焊锡膏、焊接成品及焊接方法

文档序号:3174048阅读:407来源:国知局
专利名称:焊锡膏、焊接成品及焊接方法
技术领域
本发明涉及用于在印刷电路基板上焊接半导体集成电路芯片等电子部件时的无铅的焊锡膏、焊接成品及焊接方法。
作为上述焊锡膏,以往因具有熔融温度(例如熔点为183℃左右)低的优点而常用Sn-Pb(锡铅)系焊锡膏,但是最近因为判明了铅会成为引起环境污染等的原因,所以产生了主要使用Sn-Zn(锡锌)系或Sn-Zn-Bi(锡锌铋)系焊锡膏的倾向(例如参照日本专利文献1)。作为这种Sn-Zn系焊锡膏,Sn-9Zn焊锡膏(例如熔点(共晶温度)为197℃左右)等已被公知;作为Sn-Zn-Bi系焊锡膏,Sn-8Zn-3Bi焊锡膏(例如熔点为187(固相温度)~197(液相温度)℃左右)等已被公知。而且,元素符号前的数值表示焊锡合金中的重量%,任何一种都以Sn为主体成分。
上述两种焊锡膏,虽然不如Sn-Pb系焊锡膏的熔点低,但是因为不含导致环境污染的铅,所以被广泛使用。
而且,在这种焊锡膏无铅化的同时,也开发出了以降低焊接电阻为目的在电子部件端子的表面上通过镀金等形成薄金属层的部件。[日本专利文献1]日本专利公开11-138292号公报如上所述,将表面上形成金属层的端子,利用上述焊锡膏进行焊接时,在这个焊接部分的界面上,焊锡膏中的Zn与端子侧的金(Au)反应而形成层状化合物Au-Zn。但是这个Au-Zn层对于热循环等热冲击不具有充分的强度,所以比较容易脱落而存在可靠性下降等缺点。特别是,这种现象,在端子的金属层非常薄时,例如0.1μm左右时并不明显,但是达到更厚的膜厚时会频繁产生,所以需要尽快解决上述问题。
另外,在印刷电路基板的焊接区等使用铜时,这个焊接区表面的铜(Cu)可能与焊锡膏中的Zn反应而形成层状化合物Cu-Zn。存在很多这种Cu-Zn层时,会产生与上述Au-Zn层相同的问题,对于可靠性带来不良影响。
从而,需要尽量阻止如上所述的化合物Au-Zn或Cu-Zn的形成,用化合物Sn-Cu支配焊接部。
本发明着眼于以上问题,为了有效解决而提出。本发明的目的在于,将表面具有金属层的端子利用焊锡膏进行焊接时,提供对于热冲击强度高,且可以提高可靠性的焊锡膏、焊接成品及焊接方法。
本发明提供的焊锡膏,其特征在于,将Sn-Zn系第一焊锡粉,和其组成的固相温度低于前述第一焊锡粉的共晶温度或固相温度低的第二焊锡粉,在焊剂中混合而形成。
本发明还提供一种焊锡膏,其特征在于,上述第二焊锡粉其组成的液相温度低于前述第一焊锡粉的共晶温度或固相温度。
本发明提供一种焊接成品,其特征在于,利用将Sn-Zn系第一焊锡粉和其组成的固相温度低于前述第一焊锡粉的共晶温度或固相温度低的第二焊锡粉在焊剂中混合而形成的焊锡膏,将部件焊接在印刷电路基板上。
本发明提供将具有至少表面形成金属层的连接端子的部件进行焊接的方法,其特征在于,使用将Sn-Zn系第一焊锡粉,和其组成的固相温度低于前述第一焊锡粉的共晶温度或固相温度低的第二焊锡粉,在焊剂中混合而形成的焊锡膏。
图2为表示

图1中一部分的放大截面图。
图3为表示以往使用Sn-8Zn-3Bi焊锡膏时的焊接部的放大截面图。
图4为表示使用本发明的焊锡膏的实施例1时的两处焊接部的放大截面图。
