制造装置、制造设备和方法与流程

文档序号:13036153阅读:238来源:国知局
制造装置、制造设备和方法与流程

本发明涉及具有方法和装置主权利要求前序部分所述特征的一种制造装置、一种制造设备和一种方法。



背景技术:

在实践中,用于车辆车身焊装(rohbau)的制造设备是已知的,其中,生产区域被分成两个或更多单独的线,在这些线中,各个制造单元按照输送技术被固定地彼此链接。制造步骤和所涉及到的制造单元的次序是固定的。单元到单元的工件运输大多数情况下是通过处理机器人进行。这些制造设备可以针对不同类型的车辆车身被灵活地构成,在此,这种固定的链接需要被维持。



技术实现要素:

本发明的目的是提供一种改进的制造技术。

本发明的目的通过装置主权利要求所述的特征来实现。

根据本发明的自动化制造技术,也就是制造装置、制造设备和制造方法的特征在于高灵活性。此外还能获得更好的可利用性和可优化性以及更高的经济效益。

设置在制造设备中的一个或多个制造装置可以根据现场检测到的负载收纳器件的类型识别标志独立地执行加工过程。在此,这些制造装置根据负载收纳器件的类型执行不同的加工过程。为此也可以使用不同的特定于应用的工具。制造装置和在那里执行的加工过程还可以根据需要被快速地改装。

不同的类型识别标志可以配属于不同的工件。这种对应关系可以自由地选择并且可以改变。根据所检测到的负载收纳器件的类型,控制器还能够别出对应的工件。通过负载收纳器件可以对工件进行精确且适于加工地定位。在制造设备内部可以使用至少两个不同类型的负载收纳器件。优选使用许多不同的类型。在较大的制造设备内部,可以在不同的和在空间和功能上分开的设备区域上使用相同的类型。

在一种设计方案中,类型识别标志可以被编码地构成,并且除了类型说明之外还包含其他的信息和数据。为此可以存在多个识别区。附加的信息和数据可以包括:负载收纳器件的身份说明,和/或工件或结构图形说明,和/或将要最后访问的制造装置或制造单元的识别标志。

在制造装置中可以进行对多件式工件或结构组件的加工和操纵。这可以包括:工件部件的组装;将工件从负载收纳器件中提升出来并松开,以便在浮动位置上做进一步加工。这种工件加工也可以发生在负载收纳器件上,负载收纳器件可以为此以适当的方式连同工件被定位在预定的位置中。在此,负载收纳器件可以与输送器件保持连接或与其分开。

此外,可以将工件从一个负载收纳器件转运到另一个类型相同或不同的负载收纳器件上。根据一种独立的发明构思,设置用于工件、特别是用于车身构件的自动化制造装置,该自动化制造装置具有至少一个被程序控制的制造器具和加工区域,其中,在被设计用于顺序接收至少两个相互不同类型的负载收纳器件的加工区域上设置一制造器具,该制造器具被设计用于操纵工件,特别是被设计用于在加工过程中浮动地保持工件,和用于将工件转运到相同或不同类型a、b、c、d的另一负载收纳器件上。本发明也涉及一种具有这种制造装置的制造设备。

本发明还涉及一种用于在自动化制造装置中加工工件、特别是车身构件的方法,该制造装置具有至少一个被程序控制的制造器具和一加工区域,该方法具有下列方法步骤:

从第一负载收纳器件中接收通过至少一个制造器具的工件;

将第一负载收纳器件移出第一制造装置的加工区域;

将与第一负载收纳器件不同类型的第二负载收纳器件移动到第一制造装置的加工区域中,并将工件存放在第二负载收纳器件上。

这种转运可以直接进行,或者通过在加工区域上的中间存放进行。在这里也可以进行工件加工。

相关的输送技术可以在该制造装置中被转接、简化并降低成本。在制造流程中可以更换负载收纳器件,在此,其他的被加工的工件或新的工件部件可以与第二或其他负载收纳器件一起被输送。此外,负载收纳器件或输送装置能够至少暂时地脱离加工过程并被更好地装载。在制造装置中、特别是在位于那里并具有一个或多个制造器具的加工区域上,在制造器具相同或不同类型的负载收纳器件之间转运工件具有独立的发明意义。这也可以在没有类型识别标志以及对类型识别标志的检测的情况下使用。

该制造装置可以被设计用于主过程,并可以与用于工件上的副过程的另一制造装置连接。该另一制造装置被用作加长的工作台。在此例如可以执行在应用灵活的制造装置中不能做到或很难做到的过程。多个其他的制造装置可以按照象限矩阵的形式与主制造装置连接。此外,可以通过多样化和同时执行多个过程来节省生产时间并提高制造能力。工件更换可以通过位于制造装置的边缘区域上的接口进行。这些接口可以位于包围各个制造装置的保护分离装置上。位于输送路径上的接口可以被构造为保护分离装置中的用于空的和被装载的输送器件的闸口。

制造装置、制造方法和制造设备的技术方案可以有利地与上述聚焦于工件转运的独立发明构思进行组合。

根据本发明的制造技术能够对制造设备实行分散控制并降低和变通控制成本。此外,还可以快速、低成本地实现对制造设备和制造流程的改装以及对额外的工件、加工过程和制造流程的整合。而目前常见的包括有所有过程的整体系统控制可以被取消。

优选为制造单元形式的制造装置本身是高度灵活的,并可应用于不同的工件和用途,例如接合过程、特别是熔焊、钎焊或粘接过程,改型过程,装配过程,涂覆过程等。为此所需的特定于应用的工具可以被预先保持在外部存储装置中并借助于输送装置按照要求提供给制造装置,以制造装置的自动化的、工具技术的装配和改装。相同的输送装置也可以被用于运输工件。

自动化的制造设备具有灵活的、可根据需要改装并以输送技术实现的对制造装置的链接,这种链接一方面是制造装置相互之间的链接,另一方面是与存储装置、特别是用于特定于应用的不同工具和用于不同工件的存储装置的链接。

