Led直管灯烤头机构的制作方法_2

文档序号:10138618阅读:来源:国知局
面产生残余压力而强化,同时;玻璃中和含有A1203、1102等成分时,通过离子交换,能产生膨胀系数极低的结晶,冷却后的玻璃表面将产生很大的压力,可得到强度高达700MPa的玻璃。
[0051]2、低温型离子交换法
[0052]低温离子交换法在比玻璃应变点低的温度区,用比表层碱离子(如Na离子)还大一些离子半径的一价阳离子(如K离子)与Na离子做离子交换,使K离子进入表层的方法。例如Na20+Ca0+Si(V¥、统玻璃,在四百多度的熔融盐中可以浸渍十几小时。低温型离子交换法可以容易的得到高强度,具有处理方法简单、不损坏玻璃表面透明性、不变形等特点。
[0053]3、脱碱法
[0054]脱碱法是在含亚硫酸气体与水分的高温气氛中,利用Pt催化剂处理玻璃,使Na+离子从玻璃表层渗出与亚硫酸反应,从而表面层成为富S1jl,其结果由于表层成为低膨胀性玻璃,冷却时产生压应力。
[0055]4、表面结晶法
[0056]表面结晶法与高温型离子交换不同的,但仅通过热处理在表层形成低膨胀系数的微晶体,从而使之强化的方法。
[0057]5、硅酸钠强化法
[0058]硅酸钠强化法是将硅酸钠(水玻璃)的水溶液中在摄氏100度以上数个大气压下处理,从而得到难以划伤表层的高强度玻璃。
[0059]使用物理方式对玻璃做强化的方式,可以包括但不限于,使用涂层的方式或是改变物品的结构。涂层根据需要喷涂的基质决定涂料的种类和状态,可以是瓷砖强化涂层、压克力涂层或是玻璃涂层等,在涂布时可以为液态或是气态涂布。改变物品的结构,例如在易破裂之处做结构性强化设计。
[0060]以上不论是化学方式或是物理方式不限于单一方式实施,可以混合物理方式中或化学方式中的任一种做任意搭配组合。
[0061]请参照图2与图12,一实施例中本实用新型所提出的LED直管灯的玻璃灯管具有结构强化端部,说明如下。灯管1包括主体部102和分别位于主体部102两端的端部101,灯头3套设于端部101外。其中,至少一个端部101的外径小于主体部102的外径。本实施例中,设置两个端部101的外径均小于主体部102的外径,端部101的剖面为一平面且与主体部102平行。具体地,灯管1的两端通过强化部处理,端部101形成强化部结构,灯头3套在强化后的端部101上,这样可以使得灯头3外径与灯管主体部102外径的差值变小,甚至完全相平,即灯头3外径与主体部102外径相等并使得灯头3与主体部102之间不会有缝隙产生。这样设置的好处在于,在运输过程中,包装承托物不会只接触灯头3,其能够同时接触灯头3和灯管1,使得整支LED直管灯受力均匀,而不会使得灯头3成为唯一受力点,避免灯头3与灯管端部101连接的部位由于受力集中发生破裂,提高产品的质量,并兼具美观的作用。
[0062]本实施例中,灯头3外径与主体部102外径基本相等,公差为在正负0.2mm (毫米)内,最多不超过正负1mm。
[0063]为了达到灯头3外径与主体部102外径基本相等的目的,根据不同的灯头3的厚度,强化后的端部101与主体部102外径的差值范围可以为1mm至10mm ;或者更优选的,强化后的端部101与主体部102外径的差值范围可以放宽至2mm至7mm。
[0064]本实施例中,参照图12,灯管1的端部101与主体部102之间平滑过渡,形成一个过渡部103,过渡部103的两端皆呈弧面,即过渡部103的两端沿轴向的剖面呈弧线状。进一步地,弧面介于过渡部103的外表面与主体部102的外表面之间,弧面的弧角大于九十度,且端部101的外表面为一连续面且与主体部102的外表面仍维持平行。
[0065]过渡部103的长度为1mm至4臟,如果小于1mm,则过渡部的强度不够;如果大于4_,则会减小主体部102的长度,减小发光面,同时需要灯头3的长度相应增加以与主体部102配合,造成灯头3的材料增加。在其他实施例中,则过渡部103也可以不为弧形。请参照图5与图13,图5示出了本实用新型实施例灯头3和灯管1的连接时的结构示意图,图13示出了图5中灯管1之过渡部103的结构示意图。如图5与图13所示,在本实施例中,灯管1系采用玻璃灯管,介于主体部102与端部101之间的过渡部103,会略呈由连续二个具有曲率半径R1、R2之弧面所构成的倒S形曲面,一般而言,二个弧面之曲率半径R1与R2之间的关系为R1〈R2,R1与R2的比例范围R1:R2为1:1.5至1:10,较佳的范围为1:2.5至1:5,最佳的范围为1:3至1:4,本实施例采用R1:R2约为1:3,如此一来,靠近端部101的过渡部103(即图13所示弧面凹向上的过渡部103),经过强化处理后,使得玻璃处于内层受拉,外层受压的状态,从而达到增加玻璃灯管1之过渡部103强度的目的。而靠近主体部102的过渡部103 (即图13所示弧面凹向下的过渡部103),经过强化处理后,使得玻璃处于内层受压,外层受拉的状态,从而达到增加玻璃灯管1之过渡部103强度的目的。