图1为表示利用本发明的焊锡膏将电子部件进行焊接时的状态的图,图2为表示图1中一部分的放大截面图。[实施例1]首先,本发明的焊锡膏,例如在印刷电路基板2的表面上,将集成电路的电子部件等部件4通过回流进行焊接时使用。在这个印刷电路基板2的表面上,形成由导电性金属,例如铜构成的多个焊盘6,在这个焊盘6的上表面通过分配器或丝网印刷等选择性形成本发明的焊锡膏8。
而且,在部件4的下表面,对应上述焊盘6形成多个端子10,在这个端子的表面上,为了确保焊接后的焊接强度通过镀金等形成规定厚度t的金属层12。但也可以由金属形成此端子10的整体。而且,一般在一个印刷电路基板2上焊接多个如上所述的部件4。
另外,以在该印刷电路基板2上搭载上述部件4的状态,通过将其在加热炉内加热,如图2(B)所示,可以通过上述焊锡膏8将两者焊接。这样,形成了本发明的焊接成品。
此时,本发明的焊锡膏8,如上所述为了防止环境污染,使用无铅物质。也就是说,上述本发明的焊锡膏8,通过将Sn-Zn系第一焊锡粉,和其组成的固相温度低于前述第一焊锡粉的共晶温度或固相温度低的第二焊锡粉,在焊剂中混合而形成。
具体来说,上述第一焊锡粉可以使用Sn-9Zn(Zn为9重量%),第二焊锡粉可以使用Sn-10Bi-2.8Ag-0.6Cu(Bi为10重量%,Ag为2.8重量%,Cu为0.6重量%)。焊锡粉,仍然都以锡(Sn)为主体。此时,在整个粉中所占的重量,例如上述第一焊锡粉为70%,上述第二焊锡粉为30%,可以用下式表示。
(Sn-9Zn)×70%+(Sn-10Bi-2.8Ag-0.6Cu)×30%将这些第一及第二焊锡粉,在焊剂中混合而形成糊状。这个焊锡膏熔融后的组成如下。
Sn-6.3Zn-3Bi-0.84Ag-0.18Cu在上述情况下,第一焊锡粉的共晶温度约为197℃,第二焊锡粉的固相温度为低于上述第一焊锡粉的共晶温度的181℃,液相温度约为205℃。
通过使用在焊剂中混合这样的第一和第二焊锡粉而形成的焊锡膏8,在加热炉内第二焊锡粉在第一焊锡粉之前开始熔融,其结果,在端子10表面的金属层12的金(Au),或焊盘6表面的铜(Cu)扩散到上述已熔融的第二焊锡粉中,与在这个第二焊锡粉中多量存在的Sn反应而结合,形成对于热冲击没有不良影响的Au-Sn或Cu-Sn。从而,在进一步升温而第一焊锡粉熔融时,与此溶液中的Zn反应的熔融Au或熔融Cu变得非常少,其结果,可以积极阻止导致对于热冲击的耐久性下降的Au-Zn层或Cu-Zn层的形成。即,在第一焊锡粉熔融之前,首先熔融含有容易与Au或Cu结合的材料的,此时为含有多量Sn的第二焊锡粉,使Sn与Au或Cu首先反应,从而阻止Au-Zn层或Cu-Zn层的形成。
另外,在回流工序中,考虑第一焊锡粉为共晶时,其共晶温度与第二焊锡粉的固相温度之间的温度范围,或第一焊锡粉不是共晶时,其固相温度与第二焊锡粉的固相温度之间的温度范围,以及升温梯度而设定温度曲线,可以进一步促进Au-Sn或Cu-Sn的生成。
这种作为方法,可以进一步有效阻止Au-Zn层或Cu-Zn层的形成。[实施例2]另外,作为实施例2,前述第二焊锡粉的组成,其液相温度低于前述第一焊锡粉的共晶温度或固相温度。具体来说,作为实施例2,上述第一焊锡粉可以使用Sn-9Zn(Zn为9重量%)[这与实施例1相同],第二焊锡粉可以使用Sn-40Bi-0.1Cu(Bi为40重量%,Cu为0.1重量%)。焊锡粉,仍然都以锡(Sn)为主体。此时,在整个粉中所占的重量,例如上述第一焊锡粉为70%,上述第二焊锡粉为30%,可以用下式表示。
