光束调向机构804,其可以相同于或类似于本文描述的光束调向机构。因此为了简洁没有重复细节。

头灯800也包括诸如LED灯的光源802、用于光束调向控制的输入装置控制器806,和/或用于调节光强、亮度或相关的光相关的参数的电位器808,其同样可以相同于或类似于本文的相应的装置。光源802、光束调向机构804、输入装置控制器806和/或电位器808可以被耦合到定位在用户的头部的头带、帽子或相关的头饰810。例如,头灯可以被医生、艺术家、手艺人、矿工或其它用户使用用于进行包括使用光的各种操作。例如,头灯光束调向组装804可以被安装在用户的前额,同时输入装置控制器806在用户的头部的侧面。电位器808可以被附着在输入装置控制器806的附近。在其它实施例中,输入装置控制器806和电位器808与头饰810分开,例如,被定位在身体的另一部分或从身体分开的位置。

在LED灯光束调向组装804包括两个楔形的实施例中,例如,类似于或相同于图1的楔形352A、B和在上文通过引用并入的PCT公开号WO2013169635中的楔形,其可以被通过两个或更多的电机旋转用于进行光束调向操作。在操作期间,用户(例如,头饰810的佩戴者)可以旋转在输入装置控制器806中的轨迹球等以将在光源802处生成的光束的方向控制到预期位置。该特征对于不能移动头部的因此不能在目标处引导通过LED灯光束调向组装生成的光束的佩戴者或仅能困难地移动头部(例如,在车下面工作的汽车修理工)的佩戴者来说是有益的。光束调向头灯800的佩戴者可以通过调向光束而不移动他的/她的头部而克服该问题,例如,通过用手移动鼠标轨迹球等等,进而控制光束调向机构804以将光束导引到预期位置。在一些实施例中,可以采用语音识别装置(例如,在本文通过全面引用并入的美国专利申请公开号2015/0023019中描述的)而非鼠标控制器以控制光束调向机构,这会有益于当佩戴者不能移动头部或手的情况。例如,语音识别系统可以被添加到控制系统。在其它实施例中,用于检测声音(特别地,语音信号)的麦克风被附着到在发光控制系统中的控制模块。在一些实施例中,采集的语音信号可以被输出到诸如数字信号处理器(DSP)的处理器(未示出),并且被通过语音识别处理器等等而处理。命令信号可以被响应于语音信号的处理而生成。

图9为依照一些实施例的示出光束调向头灯构思的流程图900。在描述操作构思中,引用图8的元件。在操作期间,类似于本文的其它实施例,诸如头灯佩戴者的用户可旋转鼠标控制器806的轨迹球等或在诸如智能手机屏幕等的触摸屏上移动图标。处理器810,其可以被定位在头灯处或在与头灯分开的位置处,其可以进行计算以确定需要的光束调向的量并且将计算结果发送到光束调向机构804以进行光束调向运动。用户通过视觉上观察照明表面的位置而检查光束光斑位置。如果没有达到目标位置,用户可以确定是否需要轨迹球的更多旋转。处理可继续直到光束被在预期目标位置调向。用户可以使用电位器808来调节光束的亮度。电位器可以通过与灯802通讯的LED驱动器来调节LED电流。

在一些实施例中,头灯的光束调向可以被手动控制。在一些实施例中,光束调向机构可以为在垂直于在本文图23和图24中所描述的光源的光学轴的平面内的被安装在一组导轨上的透镜。这里,轨不包括电机和它们的控制器。在这些实施例中,为了调向光束,操作员可以简单地沿两个导轨手动移动透镜。在一些实施例中,如在图44A和44B中所示,光束调向机构4400可以包括一对反向旋转菲涅耳棱镜4403。为了将光束导引到预期方向,用户可以先在相反方向旋转两个菲涅耳棱镜以将光束调向为远离菲涅耳棱镜的光学轴来获得偏移角,然后一起旋转两个菲涅耳棱镜以将光束调向到距其最终方向由固定偏移角的方位方向上。

图10为依照实施例的光束调向电筒1000的视图。除了一些或全部的光源1002、光束调向机构1004、输入装置控制器1006和/或电位器(未示出)被定位在电筒壳体内部或在电筒壳体上之外,类似于图1-9中的至少一个所描述的实施例的那些对应的元件,或在其它实施例中,光束调向电筒1000可以包括光源1002、光束调向机构1004、输入装置控制器1006和/或电位器1005机构。例如,输入装置控制器1006可以被附着在图10中所描述的电筒的侧面。光束调向可以被用户通过滚动轨迹球、在触摸屏上移动图标等等而进行与输入装置控制器1006通讯。操作构思相同于或类似于在图9中的光束调向头灯的操作构思。

晚上在大雾中开车是非常危险的。因为密集的雾散射并衰减来自车辆的光,驾驶员具有有限的能见力。

图11为示出对于在0.5km和0.2km能见度的大雾的大气透射光谱的图。可以使用大气软件MODTRAN等生成透射。在模拟中采用的大气的厚度为100米。高度为2米。

例如,在图11中示出,电磁波光谱被分为不同的波段:紫外线(UV,0.1-0.4μm)、可见光(0.4-0.75μm)、近红外(NIR,0.75-1.4μm)、短波红外(SWIR,1.4-3μm)、中波红外(MWIR,3-8μm)以及长波红外(LWIR,8-15μm)。大气允许电磁波光谱的一部分的透射且吸收其余部分,这对于本领域中的那些普通技术人员为已知的。具有高透射的大气光谱波段被称为大气透射窗口。

如在图11的图1100中所示,跨光谱时大气透射快速下降。NIR和SWIR波段在它们的大气透射窗口中大致从40%下降到13%。两个SWIR大气窗口为1.5-1.8μm和2.0-2.6μm。LWIR在其大气透射窗口8-15μm中大致从76%下降到14%。

可以采用LWIR相机等提取来自车辆排气管或其它排放部件的热信号,其可以被以某种方式处理来提高驾驶员的能见度。然而,一些车辆的排气管,诸如大型卡车,典型地定位在卡车的前面。因此,车辆的后面处于大气温度,致使LWIR无效。热对比度非常低,穿过浓雾后更低。来自驾驶员前面的车辆的尾灯的红光由于其短波长而被大雾散射。光散射与波长四次方成反比。分别在两个SWIR大气窗口1.5-1.8μm和2.0-2.6μm中,在SWIR中散射可比在可见光范围的散射少至少16倍。SWIR光能够比可见光更好地穿透大雾。因此,可以将在SWIR的光源用于将目标照明。在相应的SWIR带通的相机可以被用于用于将目标成像。