高度灵活的输送装置可以以任何合适的方式构成。优选地,输送装置包括多个独立的并能单独控制的输送器件,这些输送器件在多个不同的输送路径上运动。优选存在输送路径的网络,在这些输送路径上,输送器件沿预先给定的、在制造装置与存储装置之间的输送轨迹运动,在此,该输送轨迹能够被自由地选择并编程。此外,输送装置对于特定于应用的工具和工件的运输是灵活的。为此,需要提供合适的负载收纳器件,这些负载收纳器件与输送器件固定地或可更换地连接。输送器件和/或负载收纳器件同样可以储存在一个或多个存储装置中,并根据需要被调出和使用。

对一件式或多件式工件的加工可以在一个制造流程中并在一包括多个制造步骤或制造阶段的序列中进行,其中,这些制造步骤在一制造设备的多个制造装置中通过各自选出的控制程序来分别独立地控制,而制造流程由该制造设备的仓库管理器通过移动负载收纳器件或输送装置来控制。

优选将多个控制程序存储在控制装置的存储器件中,特别是存储在刚好一个存储器件中。进一步优选地,所述多个控制程序针对至少两个类型的负载收纳器件包括至少一个控制程序。换句话说,存储器件包含至少两个控制程序,更确切地说,针对至少两个类型的负载收纳器件中的每一个均具有至少一个控制程序。例如,可以设置第一控制程序,用于控制至少一个制造器具来加工或处理第一类型的负载收纳器件,并设置第二控制程序,用于控制至少一个制造器具来加工或处理第二类型的负载收纳器件。需要指出的是,存储器件也可以具有两个或更多个用于加工或处理或操纵单一类型的负载收纳器件的控制程序。此外,存储器件还可以具有至少一个用于所有类型的负载收纳器件的控制程序。

在一种实施方式中,为至少一个制造装置配设用于负载接收器件的停放区域并前置连接。如果多个不同类型的负载收纳器件应该以预定的顺序操控制造装置但却以错误的次序到达,则可以使用该停放区域作为缓冲存储部并恢复顺序。这对于在加工区域上将工件从一个负载收纳器件转运到另一个负载收纳器件是特别有利的。

在一种设计方案中,不同类型的负载收纳器件分别在自有的制造环路中沿可编程的、优选为环形的输送轨迹运输。该制造环路可以延伸经过一个或多个配属的制造装置,并可能经过用于工件和/或工具和/或lam的存储装置。该制造环路可以例如与用于工件的制造流程和在此情况下设立的、用于生产制造产品或中间产品的制造步骤相匹配。形成环路能够简化输送技术和编程技术上的工作并缩短输送路线。一个或多个输送器件可以沿制造环路移动。用于工件的存储装置可以配属有用于已装载的负载收纳器件的缓冲存储部,并可根据需要将其整合到制造环路中。加工时间和装载时间可以脱离,并且可以降低用于运输负载收纳器件的输送器件的数量。

该自动制造技术特别有利于对于车辆车身的焊装。该自动制造技术也可以成功地使用在其他的技术领域中。

本发明的其它优选的设计方案在从属权利要求中给出。

附图说明

在附图中示例性和示意性地示出了本发明。其中:

图1:具有一制造区域和多个存储装置的制造设备的示意图;

图2:控制层次的示意图;

图3:制造装置的示意图;

图4:具有多个制造装置和存储装置的制造区域的示例图;

图5:制造区域的另一示例,包括用于对制造装置进行工具技术的装配和改装的存储装置;

图6:根据图5的制造区域的用于加工操作的另一局部视图,包括用于工件的存储装置;

图7:制造设备的另一种变型;

图8:包括分段、序列和分散的制造流程;

图9:用于如图8所示制造流程的控制理念;

图10:带有工具供给的如图9所示的控制理念;

图11:制造设备的另一种变型;

图12:控制和制造流程中的模块图;

图13:控制和制造流程中的另一模块图,其中包括停放区域;

图14:制造设备的又一种变型。

具体实施方式

本发明涉及用于工件2、2′的一种制造设备1和一种制造方法。本发明还涉及一种用于工件2、2′和在其处进行的制造过程的制造装置18-22。

制造设备1及其组件、特别是制造装置18-22是自动化的并被程序控制的。

工件2、2′可以是任意的类型和大小。它们可以是一件式或多件式的。优选是车辆车身的车身构件。制造设备1例如可以用于车辆车身的焊装。工件2和2′被不同地构成。

如图8至图10所示,在自动化制造方法的执行过程中,可以按照一系列的制造步骤44-47以不同的制造过程处理一个或多个工件2、2′。步骤数量取决于过程体量、负荷率、进展规定和其他的标准。在此例如是在焊装中通过对工件部件的组装和接合来生产制造产品43、特别是车身组件。制造产品可以是中间产品,并基于该中间产品通过其他的过程,例如与其他的工件部件或另外制造的中间产品的结合,来产生最终产品。制造步骤44-47优选在多个制造装置18-22中按照一定的顺序被依次执行。在此如图8和图9所示,是在一个制造步骤44-47中执行一个或多个过程阶段。

这些制造过程可以涉及到不同的技术,例如接合、特别是熔焊、钎焊或粘接,材料的涂覆和刮除,热处理,改型,切削加工,组装和装配过程等。

制造设备1、制造方法和制造装置18-22可以被灵活地并特定于应用地调整。特定于应用指的是根据不同的制造过程和/或不同的工件2、2′所进行的调整。

对于这些不同的过程需要不同的特定于应用的工具8。特定于应用的工具8可以是单个工具或者成组工具。它们可以包括多个器械部分41,如图8所示。

为了简单起见,在下文中将特定于应用的工具8称为工具8。

图1示出了制造设备1及其组件的示意图。制造设备1具有制造区域3,在该制造区域中设置有多个制造装置18-22。制造设备1还具有用于工件2、2′的存储装置10和用于所述不同的工具8的存储装置11。此外还存在输送装置4,该输送装置使制造装置18-22彼此并与优选为外部的存储装置10、11灵活地连接。存储装置10、11也被称作仓库10和器械库11。