(Sn-9Zn)×70%+(Sn-40Bi-0.1Cu)×30%将这些第一及第二焊锡粉,在焊剂中混合而形成糊状。这个焊锡膏熔融后的组成如下。
Sn-6.3Zn-12Bi-0.03Cu在上述情况下,第一焊锡粉的共晶温度如实施例1的说明约为197℃,第二焊锡粉的固相温度为低于上述第一焊锡粉的共晶温度的138℃,液相温度为低于上述第一焊锡粉的共晶温度的170℃。
在该实施例2中,与前述实施例1一样,可以积极阻止导致对于热冲击的耐久性下降的Au-Zn层或Cu-Zn层的形成。即,在第一焊锡粉熔融之前,首先熔融含有容易与Au或Cu结合的材料的,此时为含有多量Sn的第二焊锡粉,使Sn与Au或Cu首先反应,从而阻止Au-Zn层或Cu-Zn层的形成。
而且,如图2(A)所示,在端子10中形成的金属层12的厚度t一般为例如0.3μm以上,根据制造厂商而不同,例如约为0.6μm左右。
此时,进行了本发明的焊锡膏与以往焊锡膏相对热冲击的评价,下面对其评价结果进行说明。
图3为表示使用以往Sn-8Zn-3Bi焊锡膏时的焊接部的放大截面图,图4为使用前面说明的本发明焊锡膏的实施例1时的两处焊接部的放大截面图,都用显微镜照片和其模式图来表示。此时,端子的金属层12厚度t(参照图2(A))为0.6μm。另外,对于热循环施加了重复100次从-25℃(放置15分钟)到125℃(放置15分钟)之间的热冲击。
如图3所示,使用以往焊锡膏时,在端子与焊锡膏的界面部分明显产生一层Au-Zn层。而且,施加上述100次热循环的结果,这个Au-Zn层中产生剥离而电子部件脱焊。
相对于此,使用如图4所示本发明的焊锡膏时,在端子与焊锡膏的界面部分没有产生Au-Zn层。但是,形成被微细分割的Au-Zn层14熔融之后微量分散在焊锡膏内的状态。对其施加如上述100次热循环的结果,在界面部分没有发现剥离或脱落,而且也没有发现电子部件的脱焊,可以确定耐久性高,且可靠性高。
另外,将端子的金属层12的厚度t设定为0.3μm之后,进行上述评价试验,得到了与上述评价结果相同的结果。
在上述实施例中,作为第一焊锡粉使用了Sn-9Zn焊锡粉,但是没有限定于此,可以使用其它重量比,例如Sn-8Zn或Sn-11.5Zn。
而且,在实施例1中,作为第二焊锡粉,使用了Sn-10Bi-2.8Ag-0.6Cu,但是没有限定于此,可以使用第二焊锡粉的固相温度低于第一焊锡粉的共晶温度或固相温度的其他物质,例如Sn-13Bi-3Zn。
进而,作为实施例1、2以外的焊锡膏的具体例,有第一焊锡粉使用Sn-8Zn,第二焊锡粉使用Sn-13Bi-3Zn,各自按9∶1混合的焊锡膏。这个焊锡膏熔融后的组成为Sn-7.5Zn-1.3Bi。
而且,作为其他例,有第一焊锡粉使用Sn-9Zn,第二焊锡粉使用Sn-13Bi-3Zn,各自按9∶1混合的焊锡膏。这个焊锡膏熔融后的组成为Sn-8.4Zn-1.3Bi。