图12为依照一些实施例的雾穿透传感器1200的侧视图。图13为依照一些实施例的雾穿透传感器1300的顶视图。图14为依照一些实施例的控制短波红外线(SWIR)光束的雾穿透系统1400的视图。

雾穿透传感器1200、1300、1400中的一个或多个可以包括电筒相机的一个或多个元件,例如,在上文通过引用并入的PCT公开号WO2013169635中描述的。在一些实施例中,可以通过SWIR LED源1202、1302或1402代替上文通过引用并入的PCT公开号WO2013169635的电筒相机中的可见光LED光源。在其它实施例中,可以通过SWIR激光1202、1302或1402代替可见光LED。在一些实施例中,可以分别通过如图12和图13中所示的SWIR FPA 1208、1308代替可见光FPA。在一些实施例中,在图12、13以及14中的雾穿透传感器1200、1300、1400的其它部件分别类似于或相同于在PCT公开号WO2013169635中或本文其它示出和相应的描述的电筒相机的其它部件。在一些实施例中,其它部件可以为不同的。

特别地,在图12中示出,传感器1200包含孔径透镜1212、角锥镜1204、一个或多个光源1202、每个工作在不同光波长光谱的FPA 1208、以及具有在各种光谱波段的滤光器的滤光轮1209。例如,上述元件可以包括短波红外(SWIR)LED光源中的一个或多个;SWIR焦平面阵列(FPA);消除背景的聚焦和散焦轮;非冷却热FPA;以及孔径透镜,其在透镜的焦点处被光源、SWIR频道以及非冷却热频道而共享。共享孔径透镜允许相同目标区域的照明和成像,同时允许照明光的更有效使用,较长波长SWIR光被通过诸如雾的气溶胶而较少地散射,因此,进一步允许通过SWIR频道的目标的主动成像和通过热频道的目标的被动成像。例如,本文描述的光束调向机构可以将照明光调向到目标并成像来自目标的光允许目标场景的扫描。

在一些实施例中,参照图13,滤光轮1309可包括无色明胶滤光镜(blank filter)1313和空槽1314,其可以被插入如在图13中所示的SWIR FPA 1308的前面。在一些实施例中,无色明胶滤光镜可以包括BK7玻璃等等。在一些实施例中,无色明胶滤光镜可以为高折射率SWIR材料。即使在大雾中的SWIR波段中散射也很高,例如,如在图11的图中示出。更多的散射是由于在传感器附近的照明光束的后向散射。该后向散射背景没有被聚焦而目标则被聚焦。无色明胶滤光镜使目标散焦。在一些实施例中,通过提取具有无色明胶滤光镜的散焦图像和没有滤光器的聚焦图像,可以通过从聚焦图像减去散焦图像而去除该后向散射背景。这将进一步提高在SWIR光的透射性的顶部上的图像质量。

再次参考多光谱电筒相机,电筒相机可包括相机孔径透镜,其通过使用角锥镜的孔径分裂而被照明源和在镜的焦点1203处的成像探测器阵列共享。因为它们共享相同的孔径并且具有相同的焦距,这些探测器阵列被称为焦平面阵列(FPA),照明区域为FPA的图像。因此,相机仅看见照明区域,因此整个完整图像将被照明。因为孔径分裂(aperture splitting)可以容纳多个源和FPA,多光谱电筒相机可以被构造。多光谱电筒相机允许用户访问在不同光谱波段的相同场景的图像。它可以被用于诸如自制炸药(HME)的探测的材料探测。长波红外(LWIR)频道可以被用于进行各种应用,例如,用于埋地简易爆炸装置(IED)的相关的干扰地表探测。它也可以被用于车辆和工业检查。在本文中,仅照明成像区域。因此,照明非常有效。因为SWIR和LWIR FPA均看着相同的成像区域,在一些实施例中,SWIR图像和LWIR图像可以被混合在一起。混合的图像将提高在大雾中的驾驶员的视野。在一些实施例中,例如,在图14中示出的雾穿透传感器可以被安装在车辆上以在例如大雾的恶劣天气中辅助驾驶员。在一些实施例中,穿透传感器1200、1300、1400可以被安装在轮船上用于穿过大雾的航行。在一些实施例中,穿透传感器1200、1300、1400可以被安装在火车上用于操作员在大雾期间的观察。在一些实施例中,例如图12-14的传感器1200、1300、1400的穿透传感器,可以分别被安装在飞机上用于在大雾期间或人眼可见度欠佳的相关的天气条件下的着陆和起飞。发明构思不限于在汽车、卡车、飞机、轮船以及火车上的它们的应用。因此,相对于任何运输车辆等等,其它实施例可以同样适用。

为了提高穿透传感器1200、1300、1400的能力,在一些实施例中,可以将反向旋转光束调向机构1404设置在相机的前面,例如,在图14中示出。可以从左到右和从右到左连续地扫描相机的视场(FOV)。如在图14中所示,这将允许驾驶员发现在他的/她的前面改变车道的车辆,以便他/她可以快速反应。这也允许驾驶员看见在他的/她的盲点光斑处横穿街道的人。此外,这允许驾驶员在晚上或在欠佳能见度下发现横穿马路的动物。在一些实施例中,在光束调向机构中的楔形棱镜的材料包括CleartranTm材料。在一些实施例中,楔形棱镜的材料可以包括发射红外光的其它材料。

如本文所描述,光束调向机构可以包括常平架或常平架镜、一对反向旋转楔形棱镜。然而,反向旋转楔形棱镜可受孔径尺寸的限制。为了具有大调向角度,楔形棱镜的楔形角度必须大。使用大孔径用于照明应用,楔形棱镜的厚度快速增加。系统变得庞大且重。此外,楔形棱镜对于大输入角度光线具有高损耗。而且,大楔形棱镜难于制造且昂贵的。在照明应用中用于光束调向的两个轴常平架可以是非常笨重且昂贵的。常平架需要对称旋转。为了使得它们的负载不影响稳定性,常平架的惯性矩必须大于负载的惯性矩。这意味着常平架必须重。为了捕获在大常平架角度内的所有光,常平架镜需要大。这使得系统非常笨重。为了具有好的稳定性,常平架需要重。因此,采用常平架、常平架镜或反向旋转楔形棱镜用于在照明应用中的光束调向因为大规模而不可能经济的。