输送装置4可以按照任何适当的形式构成。在所示出的实施方式中,输送装置具有多个自主的和可单独控制的输送器件5以及多个输送路径7,输送器件5沿这些输送路径移动。输送路径7优选被设置成一网络并多次交叉。

一输送路径7可以任意延伸穿过一制造装置18-22。多个连续的输送路径7可以彼此衔接并共同形成一输送线路70。

输送器件5优选能够被自主地和单独地控制,并且能够根据需要转向。输送器件例如被构造为与地面通道相联系的无人驾驶运输车辆,即所谓的agv或ftf。输送器件可以弯道行驶或在必要时也可以在该部位上掉头。输送器件必要时也可以例如借助于麦克纳姆轮全向地运动。替代地,输送器件5可以被悬挂地设置,并且例如在建于基架上的输送轨道上行驶,该输送轨道带有道岔。此外,输送器件可以被构造为滚子输送器或带式输送器。输送装置4可以具有多个不同的输送器件5。

输送器件5在输送路径7的网络中和输送线路70、71中沿着可自由编程的输送轨迹移动。输送线路70、71可以朝向相反的方向。输送线路也可以被构造为方向相反并通过箭头指示行驶方向的单行道。通过横向连接部,特别是通过一个或多个接入廊道66,可以形成输送环路48、49,这些输送环路在使多个制造装置18-22链接的情况下也提供了制造环路。制造环路或输送环路48、49可以彼此相交。

在一个或多个接入廊道66上,输送器件5可以有选择地沿着输送路径7或者说输送线路70从一个制造装置继续行驶到另一个制造装置18-22中,或是在横向连接部上转弯并驶向另一输送线路71。这种转弯可以通过输送器件5自身的转向运动,通过借助于转盘的转换或通过其他的方式进行。

在接入廊道66或者说横向连接部中,可以构成用于暂时停放空的或被装载的输送器件5的停放区域53。由此可以形成缓冲存储部,其用于对周期时间差异或干扰阶段的平衡,或者用于序列恢复或其他的目的。

优选地,输送器件5在不同的实施方式中分别具有可单独控制的自有驱动器和可编程的自有控制器。能量供给可以按照任意适当的方式进行,例如通过固定的或不固定的能量供给装置33。

为了从存储装置10、11向制造区域3运输工件2、2′和/或工具8并返回以及进入到制造装置18-22之间的制造区域3中,输送器件5分别承载有一个或多个已调整的负载收纳器件6。这些负载收纳器件在下文中被简称为lam。

lam6可以固定地或可更换地设置在输送器件5上。lam6可以针对某种工件2、2′和/或工具8具有固定的适配性。替代地,可以将其设计为灵活的或可调节地并能够适应不同的情况。lam6可以针对工件2、2′和/或工具8具有被不同调整的收纳部和保持器件,并将它们保持在所定义的位置上。lam6可以例如具有作为基部的板形或框架形承载件。

多个lam6被不同方式的构成并形成不同的类型a、b、c、d。它们在此可以根据不同的工件2、2′被调整。可调节的lam6可以形成两个或更多个不同的类型。不同的lam类型a、b、c、d的数量可以是任意的。数量为两个、三个、四个或更多个。该数量可以取决于制造设备1中待制造的过程体量,特别是取决于不同的工件2、2′的数量。针对工具8可以存在其他的lam类型。

不同类型的lam6具有对应它们各自的类型a、b、c、d的类型识别标志37。类型识别标志可以被固定地设定或者是可改变的。可调整的lam6也可以具有可调整的类型识别标志37。类型识别标志可以信息技术和控制技术地与特定的工件2、2′绑定。它们能够代表工件2、2′和/或工具8的类型。优选地,类型识别标志37与lam6上的工件2、2′和/或工具8的状态无关。因此,类型识别标志37在经由多个制造步骤44-47的制造流程中不发生改变。但是,类型识别标志37可以因为其他的原因被改变,例如在对lam6做技术改装时。

类型识别标志37可以被不同地设计。类型识别标志例如可以由安装在lam6上的编码形成,该编码可以被任意地构成,例如机械地、磁地、电地、感应地构成,特别是被构造为rfid芯片。编码可以包含有更多的信息,例如lam6的识别编号。替代地或附加地,类型识别标志37可以由lam6的颜色或形状特征形成。图3示出了这样的设计方案。

制造设备1具有与输送装置4相连接的、用于不同的lam6的存储装置9。存储装置9、10、11可以被相同地构成。这样的存储装置9、10、11例如可以具有用于工件2、2′和/或工具8和/或lam6的仓储区域32和与输送装置4连接的装载区域30,在该装载区域中设有装载装置31。装载装置31例如包括一个或多个装载机器人,这些装载机器人被固定地设置,或者被设置为能够借助于行进轴沿着单个的或一排带有输送器件5的lam6移动。

多个制造装置18-22被线形分布或面形分布地设置在制造区域3中。输送装置4被设计用于:使至少一个类型、特别是所有类型a、b、c、d的负载收纳器件6向一个或多个制造装置18-22位移和从中移出。制造装置18-22在多个侧面被输送路径7包围。输送路径7可以分别在一制造装置18-22中延伸并优选穿过该制造装置。由此可以使带有lam6的输送器件5移动各个制造装置18-22中并优选穿过制造装置。优选地,制造装置18-22以均匀矩阵、特别是笛卡尔矩阵的形式分布地设置。

至少多个制造装置18-22彼此相同地构成。优选将这些制造装置设计为单个的制造单元23。替代地也可以有其他的设计,例如构造为多件式的。在图3中示例性示出了单元式的制造装置18-22。

所示出的制造装置18-22、特别是制造单元23自动地工作。它们具有单一的、优选在中央的工位或者说加工区域26,并具有一个或多个应用灵活的制造器具或制造设备28、29。替代地,可以存在多个工位或加工区域26。该加工区域26被用于顺序地接收至少两个不同形式或者说不同类型的lam6以及它们各自夹带的工件2、2′和/或工具8。