[0066]以T8的标准灯管为例,强化后的端部101的外径范围为20.9mm至23mm,如果小于20.9mm,则端部101的内径过小,导致电源部件无法插入灯管1中。主体部102的外径范围为25mm至28mm,如果小于25mm,则以现有的工艺条件,不方便对其两端作强化部处理,如果大于28mm,将不符合行业标准。
[0067]请参照图3与图4,本实用新型一实施例中,LED直管灯的灯头3包括一绝缘管302,一固设于绝缘管302外周面上的导热部303,以及设于绝缘管302上的两支空心导电针301。
[0068]请参照图5,本实施例中,导热部303的一端伸出绝缘管302面向灯管的一端,导热部303的伸出部分(伸出绝缘管的部分)和灯管1之间通过一热熔胶6粘接。进一步地,灯头3通过导热部303延伸至过渡部103,藉由导热部303与过渡部103紧密的接触,使得导热部303和灯管1通过热熔胶6粘接时,不会有热熔胶6溢出灯头3而残留至灯管1之主体主体部102。此外,绝缘管302面向灯管1的一端未延伸至过渡部103,即绝缘管302面向灯管的一端与过渡部103之间保持一定间隔。本实施例中,绝缘管302的材质并不限定使用塑料、陶瓷等材质,主要是在一般状态下不是电的良导体即可。再者,热熔胶6是一种组成物,包含一种为焊泥粉的材料,成份较佳的为:酚醛树脂2127#、虫胶、松香、方解石粉、氧化锌、乙醇等。本实施例中,松香为一种增黏剂,具有溶于乙醇,但不溶于水的特性。这种热熔胶6能够在高温加热的条件下,改变其物理状态发生大幅膨胀,达到固化的效果,加上本身材料的黏性,从而可以使灯头3与灯管1紧密接触,便于LED直管灯实现自动化生产。于本实施例中,热熔胶6在高温加热后会呈现膨胀并流动,随后冷却即会达到固化的效果,当热熔胶6从室温加热到摄氏200至250度的温度时,热熔胶的体积将膨胀至原来的1至1.3倍。当然,本实用新型热熔胶成份的选用并不限定于此,亦可选用高温加热至预定温度后而固化的成份。由于本实用新型热熔胶6不会由于电源组件等发热元器件发热形成高温环境而导致可靠性下降,可以防止LED直管灯使用过程中灯管1与灯头3的粘接性能降低,提尚长期可靠性。
[0069]具体地,在导热部303伸出部分的内周面与灯管1的外周面之间形成有一容置空间,热熔胶6填充于该容置空间中(图5中虚线B所示位置)。换言之,热熔胶6填充的位置借由与灯管1轴向垂直的第一虚拟平面(如图5中虚线B所画过的平面)通过:沿径向向内的方向,在第一虚拟平面的位置,依序排列为导热部303、热熔胶6和灯管1的外周面。热熔胶6涂覆厚度可以为0.2mm至0.5mm,热熔胶6会膨胀后固化,从而与灯管1接触并将灯头3固定于灯管1。并由于端部101和主体部102两者的外周面之间具有高度差,因此可以避免热熔胶溢出到灯管的主体部102部分上,免去后续的人工擦拭过程,提高LED直管灯的产量。
[0070]加工时,通过外部加热设备将热量传导至导热部303,然后再传导至热熔胶6、使热熔胶6膨胀后冷却固化,从而将灯头3固定粘接在灯管1上。
[0071]本实施例中,如图5所示,绝缘管302包括沿轴向相接的第一管302a和第二管302b,第二管302b的外径小于第一管302a的外径,两个管的外径差值范围为0.15mm至0.3mm。导热部303设于第二管302b的外周面上,导热部303的外表面与第一管302a的外周面平齐,使得灯头3的外表面平整光滑,保证整个LED直管灯在包装、运输过程中受力均匀。其中,导热部303沿灯头轴向方向的长度与绝缘管302的轴向长度比为1:2.5至1:5,即导热部长度:绝缘管长度为1:2.5至1:5。
[0072]在本实施例中,为了确保粘接的牢固性,本实施例设置第二管302b至少部分套设于灯管1外,容置空间还包括第二管302b的内表面和灯管的端部101外表面之间的空间。热熔胶6有部分填充于相互重迭(图5中虚线A所示位置)的第二管302b和灯管1之间,即部分热熔胶6位于第二管302b的内表面和端部101的外表面之间。换言之,热熔胶6填充于所述容置空间的位置借由一与灯管轴向垂直的第二虚拟平面(如图5中虚线A所画过的平面)通过:沿径向向内的方向,在第二虚拟平面的位置,依序排列为导热部303、第二管302b、热熔胶6及端部101。特予说明的是,于本实施例中,热熔胶6并不需要完全填满上述的容置空间(如图中容置空间还可以包括导热部303与第二管302b之间的空间)。制造时,当在导热部303和端部101之间涂覆热熔胶6时,可以适当增加热熔胶的量,使得在后续加热的过程中,热熔胶
当前第2页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1