实施例包括用于光束调向的基于透镜的方法的采用并且可克服上述限制。由塑料制成的菲涅耳透镜可以被采用。它非常廉价、薄、重量轻,并且可以被制造大尺寸,以及适合于照明应用。为了进行光束调向,一组导轨可沿x和y轴延伸,并且可以被构造和设置为移动透镜或光源。由于形成轨的材料和轨没有复杂性,轨可以被构造为廉价的。因此,廉价的可调向灯可以被构造。如果光源被安装在垂直轨上以相对于透镜移动,照明光斑尺寸可以被调节。该类型的光束调向机构的有益效果超出照明。如果光学无线通信发射机被安装在该系统中或如果照明光被用作发射机,用户可以将其照明和发射机光调向到他的/她的预期位置并且在他的便携式电脑或移动设备上观看千兆视频。光束尺寸调节特征允许用户增加发射机光束光斑尺寸,以便多用户可以共享千兆数据。当用户不希望共享时,他/她可以只用简单地减少发射机光束光斑尺寸。

在一些实施例中,如在图15中所示,通过在透镜1502的焦平面中移动光源1501完成光束调向。在一些实施例中,透镜1502可以为单一透镜。在其它实施例中,透镜1502可以为透镜系统。本文,透镜1502为固定的,并且光源1501相对于固定透镜1502移动。如在图15中所示,当光源在一个方向中(例如,向右)移动时,照明光斑1503在相反方向中(例如,向左)移动。在一些实施例中,如在图16中所示,通过一对机动化轨1602在相对彼此的垂直方向中定向移动光源1601而实现在焦平面处的光源的移动。换言之,轨可包括第一轨和垂直于第一轨的第二轨。机动化线性轨可以包括对于本领域那些普通技术人员已知的一个或多个电机。在图16中,光源1601被定位在第一轨和第二轨中的至少一个上。至少一个电机沿第一轨和第二轨中的至少一个移动光源。在图18中,透镜被定位在第一轨和第二轨中的至少一个上。

在其它实施例中,如在图17中所示,代替相对于固定透镜移动光源,透镜1702可以相对于固定光源1701移动。此处,照明光斑1703在相同于透镜的方向中移动。在一些实施例中,透镜(例如在图18中示出的透镜1801)的移动可以被通过正交定向的一对机动化轨1802a、b而完成。

在一些实施例中,如在图19中所示,光源1901可以被移动远离透镜1903的焦点或朝向透镜1903的焦点,透镜1903的焦点优选是固定的。例如,光源1901相对于透镜1903在垂直方向中移动,或上上下下,其在相对于透镜垂直的方向上延伸。作为结果,照明光斑1904改变尺寸,例如,在圆周或区域中增加的1904’或减少的1904”。当光源处于在焦点处时,它的尺寸是最小的,为小虚线圆。当光源在方向1902中移动远离焦点时,照明光斑尺寸增大,为大虚线圆。在一些实施例中,透镜可以被在水平平面中移动以调向光束用于沿透镜焦距方向的任何位置处的光源。

在图15-19中示出的透镜可以为本领域中那些普通技术人员已知的任何类型。在一些实施例中,此处的一个或多个光束调向机构可以包括菲涅耳透镜等等。菲涅耳透镜可以通过塑料或相关的聚合物材料来制造。它可以被形成为非常轻的并且为任何尺寸。

至少根据图15-19描述了依照一些实施例的透镜光源光束调向机构的构思。在图21-24说明的附加的细节,透镜光源光束调向机构包含透镜、光源模块以及导轨系统,其可类似于高架起重机等等的光束调向机构。

图20A和20B分别为依照一些实施例的用于平面运动的导轨系统2002和线性导轨2001。导轨包括在彼此正交的方向中延伸的两个轨。在每个轨处为电机、轨、用于承载装置的安装物以及用以移动安装物的带或螺丝。导轨系统2002和/或线性导轨2001可以被实施在(例如,本文描述的)一个或多个实施例中描述的光束调向机构。

图21为依照一些实施例的移动光源模块2104的光束调向机构2100的侧视图。光束调向机构2100包括包含垂直轨2103、内轨2101以及一个或两个外轨2102的导轨系统2100。光源模块2104被安装在垂直轨2103上。垂直导轨2103可以移动光源模块2104以调节照明光斑的尺寸。垂直轨2103和光源2104被安装在导轨机构的内轨2101上,并且沿内轨2101而一起移动。在一些实施例中,内轨2101被安装在两个外轨2102上。光源模块2104、垂直轨2103以及内轨2101可以被沿两个外轨2102而移动。本文,内轨2101垂直于外轨2102。内轨和外轨均平行于透镜2105。在一些实施例中,通过沿内轨2101和外轨2102来移动光源2104而获得光束调向。两个正交运动(通过垂直和水平箭头示出)允许照明光斑被调向到任何位置。更具体地,箭头表示轨的运动。在一些实施例中,诸如罗盘2106的方向指示器可以被附着在水平轨2101中的一个。当多个可调向灯被定向安装在各种方向中时,这使得用户能够确定光束调向的绝对方向。

图22示出图21的光源移动光束调向机构2100的顶视图。示出透镜2101、内轨2102和外轨2103的突出物以及运动的光源模块2104向透镜上的突出物。

图23为依照一些实施例的透镜移动光束调向机构2300的侧视图。图24为图23的透镜移动光束调向机构2300的顶视图;在包括用于光束调向的透镜2305的移动的实施例中,如在图23中所示,在一些实施例中,导轨系统包含用于调节照明光斑尺寸的垂直轨2304、两个内轨2302以及两个外轨2303。光源模块2301被安装到垂直轨2304,并且可以在第一方向(例如,垂直)中上下移动,但是另外相对于其它方向是平稳的,例如,没有水平移动。垂直轨2304被安装到固定的安装固定装置。透镜2305可以被安装在两个内轨2302上,可以沿两个内轨2302移动透镜2305。内轨2302在相对于第一方向的第二方向中延伸,即,图23的页面的进出。内轨2302和透镜2305被安装在两个外轨2303上,也可以沿两个外轨2303在第三方向(例如,在图23中示出的水平方向)中而移动透镜2305和内轨2302。透镜2305和内轨2302与外轨2303均垂直于光源2301的光学轴。内轨2302和/或外轨2303可以包括电机。在一些实施例中,轨可以被手动移动。在其它实施例中,不需要机动化机构。手动完成光束调向。在一些实施例中,通过沿内轨2302和外轨2303而移动透镜2305来获得照明光斑的光束调向。在图24中示出透镜、内轨和外轨以及光源向透镜上突出物。如在图21和图22中所完成的,罗盘2306或相关的指示器可以被附着到水平轨中的一个上使得用户能够获得绝对光束调向方向。