加工区域26位于在制造装置18-22中延伸或延伸穿过制造装置(盲道或贯穿通道)的输送路径7上。该优选直的输送路径7可以仅朝向一个或优选朝向两个方向通行。制造装置18-22在加工区域26上具有在图3中示意性示出的定位装置58,该定位装置用于面向过程地定位lam6和/或输送器件5。就此还可以对一个或多个被夹带的工件2和/或一个或多个被夹带的工具8进行精确定位。

定位装置58可以机械地作用在lam6和/或输送器件5上。在其他的变型方案中,可以由能被接触式或非接触式检测的标记在输送路径7的区域中形成定位装置58,该定位装置通过输送器件5来检测,并负责实现对输送器件的程序控制且自驱动的定位。在另一种变型中,可以针对lam6和/或输送器件5的纵向和侧向定位设置可枢转到移动路径中的止挡件。定位装置58也可以由输送器件5的程序化控制器和输送器件的集成的路径测量或导航来控制技术地形成。

制造器具28、29可以相同或不同地构成并各自单个或多重地存在。至少一个制造器具29用于对位于加工区域26中、特别是位于lam6上的工件2、2′进行加工。制造器具29也可以附加地操纵工件2、2′。优选地,使用另一附加的制造器具28来操纵工件2、2′。

制造器具28、29例如围绕加工区域26分布地设置。它们特别是位于加工区域26和输送路径7的两侧。制造器具28、29可以被固定地或借助于附加轴可移动地设置。应用灵活的制造器具28、29优选被设计为多轴的和可编程的工业机器人。这些制造器具在它们的从动元件上、特别是在它们的手部法兰上具有自动更换联接器。由此使得制造器具能够自动地接收、使用所需的工具8或器械部分41,并根据需要自动地递送和更换。替代地,制造器具29也可以被设计为其他的方式,例如被设计为工具机。

应用灵活的制造器具28、29优选被设置用于不同的任务。制造器具29例如具有例如可更换的、特定于应用的工具8,用于执行对应的制造过程,该工具例如被设计为接合工具、改型工具等。制造器具29例如被设计为焊接机器人。另外的制造器具28同样承载着可更换的特定于应用的工具8,这些工具例如被设计用于在制造过程中操纵一个或多个工件2。这些工具8可以是抓取工具。这些制造器具28例如被设计为处理机器人。

在操纵过程中可以使工件部件运动并且例如被组装。此外,工件2、2′可以脱离出lam6。在此,工件可以被抬起并保持在浮动位姿中,在此必要时继续进行加工。与工具2、2′分开的lam6可以在该继续加工期间运动并被送出制造装置18-22。此外,脱离出来的工件2、2′可以存放在被运输到加工区域26中的第二lam6上并被转运。第二lam6可以是相同的类型或另一种类型。还可以将其他的工件输送到第二lam6上。

制造装置18-22、特别是制造单元23具有一个或多个用于所述工具8的存储器27。存储器27可以具有多个用于不同工具8的收纳空位。这些存储器可以被驱动并且是可控的。这些存储器例如可以被设计为转动存储器。存储器27分别位于制造器具28、29的工作区域中。在所示出的实施例中,在角落区域中设有四个存储器27,这些存储器分别对应一制造器具28或者说处理机器人。

此外如图3所示,制造装置18-22还具有控制装置38,该控制装置具有存储器件39,该存储器件用于多个特定于应用的且根据不同的lam类型a、b、c、d进行调整的控制程序40。至少存在针对两个类型a、b,优选针对所有类型a、b、c、d的lam6的控制程序并被存储。控制装置38本身是中性的,并通过配置有在下面将要阐述的特定于应用的过程阶段而成为过程管理器。

制造装置18-22还具有用于类型识别标志37的检测装置36。检测装置36可以是控制装置38的一部分。检测装置36可以设置在制造装置18-22的内部、优选设置在入口区域上。替代地,该检测装置可以设置在外部并例如设置在输送路径7上。

控制装置38根据检测装置36所检测到的类型识别标志37来确定位于加工区域26上的lam6的类型a、b、c、d。检测装置36可以具有光学传感器、电磁传感器、触觉传感器、电传感器和/或磁传感器。传感器特别可以被构造为天线、近场通信装置、电容传感器或电感传感器。

制造装置18-22及其制造器具28、29以及可能的其他装置组件具有应用中性的基础设计方案,并通过装配特定于应用的工具8和通过重新编程或者说通过控制程序40根据各自的应用加以调整。通过这样的基础设计方案以及这样的装配和调整,使得它们是应用灵活的。

控制装置38根据所检测到的并确定的lam类型a、b、c、d从所存储的多个程序中选出一个控制程序40并执行该控制程序。为此,控制装置38与至少一个制造器具28,29相连接并控制该至少一个制造器具。类型识别标志37或者说lam类型对应一特定的工件2、2′。所选出的控制程序40基于对该工件2、2′的加工进行调整。

制造装置18-22、特别是制造单元23还可以具有一个或多个用于工作介质、特别是电流、流体介质等的供给装置以及辅助装置。另外还可以设置例如围栏形式的环绕保护分离装置24。在该保护分离装置24中可以设置一个或多个闸门25,这些闸门用于使带有lam6的输送器件5在输送路径7上安全地进入和离开。

如图14所示,可以将一个或多个应用灵活的制造装置18-22与另一个用于工件2、2″上的副过程的制造装置67相连接。在此情况下,也可以多重地设置该制造装置67。这些制造装置可以设置在制造装置18-22的旁边或上方或下方。在另一制造装置67中可以设置用于操纵和加工工件2、2″的一个或多个被程序控制的制造器具,特别是工业机器人,以及其他装置,例如固定的焊钳、销栓置放设备粘合剂涂覆设备等。