本发明者潜心研究结果,提出了可以作为第一焊锡粉和第二焊锡粉使用的系列及组成比例,和第一焊锡粉与第二焊锡粉的有效配合比例。下面对此进行说明。
首先,可以作为第一焊锡粉使用的焊锡粉系列为Sn-Zn系,组成比例a、b、c(重量%)如下。此时所述的Sn-Zn系,表示主要成分的系,在如下所示范围中可以含有α(Bi、In等)。
<可以作为第一焊锡粉使用的系列与组成比例>
Sn-aZn-bα(5≤a≤12,0≤b≤5)其中,α为Bi、In等。
对于第二焊锡粉如下所述。
<可以作为第二焊锡粉使用的系与组成比例>
Sn-cBi-dAg-eαSn-cBi-dZn-eβSn-cBi-dIn-eα(1≤c≤45,0≤d≤5,0≤e≤5)。c~e表示组成比例(重量%)。而且,α为Ga、Al、Cu、Zn等,β为相对α不含Zn的物质。而且,上述①~③有重复的情况(例如,d=0,α、β为相同成分时),但是为了便于理解没有一一赘述。
另外,第一焊锡粉与第二焊锡粉的配合比例,将其比例设定为A∶1时,1.5≤A≤10。
在以上说明的系列、组成比例及配合比例的范围内,可以选择适当的组成和各种比例而形成焊锡膏。
在以上说明的实施例中,对于作为电子部件使用集成电路时的例进行了说明,但是没有限定于此,在使用其它电子部件,例如连接接头时也适用本发明。发明效果如上所述,根据本发明的焊锡膏、焊接成品及焊接方法,可以发挥如下优良的作用效果。
将表面具有金属层的端子利用焊锡膏进行焊接时,对于热冲击的耐久性强,且可以提高可靠性。
权利要求
1.一种焊锡膏,其特征在于,将Sn-Zn系第一焊锡粉和其组成的固相温度低于前述第一焊锡粉的共晶温度或固相温度的第二焊锡粉在焊剂中混合而形成。
2.根据权利要求1所述的焊锡膏,其特征在于,第二焊锡粉,其组成的液相温度低于前述第一焊锡粉的共晶温度或固相温度。
3.一种焊接成品,其特征在于,利用将Sn-Zn系第一焊锡粉和其组成的固相温度低于前述第一焊锡粉的共晶温度或固相温度的第二焊锡粉在焊剂中混合而形成的焊锡膏,将部件焊接在印刷电路基板上。
4.一种焊接方法,将具有至少表面形成金属层的连接端子的部件进行焊接,其特征在于,使用将Sn-Zn系第一焊锡粉和其组成的固相温度低于前述第一焊锡粉的共晶温度或固相温度的第二焊锡粉在焊剂中混合而形成的焊锡膏。
全文摘要
本发明提供一种利用焊锡膏焊接表面具有金属层的端子时,对于热冲击的耐久性强,且可以提高可靠性的焊锡膏。将Sn-Zn系第一焊锡粉,和其组成的固相温度低于前述第一焊锡粉的共晶温度或固相温度低的第二焊锡粉,在焊剂中混合而形成焊锡膏。这样,例如焊接表面具有金属层的连接端子(10)的部件(4)时,金(Au)扩散到上述已熔融的第二焊锡粉中,与在这个第二焊锡粉中的Sn反应而结合,形成对于热冲击没有不良影响的Au-Sn。从而,在进一步升温而第一焊锡粉熔融时,待与此溶液中的Zn反应的熔融Au变得非常少,其结果,可以积极阻止导致对于热冲击的耐久性下降的Au-Zn层的形成。
文档编号B23K35/26GK1445049SQ0312063
公开日2003年10月1日 申请日期2003年3月17日 优先权日2002年3月19日
发明者金井和久, 竹内诚 申请人:日本胜利株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1