在一些实施例中,用于光束调向的透镜可以为菲涅耳透镜等等,但是不限于此。因此,在其它实施例中,任何其它透镜可以被用于光束调向。在一些实施例中,图23和24的透镜光束调向机构可以被放置在筒灯的正下方。这允许用户光束调向他的/她的筒灯。由于筒灯被用在许多的室内地方,该应用将有益于许多用户。

在上文描述的光束调向机构中,导轨系统被构造和设置以远距离移动或透镜(例如菲涅耳透镜)或光源以便覆盖从通过光源生成的光束产生的照明光斑的整个预期范围。在一些实施例中,多个光源可以被安装在凝视透镜的不同区域的透镜之上。如在图25中所示,光束调向机构2500可包括安装在透镜2502之上的板2508上的光源2503阵列。光源分布允许用于在目标表面处的不同区域2501或来自焦平面的不同位置的照明,而没有必要移动。在一些实施例中,通过依次或每次一个地激活光源2503,每次在目标表面中的一个区域可以被照明。从一个光到另一个的切换允许用户选择感兴趣的区域以照明目标区域。本质上,这是不连续但离散的光束调向。如在图25中所示,光源被连接到每次电路切换至一个光上的切换器。切换器2505被连接到光源驱动器2504,其可以改变输入电流到各自光源。均被连接到允许用户选择哪个光被打开的控制器2506。驱动器2504也被连接到电源2507。

图26包括光束调向机构2600,其包括用于提供到透镜2602的横向运动的机构2603。如在图26中所示,在一些实施例中,通过添加横向运动机构2603到透镜2602,可以在它附近连续地调向选择的光2604。这允许所有光源2604的光束调向覆盖整个目标区域。因为所需的光束调向仅在选择的光源2604的附近,透镜运动的范围为小的。这将允许灯灯系统的尺寸减少。在一些实施例中,通过添加垂直运动机构2612,可以调节照明光斑2601的尺寸。例如,在一些实施例中,如图21-24中示出的,横向和垂直运动机构2603、2612可以包含导轨。控制电路类似于图25的控制电路,除了还提供了运动控制2609。

图27为该多源可调向灯系统2700的顶视图。示出透镜2704、导轨2702和2701,以及朝向透镜上的光源2703的突出物。这些元件中的一个或多个可以相同于或类似于例如在本文描述的其它实施例中的可比的元件。

在图28中,在一些实施例中,系统2800包括具有光束调向机构2801B的可调向光源模块2801,其可以被通过接触控制器2802而控制。在一些实施例中,接触控制器2802可以为触摸板类型的装置等等,其可以感测诸如用户手指的接触对象的位置。其它触摸板控制器可以被用在其它实施例中。控制器具有三个分开的控制部件:用于控制光的光束调向的光束调向控制器2802A、用于控制光强的调光器2802C以及用于调节光束的尺寸的光束尺寸控制器2802B。光束调向控制器2802A包括感测一个或多个接触对象的位置的触摸板装置等等。接触对象可以为用户手指2806。调光器2802C为使用一维位置以调节光强的触摸板。它也可以为任何其它调光器。光束尺寸控制器2802B可以为使用一维位置的用于光束尺寸调节的触摸板。在一些实施例中,可以在产品发布之前做出在光束调向控制器2802A的触摸板位置与导轨的光束调向位置之间的校准。通过测量光束调向控制器和导轨的运动范围可以获得校准系数。校准系数为两个设备的两个比例因子。校准系数可以被存储在处理器中。在触摸板上的手指的位置可以被通过在处理器2804中施加校准系数到手指位置而译为调向的光束的方向。可以计算需要的光束调向的量并发送到光束调向机构2801B。通过移动手指2806到在触摸板2802上的不同位置,光束调向机构2801B可以调向照明光斑2807到各种位置或区域。光束尺寸控制器2802B可以为触摸板或其它电子装置的部分。因为通过改变光源2801C到透镜2801A的距离而调节光束尺寸,仅一维运动被通过触摸板感测。调光器2802C可以为触摸板类型或本领域中那些普通技术人员已知的任何其它类型。

图29为依照一些实施例的示出用于控制光束调向的方法2900的流程图。在描述图29中,可参考图28的系统2800的元件和本文描述的导轨系统。在块2901,来自触摸板的新的手指位置被提供给处理器,如在块2902中示出的,在该处理器中的校准系数被用于获得在块2903中示出的导轨系统的位置。位置2903优选地为xy位置(例如,在x-轴与y-轴之间相交的点)。使用新的xy位置(块2903)与先前xy位置,方法2900可以进行到块2904,其中可以计算光束调向的方向和量。

再次参考图28,在一些实施例中,可以通过无线网络2803在触摸板控制器2802与光束调向机构2801B之间通讯。在其它实施例中,可以通过以太网络或其它有线网络获得通讯,其中手指2806、触针或其它对象通过接触触摸板屏幕生成信号,该信号被传感器检测并发送到光束调向机构2801B用于控制通过光源2801C生成的光束的移动。在一些实施例中,触摸板控制器2802可以包括光束调向控制器2802A、光束尺寸控制器2802B以及调光器2802C的组合。可以将分开的触摸板面板用作调光器用于调节光强。可以将手指位置解释为在该面板中的光强。通过沿面板移动手指,可以调节光强。在一些实施例中,可以将诸如智能手机、例如苹果iPADTM装置的电子笔记本的移动装置等等用于控制光束调向和光束尺寸调节。依照一些实施例,可以将相关应用写入和安装在进行处理的一个或多个步骤的这些装置中。

如先前提及的,使用反向旋转楔形棱镜或常平架的光束调向为昂贵的且笨重的。为了使具有手势控制的可调向灯实用,例如,在上文通过引用并入的PCT公开号WO2013169635和美国专利申请号14/048505中描述,依照本文的一个或多个实施例,可用透镜光源光束调向机构代替光束调向机构。增加的益处为照明光束尺寸可以被调节。同样在一些实施例中,用于智能灯的控制光斑可以来自照明光斑的外部,而不是照明光斑的内部。