在特定于应用的制造站18-22中所执行的一个或多个主过程优选特定于几何形状地用于所提到的制造产品。这样的过程例如可以存在于组装和接合中。接合过程可以包括粘接(所谓的预处理)或几何形状确定的点焊或激光焊接,或存在于铆接或咬合连接等中。另一制造装置67中的一个或多个副过程可以是非特定于几何形状的。这些副过程例如可以包括接合、测量、改型加工、切割等等。在接合时也可以装上额外的部件,例如销栓等。此外还可能有硬编码的副过程,这些副过程包括例如打孔、折边和/或铣削等。

特定于应用的制造装置18-22或一个或多个其他的制造装置67之间的工件更换可以通过接口68进行,该接口例如设置在保护分离装置24的通道上。其他的制造区域67同样可以被一保护分离装置24围住。工件更换可以通过被程序控制的制造器具28、特别是处理机器人来执行。其他的接口69可以设置在制造装置18-22的入口和优选相对置的出口上,并例如由闸门25形成。

制造设备1具有控制器13,该控制器与用于制造装置18-22、输送装置4和存储装置9、10、11的控制单元14-17连接。图2示例性示出了这种控制架构。中央设备控制器13与用于仓库10和制造装置18-22以及必要时还有输送装置4的控制单元14(所谓的仓库管理器)相连接。

仓库管理器14控制lam6在制造设备1中的停留和移动。该仓库管理器特别是向制造装置4发出指令,以便将各个lam6运输向正确的地点,例如制造装置或存储装置。该仓库管理器也控制lam6所驶入的制造装置18-22的路线安排,也就是次序。这些制造装置不必彼此紧紧相随,而是可以设置在制造设备中的任意位置上。根据路线安排或所遵循的输送轨迹,可以驶过或绕过制造装置18-22。

仓库管理器14包括仓储管理系统,其用于:从货物输入至货物输出的后勤供应过程的控制,库存管理和盘库,任务管理,交易历史记录,通过管理员实施的仓储配置调整,和针对制造设备1的系统组件的接口。此外,仓库管理器14还包括物流系统,该物流系统包括对自动化设备组件、特别是输送装置4的全局控制,该物流系统用于:运输管理,拥塞和流动控制,所述的路线安排和吞吐量优化,关于各级综合故障的消除,与子系统的协调,设备个性化和全局物流优化。

此外还有控制器13与被称为器械库管理器的控制单元15之间的连接。在仓库管理器14和器械库管理器15之间也存在连接。器械库管理器15所关注的是器械库11。该器械库管理器包括工具管理器,该工具管理器用于:从工具输入到工具发放的后勤供应过程,针对所规划产品的工具的拣选,仓储位置和使用地点的管理,对维护周期的控制和文件汇总,以及对所有工具的历史记录。此外,还需对备件就库存管理和盘库方面进行控制。相应地也适用于易耗部件(即所谓的耗材)和车间。

器械库管理器15与控制单元16(即所谓的编队管理器(fleet-manager))连接。该编队管理器包含用于后勤供应和物流系统的接口,并涉及到对输送器件5的调度、规划和编队管理的功能。此外,仓库管理器14还具有用于编队管理器16的连接部。编队管理器16执行来自仓库管理器14和器械库管理器15的指令。

编队管理器16与被称为场地管理器的另一控制单元17连接。该场地管理器所关注的是对制造设备1中的流程的状态控制、用于室内和建筑技术的接口以及用于质量保险的接口。场地管理器17本身连接控制器13。

制造装置18-22的控制装置38及其控制程序或者说过程管理器4同样与设备控制器13、特别是仓库管理器14和器械库管理器15连接。

上述的在控制器13和控制单元14-17之间的连接被构造为信号线路。这些信号线路可以被设计有线的或无线的。

器械库管理器15控制对各个制造装置18-22或制造器具28、29的硬件和/或软件技术的装配。这涉及到例如向制造器具28、29或存储器27派送工具8,以及借助于lam6将不再需要的工具8运出。器械库管理器15也可以控制在各个控制装置38的存储器件39中对控制程序40的存储。该器械库管理器特别可以中央地存储控制程序40,并将控制程序发送给存储器件39。在图10示意性示出了这些。

器械库管理器15可以支配和管理在制造装置18-22中根据制造流程现场执行的过程阶段。这些过程阶段分别包括所需的工具8或器械部分41和控制程序40中的相关的程序序列或器械部分42。基于类型的对控制程序40的调出和执行通过对应的控制装置38来进行。在此情况下,也可以通过控制程序40来控制对工具8或器械部分41的使用和可能的更换。

依据制造流程和多个制造步骤或制造阶段44-47的次序对一件式或多件式工件2、2′的加工将分别在制造装置18-22中由所选出的各自的控制程序40独立地控制。制造流程或过程阶段的步骤序列以及过程阶段在制造设备1中的地址由仓库管理器14来管理,并通过移动负载收纳器件6或输送装置4来控制。由此可以实现对制造设备1的分散控制。

控制装置38或者它们的过程管理器40向仓库管理器14报告制造过程或过程阶段的开始和终止。然后,仓库管理器14相应地操控输送装置4,以便将对应的lam6继续运输向在制造流程中紧接着的下一个制造装置19-22或者继续运输向存储装置9、10、11、12,以及向工作区域26输送下一个lam6。

具有制造区域3和存储装置9-12以及输送装置4的制造设备1可以被任意地配置。在此,不同的工件2、2′可以被并行地制造。这例如可以是左侧壁和右侧壁、车身顶部、底部组件等的并行制造。相应地也适用于其他形式的没有被构造为车身构件的工件2、2′。此外,在这种并行制造进程中还可以自由混合地制造相同形式的工件2、2′的不同类型。

制造装置18-22可以执行完全不同的制造过程和制造步骤。在此情况下,例如可以针对与工件相关的各个制造步骤44-47设置自有的制造装置18-22。但是,在一制造装置18-22中也可以关于多个不同的工件2、2′执行相同或类似的制造过程或制造步骤。此外,还可以在两个或更多个功能相同的制造装置18-22中并行地执行针对所给定工件2、2′的制造步骤。这对于例如能够平衡不同制造步骤的不同长度的周期时间是有意义的。此外,还可以缩小或扩大生产能力和在此所接入的制造装置18-22的数量。