图30为依照一些实施例的发光装置控制系统3000的图。特别地,图30示出带有手势控制的可调向灯的构思,其中,生成控制光斑3002以被在除照明光斑3001之外的不同表面或相同表面的不同区域上照明。在一些实施例中,可以通过安装有光源的垂直导轨的移动而调节照明光斑的尺寸、形状或其它特征,例如,在本文其它实施例中描述。本文,可调向灯投影照明光斑3001和邻接它的控制颜色光斑3002。例如,类似于本文其它实施例,可以将手势3004放置在以通过热传感器3010和相机3009同时感测的控制光斑中。当检测手热信号时,处理器3011评估手势图像以确定它的姿势。作为结果生成命令。如果将手势3004提供用于变暗光,将变暗命令发送到驱动器。系统的一些元件可以类似于或相似于在其它实施例中的那些,例如,在本文通过引用并入的美国专利申请14/048505中描述的LED灯。例如,本文描述的,如果命令用于移动光束,然后,将光束调向命令发送到光束调向机构3008。命令照明光斑3001来跟随手运动3004,这允许用户调向照明光斑3001到他/她希望的任何地方。如果将手势用于改变照明光斑尺寸,然后,将手势数据转换为通过在图30中的处理器3011或在图31中的处理器3107的光束尺寸名令,进而,将其发送到光束调向机构。

在一些实施例中,例如,在图31中示出的系统3100中,为了在照明光斑3001之外形成控制光斑3002,将控制光斑生成器光3102邻接于照明光生成器3103。例如,在图21中示出,将光生成器3102、3103均安装在垂直导轨上用于光束尺寸调节。在一些实施例中,可以将类似于至少在图34A中示出的类型的光源模块用作控制光斑生成器3102。控制光斑3002包含能够手势多光谱成像的颜色光和NIR光。通过热镜反射NIR光源3402A以照明手势。通过热镜3403A传输颜色光源3404A以照明手势。可以将透镜3101设置在两种光的前面。可以将相机系统3106和热传感器3105设置在光源模块的之外。为了追踪手运动,热传感器3105视场(FOV)需要移动以追踪手势。在一些实施例中,采用IR菲涅耳透镜等的光束调向机构可以调向热传感器的FOV。在其它实施例中,热传感器3105的光束调向机构可以类似于分别在图23和图24中示出的那些,而在一些实施例中没有垂直轨。在一些实施例中,相机FOV足够大以便不需要独立的光束调向元件。

在一些实施例中,参考图34C,在图34C中的相机模块4302可以被用作在图31中的多光谱相机3106。相机模块4302包含热镜3403C,其可以将可见光透射到可见光相机4301C,同时它将NIR光反射到NIR相机3402C。可以同时获得手势的可见光和NIR。另外地,控制光斑的颜色光斑仅在可见光相机中显示。在一些实施例中,可以在光源3404A的前面插入多孔图案以产生多个微小光斑。在一些实施例中,可以在光源3404A的前面插入红色、绿色以及蓝色的颜色光图案以产生RGB多个微小光斑。这协助可见光相机3402C识别颜色控制光斑3002。因为颜色光源不具有在NIR中的任何光谱成分,NIR图像不具有微小光斑。因此,可以将可见光相机用于定位控制光斑,同时可以将NIR相机用于获得手势图像。

在图32中示出手势可调向灯系统3200的顶视图。示出相机3203、热传感器3204、诸如朝向透镜3201平面的照明光源3205和控制光斑光源3206以及导轨3202的其它部件的突出物。因此,新可调向灯不仅具有更高效率和更廉价的光束调向机构,而且具有能力改变照明光斑的尺寸。此外,控制光斑处于在照明光斑之外,这允许用户简单地将控制光斑与照明光斑区别开来。可以形成控制光斑光(未示出)以邻近在透镜3201(例如,菲涅耳透镜)后面的照明光。

图33示出用于另一可调向灯的系统3300,其可类似于在本文通过引用并入的美国专利申请序列号14/048505中描述的智能灯,除了在图33中的光束调向机构使用参考图21-24描述的实施例的透镜光束调向机构。此外,在图33中,可以调节照明光斑的光束尺寸。因此,新可调向灯不仅具有更高效率和更廉价的光束调向机构,而且具有改变照明光斑的尺寸的能力。此处,可以将手势3305设置在控制光斑3304处以调向照明光斑3302。可以通过网络通讯信号3306(例如,无线网络、以太网或其它通讯网络)在手势控制器3303与可调向灯3301之间通讯。在其它实施例中,可以使用例如此处描述的接触控制器。

图34示出依照一些实施例的手势控制器3400。手势控制器3400可以包含控制光斑生成器3403、热传感器3404、一个或多个相机模块3402、处理器3403以及无线收发器3401。控制光斑生成器3403投影照明控制光斑,以便用户知道控制光斑在哪。控制光斑生成器也提供用于相机3402的照明光。热传感器3404检测人手的存在。相机3402捕获手势并将它们发送到处理器3403,在处理器3403中将手势转换为命令。

图34A示出图34的控制光斑生成器3403。在一些实施例中,控制光斑生成器3403可以包含用于相机的成像光的近红外(NIR)照明光源3402A、用于加亮控制区域的颜色光源3404A、热镜3403A、可调向透镜3401A。热镜3403A透射颜色光,同时反射NIR光。它在NIR光源3402A与颜色光源3404A之间以45°而放置。这确保NIR光和颜色光的FOV的重叠。可调向透镜3401A允许根据用户而调向或导引控制光斑光。

图34B为具有可调向IR透镜的热传感器。图34B的热传感器可以类似于图34的热传感器3404。在一些实施例中,可以将可调向IR透镜3402B用于跨热传感器的FOV调向热探测器或探测器3401的FOV。热传感器FOV大于探测器FOV。热传感器的调向允许传感器追踪用户的手。再次参考图34C,如先前描述的,相机模块3402可以包含颜色相机3401C、NIR相机或热传感器3402C以及光束分离器或热镜3403C。该结构允许手势的多光谱(红色、绿色、蓝色以及NIR)成像。它可以追踪在可见光内的控制光斑和在NIR中的手势。因为控制光斑光为LED颜色光,它不具有在NIR中的光谱成分。可以将多孔图案插入在图34A中的颜色光源3404A的前面以生成多个微小颜色光斑。可见光相机将能够识别在颜色控制光斑内的这些光斑,同时NIR相机将不能看见颜色光斑。在一些实施例中,相机模块3402可以包含NIR相机3402C、热传感器3401C以及光束分离器3403C。光束分离器将热辐射透射到热传感器3401C,同时将NIR光反射到NIR相机3402C。该结构允许手势的NIR成像和手的热检测。在一些实施例中,热镜或光束分离器3403C透射可见光并反射热辐射。该结构允许手势的颜色成像和手的热检测。

图35为可调向灯系统3500的视图。可调向灯系统3500包含透镜3503、无线发射机3501以及在导轨系统上安装的光源3502,例如,类似于在图21-24中描述的。将光源3502安装在导轨系统3504的垂直导轨上。通过移动光源朝向或远离透镜的焦点,可以调节照明光斑的光束尺寸。通过横向移动光源3502,可以调向照明光束。

再次参考上文通过引用并入的PCT公开号WO2013169635,照明光可以被用作用于光学无线红外(IR)光等的信号载体,可以被用作用于光学无线通讯的数据载体和用于照明的可见光。在两个实例中,照明光源和发射机光源被安装在采用常平架或反向旋转楔形棱镜的光束调向机构上。这允许用户将用于照明和光保真(Li-Fi)通讯的光调向光至预期位置处。如先前提及的,楔形棱镜具有有限的孔径。大孔径将增加系统的重量和尺寸以及价格。常平架需要被对称旋转。当将诸如光源和发射机的旋转非对称负载设置在常平架上时,常平架移动的惯性必须大于负载贡献的惯性以便具有稳定的旋转,这导致重的、笨重的以及昂贵的系统。

在一些实施例中,如在图36、36A、36B以及36C中所示,可以将菲涅耳透镜光束调向机构用于代替常平架或反向楔形棱镜用于调向照明光及通过作为通讯光用于交换数据。因为透镜可以为由塑料制成的菲涅耳透镜,并且导轨可以被简单制造且廉价的,用于Li-Fi通讯和照明的该类型的光束调向机构为非常廉价。除了光束调向之外,光源朝向或远离透镜的焦点的运动还改变调向光束的尺寸。

特别地,图36、36A、36B以及36C示出用于可调向照明/通讯光的灯系统3600的构思。图36和36A仅示出根据在图21和图22中示出的结构的光束调向机构的情况。在一些实施例中,在图36B中的光束调向机构使用图23和图24的结构。在一些实施例中,可调向照明/通讯灯系统3600可以包含光源模块3601、控制光斑光源模块3610、透镜3603以及包括横向导轨系统3608和垂直轨3609的导轨系统。在一些实施例中,例如,根据在图21和图22中示出的结构,将两个光源模块安装在在菲涅耳透镜3603之上的导轨系统的垂直轨3609上。通过横向或纵向移动光源模块3601和3610,而获得光束调向。通过垂直移动光源模块3601和3610,而获得光束尺寸调节。在一些实施例中,例如在图36B和36C中示出的,根据在图23和图24中示出的结构,如在图36B和36C中所示,将光源模块3601B和控制光斑光源模块3610B安装在菲涅尔透镜3603B之上的垂直轨3609B上,而将菲涅尔透镜3603B安装在水平轨系统3608B上。通过横向移动透镜3603B而获得光束调向。通过沿垂直轨3609B移动光源模块而获得光束尺寸调节。

在照明表面存在三个光斑:发射机光束光斑3604、照明光斑3606以及控制光斑3605。控制光斑3605用于通过手势控制照明和发射机光斑。发射机光斑3604处于发生Li-Fi通讯的区域。照明光斑3606提供照明,例如,在表面上。如在图36中所示,发射机光束光斑3604和照明光斑3606在空间上被光谱重叠地分开。在一些实施例中,光源模块3601形成发射机光斑3604和照明光斑3606。它们的尺寸可以彼此相同或彼此不同。用户可以在发射机光束光斑3604中设置他的/她的通讯装置3607以访问Li-Fi网络或进行相关通讯的其它网络。如在图36A中示出的,光束尺寸调节特征允许用户改变照明3606A和发射机光束3604A光斑的尺寸。用户可以将光斑一起调向到预期位置,在该位置,他可以使用高质量照明光并且从他的/她的笔记本电脑或移动装置访问超高速互联网。在一些实施例中,用户可以通过沿垂直轨移动光源模块来增加发射机光束光斑尺寸3604以容纳多个用户来共享Li-Fi网络。可以将多个通讯装置3607A设置在发射机光束光斑3604A中。在一些实施例中,当他/她不想共享网络时,用户可以减少发射机光束光斑尺寸。在一些实施例中,当使用触摸板或移动控制器时,不存在控制光斑光源模块3610或3610A或3610B。在这种情况下,没有控制光斑3605。

因为在上文中,在透镜光束调向机构中不存在光学部件的旋转,系统相对于各种形状和结构提供更多灵活性。特别地,旋转对于旋转对象的形状非常敏感。当车辆轮胎没有对称旋转时,它需要平衡。当系统不具有旋转时,对形状不敏感。系统的灵活性允许用于针对如在图37中所示的照明源与发射机组装3700的复杂几何结构设计。在一些实施例中,如在图38中所示,透射可见光并反射红外线光的热镜3704可以被用于构造照明/发射机光源模块3700或3601,以便发射机3703与照明源3701和3702共享相同FOV。3702为控制光斑光源,而3701为照明光源。热镜3704可以类似于在http://www.eateimdoptics.com/optical-mirrors/specialty-mirrors/high-perf ormance-hot-mirrors/3150中描述的镜,本文通过全面引用将其并入。

在一些实施例中,照明光束和LiFi通讯光Li-Fi光束在光学光谱被分开,但是空间上同时位于相同光斑中,照明光束处于在可见光光谱中,而LiFi发射机光束处于在NIR光谱中。在一些实施例中,当将照明源3701用于照明和LiFi通讯,在光斑中仅存在一个光束。

Li-Fi发射机光束光斑3604和照明光斑3606(图36)可重叠或相交。如果将照明光用于通讯,然后,发射机光束光斑3604和照明光斑3606为相同的或类似的。如果将红外线光用于发射机信号和将可见光用于照明,然后,形成两个光斑。在一些实施例中,如果也将照明光用于Li-Fi通讯,光源模块可以包含白LED灯3701和颜色控制光斑生成器光源3702。在一些实施例中,光源模块可以包含照明光源3701、颜色控制光斑生成器光源3702、IR发射机源3703以及热镜3704。如在图38中所示,热镜透射可见光而反射IR光。热镜3704设置在离照明光源3701和发射机3703均45°的位置处。这确保透射的照明光和反射的IR发射机光共享相同的FOV。以这样的方式使用IR光作为发射机光,用户可以打开或关闭照明光,而没有打断他的/她的光学无线通讯网络。在一些实施例中,IR发射机光可以为LED光。在其它实施例中,IR发射机光可以为激光,或在诸如来自光学通讯光纤的激光的不同的但相关的频谱中生成。