通过对制造设备1和特别是制造装置18-22进行特定于应用的快速调整,可以灵活、快速地改变制造装置18-22的各个特定于应用的制造工作。为此所需要的对制造装置18-22的工具技术的改装以及重新编程和由此所导致的特定于应用的调整同样能够非常快地进行。相应地还能够针对输送装置4及其输送轨迹实现快速的改变和重新编程。

图4示出了具有制造区域3的制造设备1的示例性设计方案,其中,四个制造装置18-21被设置成一排并被输送路径7依次穿过。制造装置18-21可以根据图3构成。在穿过最后的制造装置21之后,带有lam6和成品工件2的输送器件5可以行驶到输出区域34中,在该输出区域中,可以通过机器人等卸下工件2并从制造设备1的该区域中提出。该工件例如可以存放在临时存放点,或者直接被输送到另一制造区域3中。

图4还示出了前置连接制造区域3的仓库10,带有lam6的输送器件5在该仓库中被装载一个或多个工件2、2′并随后驶入到制造区域3中。此外,用于lam6的存储装置9和用于输送器件5的存储装置12也被前置连接,并通过输送路径7连接仓库10和制造区域3。

图5和图6示例性示出了具有制造区域3的制造设备1的另一设计方案,该制造区域具有一排五个制造装置18-22。图5在此示出了制造区域3的特定于应用的准备和装调。

来自存储装置12的输送器件5首先被装载适当的lam6,然后行驶到器械库11中,该器械库可以包括一个或多个装载区域30。在这里,所需要的特定于应用的工具8被装载到输送器件5和lam6上,它们接下来沿被编程的输送轨迹驶入对应的制造装置18-22中,并在那里将工具8传递到制造器具28、29上,并在必要时传递到存储器27上。此外,在对应的制造装置18-22的控制单元中进行重新编程。装调可以并行地进行。

工具8的卸载可以在制造装置18、22中通过那里的制造器具28、29进行,在此,在更换中不再需要将工具8传递到输送器件5和lam6上。

在另一种未示出的变型中,可以针对在输送器件5和/或lam6上的工具设置处理装置,该处理装置执行工具更换和对工具8的重新安放。该处理装置例如可以是多轴处理机器人。由此可以将工具8和/或其他的装置放置在输送或贯通路径7之外。

在完成对制造区域3的特定于应用的改装或装配之后,可以开始实施制造方法。图6示出了这一时段。在此,在输送路径7的网络中,输送器件5的各个被编程的输送轨迹发生变化。在图5和图6中以附图标记7来标示所述基于现有输送路径被编程的输送轨迹。

仓库10通过输送装置4衔接制造区域3,该仓库同样可以具有两个或更多个装载区域30。在此情况下,可以根据制造方法将不同的工件2、2′运输向不同的制造装置18-22。制造装置18-22可以根据图3构成。

在图8、图9和图10示意性示出的制造流程中,带有类型d的lam6和例如被构造为部件组的工件2的输送器件5从装载区域30驶入到第一制造装置18中。在该第一制造装置18中,在完成类型检测之后在第一制造步骤44中执行一过程阶段,例如对工件部件的组装和接合。

制造器具28或处理机器人利用合适的工具8、特别是几何抓取器(geogreifern)从lam6中取出工件部件。在此情况下,制造器具28可以彼此配合,并通过它们的几何抓取器根据需要相互锁止,并将被抓取并夹紧的工件部件递交给一个或多个制造器具29、特别是焊接机器人,以进行接合。被锁止的几何抓取器根据需要以组合的方式被带到其他的工作位置。此外,可以根据需要由一个或多个制造器具28从lam6补充装载一个或多个其他的工件部件,并将这些工件部件输送给已经被抓取的工件部件。在该接合过程之后,将制成的工件放回到输送器件5和/或lam6上并随后从制造装置18送出。在该制造装置18中,例如可以利用远程激光在被抓取的工件部件上进行激光焊接,其中,被部分接合的工件2在制造步骤44结束时具有状态1。

在接下来的制造装置19中的第二制造步骤45和那里的带有另一接附的工件部件的单个过程阶段之后,工件2具有状态2。在第三制造装置20和具有一过程阶段的第三制造步骤46之后,工件2具有状态3。在第四制造装置21中并在具有两个过程阶段的第四制造步骤46中,结构组件形式的工件2或制造产品43以状态4完成制造并被送出。

根据图8和图9,位于c类型的lam6上的第二工件2′可以同样通过制造装置18-22来运动。在此情况下,例如根据类型检测仅在第一制造装置18中执行包括两个过程阶段的加工过程。在第二、第三和第四制造装置19、20、21中不进行加工。在这里不存在对应的控制程序40和过程阶段。其他的制造流程可能会延伸经过另外的制造装置。

在该变型中,工件2、2′被并行的且彼此无关地加工和运输。没有被设置用于加工对应的工件2、2′的制造工站18-22可以被驶过或绕过。

在另一种变型中,在一制造装置18-20中的制造过程或过程阶段期间,可以将工件2整个地抬离lam6,在此,带有空的a类lam6的输送器件5离开该制造装置,并有新的带有另一b类lam6的输送器件5驶入该制造装置中,并随后将制成的工件2存放在这里并继续运输。

在该更换或转运过程中,可以为制成的工件2松散地补充或者也可以接合可能是已制成的另一工件2′或工件部件,这些其他的工件或工件部件通过所述另一b类的lam6输送。该lam6被调整用于收纳两个工件2、2′或工件部件。已制成的工件2可以以相对于一个或多个其他的工件2′或工件部件的正确的相对位置存放在lam6上。此外,还可以对所装配的工件2、2′或工件部件进行继续加工,例如接合。为此,用于第一a类lam的控制程序40可以具有附加的程序序列,或者根据对所驶入的第二b类lam的类型检测被切换。