电动加热器通过热辐射加热对象为已知的。当在人类接收者或用户处导引热能量时,需要瞄准用户以便输送大部分热到用户。这限制了用户的移动性。在一些实施例中,由于IR菲涅耳透镜透射热辐射,可调向加热器可以被通过使用IR菲涅耳透镜和加热器而构造。

如在图39中所示,在一些实施例中,光束调向机构3900可以被用于调向热或热光。将来自可调向加热器3901的热从最低点位置调向到用于3902位于的偏离轨道的位置3903。在一些实施例中,光束调向控制器可以为在本文通过引用并入的美国专利申请14/048505中描述的手势控制器。在其它实施例中,它可以为诸如在图28中的触摸板2802或在图6中的鼠标控制器606的接触控制器。

图40示出依照一些实施例的可调向加热系统4000的侧视图,其可以被施加在图39中示出的操作中。在一些实施例中,加热系统4000包含加热器4001、诸如红外(IR)菲涅耳透镜4002的热透镜、导轨系统4003和4004,其可以相同于或类似于在图21-24中描述的可比较的元件。可以将加热器4001安装到允许加热区域被调节的垂直导轨。由于在热区域中的IR菲涅耳透镜的光谱透射少于60%,它吸收热。可以将风扇用于产生对流以阻止在IR菲涅耳透镜4002上热堆积。

图41为图39和40的可调向加热器4000的顶视图。透镜4002安装在导轨系统4003、4004上。同样示出位于透镜4002上的加热器4001的突出物。通过导轨系统4003、4004移动透镜,而加热器4001保持固定。

典型地,密码锁使用数字组合作为用于打开锁的密码。图42示出依照一些实施例的使用颜色用于密码锁的非接触切换器4200的构思。在一些实施例中,代替使用数字组合用于锁定码,可以使用颜色组合用于锁定码。例如,可以通过例如从用于锁的4种可用颜色中的3种颜色码代替3种数字码。这在消毒为关键的医院环境中尤其有用。而且,非接触特征使得装置比接触装置持续时间长。如在图42中所示,在切换器模块4201中的控制光斑生成器在表面上输出4种颜色光斑,即,红色4202、绿色4203、蓝色4204以及黄色4205。热传感器连续监视用于热信号的4种颜色光斑。如果如手4206的人身体部分被插入到颜色光斑中的一个的FOV中,它将被视为信号。如果秘密颜色码为黄色、红色、绿色,然后,用户以正确的顺序将他的/她的手插入到三种颜色光斑中。在一些实施例中,在切换器模块中的嵌入处理器将通过无线网络4208或其它类型的通讯网络将命令发送到锁模块以解锁锁4207。在本文通过引用并入的美国专利申请号14/318019中可以发现切换器模块的详细描述。此处,非接触切换器被用于打开/关闭光和其它装置。它也被用于控制其它装置。在一些实施例中,包括用于在非接触切换器中的颜色的组合的颜色码可以被用于锁和解锁诸如锁的装置。MEMS镜被用于扫描用于生成用于非接触切换器/控制器的非接触功能键的热传感器的FOV。然而,MEMS镜到热探测器的封装和光学对准可以为具有挑战的。光束调向技术提供更简单的解决方案。在一些实施例中,可以通过如在图43中所示的透镜调向系统4300代替热传感器4310的该扫描系统。在一些实施例中,可以通过如在图23和24中所描述的导轨等系统移动透镜4301。在一些实施例中,可以将其它运动机构用于翻译透镜4301。通过横向翻译透镜4301,热探测器4314的瞬时视场(IFOV)扫描通过热传感器4310的视场(FOV)。热探测器的产生的输出为目标场景的图像。控制光斑生成器4324在目标表面上输出颜色光斑4309。热传感器不能看到颜色光斑。在一些实施例中,探测器的特定数目的瞬时视场(IFOV)与通过经由在美国申请号14/318019中描述的预定标的控制光斑生成器4324生成的颜色椎体的IFOV来对准。透射热光并反射可见光的光束分离器4320使对准有可能。在一些实施例中,这些IFOV为指定的功能键。在目标表面上,这些热探测器IFOV的足迹4308与颜色光斑4309相符。在一些实施例中,通过将手插入到颜色椎体的IFOV中,用户触摸非接触功能键。在一些实施例中,这些功能键IFOV与移动透镜的坐标相关联。在通过引用并入的美国申请号14/318,019中描述了在图像空间中的非接触功能键的实例。这些成像像素具有用于透镜运动的相应的坐标图。通过选择经过所有非接触功能键的坐标的最短路径,可以获得局部图像,例如在通过引用并入的美国申请号14/318019中描述的。在这情况下,通过透镜的光束调向为更有效。

如本文所描述的,可以将反向旋转楔形棱镜用于进行光束调向。然而,楔形棱镜对于在照明应用中的大孔径为厚的且笨重的。在如图44中所描述的一些实施例中,提供有菲涅耳棱镜,其由薄塑料制成。因为它们薄,用于照明应用的大孔径为有可能的。这将使得光束调向组装紧凑且轻。菲涅耳棱镜具有有限的光束调向范围。对于具有小光束调向范围的照明应用,反向旋转菲涅耳透镜为理想的。图44A和B示出反向旋转菲涅耳棱镜而调向光的构思。来自光源4401的光束经过一对菲涅耳棱镜4402。在一些实施例中,通过两个菲涅耳楔形棱镜4402的反向旋转4403,光束方向从光学轴4405偏离。在一些实施例中,通过两个菲涅耳楔形棱镜的共同旋转4404,光束可以在方位方向中旋转。两个旋转θ和φ允许用户在任何方向中调向光束。

再次参考图21到24,可以通过施加包括在导轨系统上的透镜和光源的光束调向机构而操作各可调向灯。在一些实施例中,可以将可调向灯阵列设置在一起用于照明大区域或用于允许多个用户访问可调向灯,或,在一些应用中,在零售商店中照明多个商品。

在一些实施例中,如在图45中所示,追踪可调向灯系统4500可以包含菲涅耳透镜阵列4504、光源阵列4503、导轨系统4502阵列安装物以及单个轨道4501。光源4503被安装在导轨系统4502上(其可以在进出页面的方向中移动),进而安装在轨道4501上。可以将轨道4501安装在天花板或其它表面上。将包含光源阵列4503、导轨系统4502以及轨道4501的组装设置在菲涅耳透镜阵列4504之后。照明光斑4505被投影到照明表面上。

如在图46中所示,在一些实施例中,菲涅耳透镜阵列4504可以包含一个或多个菲涅耳透镜4601和将透镜4601保持在一起的框架4602。

如在图47中所示,在一些实施例中,可以通过将光源4704安装到垂直轨4703上而构造单个可调向灯系统组装4700,该垂直轨4703被安装到Z轨4702,该Z轨4702被安装在轨道4701上。Z轨4702垂直于被设置在组装4700的光源4704的前面的菲涅耳透镜4705。光可以被从组装4700输出并形成可调向照明光斑(未示出),其被投影到例如墙的表面4706上。在一些实施例中,可以通过垂直轨4703和轨道4704控制的光源的垂直运动4709和追踪运动4707的组合(页面的进出)产生的调向运动。在一些实施例中,可以通过Z轨4702的水平运动4708而控制光束尺寸调节。因此,可以将可调向轨道灯系统阵列4700用于侧面照明应用,诸如在零售商店中的商品和在博物馆中的图画。

在一些实施例中,可以通过在图48中示出的可调向轨道灯系统4800而照明诸如地板表面等的垂直表面。光源4803和菲涅耳设置4804可相同于图45的轨道灯4500的光源和菲涅耳设置。然而,通过在图48中的实例示出的导轨系统4801、4802轻微地不同于图45的轨4501、4502。如在图4500中,图48的轨道灯4800可以包含光源阵列4803、包括交叉轨4902和垂直轨4904的导轨系统阵列、菲涅耳透镜阵列4804以及两个轨道4801A、4801B。在一些实施例中,如在图49中所示,可以使用两个轨道。在其它实施例中,可以使用不同数量的轨道。参考图49-51,可以将光源4803或5103安装到垂直轨4904或5104。垂直轨4904或5104安装到交叉轨4902或5102。可以将交叉轨4902或5102安装到两个轨道4801A和4801B或5101A和5101B。在图50中的菲涅尔透镜阵列5000相同于在图46中的菲涅耳透镜阵列4504。同样,在图49中,可以将诸如罗盘的方向指示器安装在水平轨4901、5101中的一个上,以便可以设定光束调向机构的方向。

图51示出单可调向灯系统5100的结构的实施例。轨系统包括上述的轨5102、5104以及5101A、B。此外,在一些实施例中,可以通过交叉轨运动5107和轨道运动5106的组合而获得光束调向。在一些实施例中,可以通过垂直轨运动5108而获得光束尺寸调节。将可调向照明光斑阵列投影到表面5105上。

在一些实施例中,多个可调向轨道灯可以形成各种几何图案。例如,在图52中,在一些实施例中,可以将类似于或相同于在图48到51中描述的那些类型的四个可调向轨道灯5201、5202、5203以及5204用于构造矩形可调向轨道灯系统。在一些实施例中,可以构造其它几何图案的可调向轨道灯。在一些实施例中,可以将其它类型的可调向轨道灯用于构造各种几何图案。

图52仅示出矩形可调向轨道灯系统5200的底视图。其可以可以通过在矩形可调向轨道灯的每个侧面上的通过在图45-47中的结构或在图48-51中的结构的四个可调向轨道灯而形成。在图48-51中示出代表的结构,但是不限于此。系统5200包括菲涅耳透镜阵列(未示出),其覆盖系统5200的矩形可调向轨道灯5201-5204的一些或所有四个侧面。在一些实施例中,同样可以构造诸如灯的同心环的其它几何形状。

在一些实施例中,如在图45到52中所示,可调向轨道灯移动一个或多个光源,而菲涅耳透镜阵列相对于可移动的光源为固定的。然而,在其它实施例中,可调向轨道灯同样可以移动菲涅耳透镜,而光源为固定的。

在图45到52的可调向轨道灯中,轨为机动化的。运动的每个方向具有以移动单一轨或多个轨的电机组装。在诸如零售商店的一些应用中,光仅需要一天调向一次。在一些实施例中,在图53中的系统5300的可调向轨道灯5300A的轨5303、5304以及5305没有电机。特别地,轨5305为垂直轨,轨5304为交叉轨,并且轨5303为轨道。光源5306安装在垂直轨5305上。可以将由磁材料制成的在图54中示出的对接口5408附着到垂直轨5305。

在一些实施例中,机动化调向车5301沿邻近非机动化可调向轨道灯阵列5300A的轨道5302和平行的轨道5303而移动,并且可以调向轨道灯阵列5300A的单个可调向灯。在一些实施例中,车5301具有电磁臂,其允许它通过它的对接口抓住可调向轨道灯5300A的单个可调向灯,并且将其调向直到照明光斑位于预期位置。在图54中,系统5400包括在机动化交叉轨5405和机动化轨道5402上的车5401或5301。车5401包含具有打开和关闭的切换器的电磁臂5404、电磁臂被安装在其上的机动化垂直轨(未示出)、用于将对接口定位在可调向灯上的相机5406、用于处理相机的图像并控制车的运动的处理器5407、与可以为触摸板类型或移动装置类型以及其它类型的控制器的远程控制器通讯的无线(WiFi)或蓝牙收发器5403。通过电源(未示出)驱动车,该电源从沿着轨道电力线(未示出)获得功率。电磁臂5404可以包含线圈磁铁。电磁臂的原理相同于电磁起重机的原理。如在图54中所示,车5401可以沿机动化交叉轨5405和机动化轨道5402行进以调向各光。在车上的机动化垂直轨(未示出)沿着轨上下移动电磁臂5404,以调节照明光斑的尺寸。一旦完成光束调向和光束尺寸的调节,臂的磁场可以被关闭并脱离。这允许臂移动远离和车移动向下一个可调向灯。在图53和54中,车5301、5401移动各可调向灯的光源,而菲涅耳透镜为固定的。在一些实施例中,车可以移动各可调向灯的菲涅耳透镜,而光源为保持固定。

总而言之,如在图53和54中所示,实施例包括非机动化可调向轨道灯系统的光源,其被安装在非机动化轨系统上。车通过采用电磁臂调向各光以沿其非机动化轨而移动光源。菲涅耳透镜为固定的。在一些实施例中,可以将非机动化可调向轨道灯的菲涅尔透镜安装在非机动化导轨系统上。非机动化可调向轨道灯的光源可以被保持固定。可以通过逐次通过机动化车沿着轨而移动菲涅耳透镜来调向各非机动化可调向灯。

已经参考示例性实施例及其上文具体示出和描述了的本发明构思,本领域的那些普通技术人员将理解,在没有脱离本发明构思的精神和范围下,可以做出形式和细节的各种修改。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1