然后,该组装起来的和可能被接合的工件配置可以行驶到下一个制造装置中。这些制造和转运过程可以重复进行,在此,复杂的工件、例如车辆车身的预装组件是由单个部件并利用例如四个不同的并根据中间产品做出调整的lam类型a、b、c、d来生产的。

为了实现工件传递,相关的制造装置21被a类lama和b类lam以预设的顺序或序列相继驶过。通过相应数量的这种传递,可以确保贯穿整个设备范围的生产过程的联合输送。

此外,还可以使带有a类lam6和在一制造步骤中制成的工件2的输送器件5从制造装置18出来后首先返回仓库10,并在那里补充以其他的工件或工件部件,随后驶入到下一制造装置19中。相应的过程也可以衔接在其他的制造步骤和制造装置20-22中。

lam6的每种类型a、b、c、d各自可以在一闭合的制造环路48、49中沿被相应编程的、优选为环形的闭合输送轨迹被运输。制造环路48、49延伸经过一个或多个所属的制造装置18-22并在必要时通过存储装置9、10。制造环路48、49与用于工件2、2′的制造流程和在此情况下设置用于生产制造产品或中间产品43的制造步骤44-45协调一致。被接入的制造装置18-22的数量在此可以与制造步骤44-45的数量相符。

制造环路48、49可以彼此分开地并能够根据要求平行地延伸。当在接下来的另一个带有自有制造环路49的制造流程中对制造产品或中间产品43进行继续加工时,这两个制造环路48、49可以在一共有的制造装置21中相交。

在图6中示意性地举例示出了两个制造环路48、49。以虚线示出的、用于一个或多个a类的lam6和工件2的第一制造环路48延伸经过三个制造步骤、三个制造装置18-21和存储装置10。以点划线示出的、用于一个或多个b类的lam6和另外的工件2′的第二制造环路49延伸经过三个制造步骤、三个制造装置18-21和存储装置10。制造环路48、49在制造装置21中相交,其中,在这里进行前述的将工件2或者制造产品或中间产品43从a类的lam6到另一b类的lam6的转运。

图7示出了制造设备1的另一种更复杂的设计方案,其具有前述形式的制造区域3、仓库10和器械库11。为清楚起见在此未示出另外的存储装置9、12。仓库10和器械库11可以通过例如位于制造区域中的一排制造装置18-21而设置在制造区域3的相对的两侧。这种设计方案的优点在于:输送路径7和被编程的输送轨迹可以为了工具交换和工件供应而被打散。此外还有一种变型,其中,为仓库10的不同的装载区域30配备缓冲存储部,用于带有已经预处理过的工件配置2的零散lam6。然后,用于针对制造装置18-22进行工件运输的输送器件5仅装载已经预处理过的lam6,在此,还有另外的输送器件5负责缓冲存储部的装载。这会使得更换和装载时间特别的快。

除了前述类型的应用灵活的制造装置18-22之外,制造区域3也可以具有一个或多个另外的制造装置35,这些另外的制造装置例如包含预设的工具装载和预设的制造步骤,该预设的制造步骤是不灵活的或仅是有限灵活的。在图7中,制造装置35即是以这种方式构成。该制造装置例如可以被用作用于车辆车身的几何工站(geostation)或车架台,并具有一对夹紧框,这对夹紧框可能是多重的并且可现场更换。

这种不灵活或较少灵活性的制造装置35例如可以被设置用于特别大而重的工件或工件配置。该制造装置在其它方面可以具有与应用灵活的制造装置18-22,特别是应用灵活的制造器具28、29,存储部27等相同的特性。该制造装置还可以衔接到输送装置4上并也具有连续的输送路径7。

制造装置35例如也可以被设计为用于开发新应用程序的试验站。其基础结构可以与统一化、标准化的制造装置18-22相符,其中,使用特定于应用的工具8的情况下在这里创建制造过程和控制程序40并测试。

图11示出了制造设备1的另一种变型,其具有制造区域3和用于工件和特定于应用的工具的存储装置10、11。器械库11配属有lam配置区域56。在制造区域3的边缘上设有维修区域55。所示出的该制造设备1也包含有两个或更多个特别的制造装置35,这些制造装置例如被构造为试验站并靠近器械库11地设置。此外,在制造设备1的端部上可以设有中间存储部57,在该中间存储部上将最终产品从lam6上卸下,并可能转运到另外的输送器上,特别是滑车。在这里例如可以衔接有喷漆生产线,在此也可以创建喷漆顺序。

制造装置18-21以具有六行i-vi和十列01-10的笛卡尔矩阵的形式设置在制造区域3中。输送装置4及其输送路径7在行i-vi之间沿着这些行延伸,并使这些行与设置在左边和右边的仓库10相连接。在主输送路径7上例如是以用于未示出的输送器件5的两个或更多个车道进行单向行驶。单向方向成行地交替。此外,主输送路径7还被横向连接,特别是连接在外面的设备边缘上和仓库区域中。此外,所述的输送路径(未示出)还存在于制造装置18-21中或穿过制造装置。

在如图11所示的制造设备1中,关于工件2、2′的总物料流可以被分布到微制造环路中,从而使得所需要的整体顺序仅取决于各自的被仓库管理器14发送到各自的下一制造装置18、22中的两个lam6或输送器件5的次序。可以在制造装置19,20之间,在不同的部位上设置停放区域53,在这些停放区域中可以暂时停放一个或多个空的或被装载的lam6。在行i-vi中,例如将任意两个制造装置18、19集合成一个组块,在此,这些组块分别与相应的停放区域53分开。停放区域53分别被副输送路径7环形地包围。关于主输送路径和副输送路径7可以存在优先行驶规则。

在彼此链接并以前述方式相交的微环路中,lam6因为转运进程而必须以特定的顺序驶入到一共有的制造装置中。该顺序在停放区域53上产生并得到确认。在此情况下,在行i-vi之间的一个主输送路径7中,在停放区域53上,得到一个用于lam6的被定义为临时地址的位置54。

如图12和图13所示,类型识别标志37可以被设计为编码,并具有用于不同信息或数据的多个识别区50、51、52。第一识别区50例如可以被配置用于lam类型。第一识别区可以是两部分的,还包括特定于lam的识别说明。识别区50可以通过器械库管理器15具体说明,这例如在lam配置区域56中进行。

第二识别区51可以包含对结构图形或者对应的工件2、2′的说明。该识别区51例如可以在仓库10中在装载时具体说明。

第三识别区52可以具有单元识别标志或被最后访问的制造装置18-22的识别标志。该识别区52例如由各个制造装置18-22的过程管理器40具体指明。在各制造装置18-22中更新识别区52。

图12示例性示出了源于控制和制造流程的细节或模块。在这里,例如以前述的方式根据对类型识别标志37的类型检测来执行第一制造装置18中的制造过程,在此,过程管理器40接下来向仓库管理器14发送关于过程结果的报告。如果过程结果正确,则通过单元识别来具体指明识别区52,并且仓库管理器14将lam6发送到在制造流程中所配置的下一个制造装置19中。这可以通过编队管理器16来完成。此外,为了加速装调过程,仓库管理器14还将有关下一个lam6即将抵达及其类型a、b、c、d的报告发送给下一个制造装置19的过程管理器40。在lam类型更换时,改装过程、特别是工具更换可以在运输时间期间已经发生,并且与该运输时间重叠。接下来,随着将过程结果报告给仓库管理器14并更新识别区52,在制造装置19中执行制造过程。然后,按照设定的制造流程进行前述的对lam的继续运输。

如果过程结果不正确,则将带有工件2、2′的lam6运送到维修区域55。这是由仓库管理器14通过编队管理器16促成的。其在必要时也会相应地通知紧接着的下一个制造装置19的过程管理器40。此外,仓库管理器14将从存储装置10的工件库存中减去发生错误的工件。在维修区域55中尝试修复工件2、2′和过程故障。如果维修结果正确,则将仓库10中的仓储库存在此增加维修好的部分,或者根据需要将维修好的部分直接重新返回到制造流程中。如果维修结果不够好,则进行报废。

图13示出了与前面提到的根据图11的停放区域53相关的、贯穿设备的控制和制造流程中的另一方面或模块。在制造装置18,20中,在不同的lam类型a、b上加工不同的工件。在下一制造装置21中应当对工件进行继续加工,并将工件从a类lam转运到b类lam。为此,仓库管理器14将向制造装置21的过程管理器40预先告知下一个加工工作和lam6的驶入顺序。在此情况下,a类lam必须在b类lam之前驶入制造装置21中。

现在,两个lama、b必须首先驶向前置并配属于制造装置21的停放区域53。这是由仓库管理器14通过编队管理器16促成的。类型a和类型b的lam6在此首先驶向作为临时地址的位置54。从这里出发并按照下列标准确定最终目标。如果在制造装置21之前没有所进入类型a、b的在前lam位于等待位置中,则该目标可以是配属的制造装置21。在这种情况下,在停放区域53中将直接或中间不停顿地驶向制造装置21。此外,由于所要遵循的类型顺序,如果有其他的顺序类型b刚好位于停放区域53中的一个位置上并且必须要超越它,则lam类型a可以直接驶向制造装置20。如果lam类型a、b以错误的次序到达位置54,则涉及到序列修复。如果类型b以错误的次序先于类型a到达,并且应该被后者以开头所提到用于序列修复的方式超过时,则对于类型b而言将停放区域53确定为目标。此外,如果对于制造装置21而言,在前的lam类型a、b已经位于等待位置中,则将停放区域53指定为目标。在这种情况下,停放区域53作为可用性存储器被填充。该停放区域在此例如可以在可能的过程干扰中形成缓冲,或者在过程或制造流程中形成通常的延迟。

所示出的和所描述的实施例可以有各种的变型。特别是可以将前述实施例及其变型的特征任意地相互组合,特别也可以互换。

在一种变型中,制造步骤44-47可以在单个的制造装置18-22中进行。在制造方法内可以多次涉及同一个制造装置。还有可能同一个制造装置被两个或更多个不同的但是同步运行的制造方法使用。在另一种变型中,通过设备控制器13提供了对制造装置18-22的中央控制,由此可以取消对lam6的类型检测或者将该类型检测用于目的验证。

附图标记列表

1制造设备

2工件

2′工件

2″工件

3制造区域

4输送装置,编队

5输送器件,agv

6负载收纳器件lam

7输送路径

8特定于应用的工具

9用于负载收纳器件lam的存储装置

10用于工件的存储装置,仓库

11用于工具的存储装置,器械库

12用于输送器件的存储装置

13控制器

14控制单元,仓库管理器

15控制单元,器械库管理器

16控制单元,编队管理器

17控制单元,场地管理器

18制造装置

19制造装置

20制造装置

21制造装置

22制造装置

23制造单元

24保护分离装置

25闸门

26工位,加工区域

27存储部,转动存储部

28制造器具,机器人,处理机器人

29制造器具,机器人,焊接机器人

30装载区域

31装载装置,装载机器人

32仓储区域

33能量供给装置,充能路径

34输出区域

35制造装置

36检测装置

37类型识别标志,编码

38控制装置

39存储器件

40控制单元,控制程序,过程管理器

41器械部分,硬件工具,工具

42器械部分,软件工具,程序块

43制造产品

44制造步骤,制造阶段

45制造步骤,制造阶段

46制造步骤,制造阶段

47制造步骤,制造阶段

48制造环路,类型a

49制造环路,类型b

50识别区

51识别区

52识别区

53停放区域

54位置

55维修区域

56lam配置区域

57中间存储部

58lam定位装置

59

60

61

62

63

64

65

66入口廊道

67制造装置,副过程

68接口

69接口

70输送线路,去程

71输送线路,回程

72后勤供应区域

alam类型

blam类型

clam类型

dlam类型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1