具有不同铬含量和铝含量的MCrAlX-层的制作方法

文档序号:3360947阅读:350来源:国知局
专利名称:具有不同铬含量和铝含量的MCrAlX-层的制作方法
技术领域
本发明涉及一种铬含量和铝含量不同的两子层(eine zweilagige)的MCrAlX层。
背景技术
在燃气涡轮机的热气电路(Hei β gaspfad)中使用Ni基和Co基的材料。然而,由于对所述材料最大可能强度的优化,它们通常在热气中不具有足够的抗氧化性和耐高温腐蚀性。因此,所述材料必须在热气攻击前用适合的保护涂层保护起来。为了提高涡轮机入口温度(Turbineneintrittstemperatur),还在经受极高热应力的组件上额外再涂敷由氧化锆构成的陶瓷层来隔热。位于其下的金属层起到所述陶瓷隔热层的结合层的作用和起到基础材料抗氧化层的作用。为了解决所述问题,如上所述在最热的组件上利用热喷涂方法或EB-PVD方法施加保护涂层。所述保护涂层一般由所谓的MCrAlX覆盖层构成,它除了包含Ni和/或Co之外还包含铬、铝、硅、铼或稀土元素例如钇。然而,在保护层的表面温度进一步升高的情况下将造成损害,导致所述层失效或者隔热涂层剥落。因此在层表面的温度升高的情况下,须提供保护层,以在这种恶化的条件下具有改善的抗氧化性以及足够好的热机械稳定性。这只能通过保护层的非常合适的化学组成来实现。在此,特别重要的是元素Ni、Co、Cr、Al。因为这些元素由于扩散还与基础材料存在相互作用,这也同样要考虑。由于原料价格的上涨, 特别是特种合金元素价格的上涨,另外要注意成本来优化组成。

发明内容
本发明的目的是解决上述问题。所述目的通过根据权利要求1和2的层体系来实现。在从属权利要求中列出了其它有利的措施,它们可以任意地相互组合来实现其它优势。


在附图中图1、2示出所述层体系的实施例,图3示出燃气涡轮机,图4示出涡轮机叶片的透视图,图5示出燃烧室的透视图,和图6示出超级合金的列表。附图和说明书只是给出本发明的示例性实施例。
具体实施例方式在附图1中示出第一个实施例。部件1、120、130、155具有基材4。特别是在高温下应用的燃气涡轮机100(图幻,所述基材4具有特别是根据图6的超级合金。在基材4上存在金属保护层13。根据本发明,所述金属保护层13包含两个化学组成不同的MCrAlX层7,10,其中外层10优选具有较高的铬含量。同样优选的是,外层10的铝含量高于位于其下的层7的铝含量。两个层7,10的铬含量的差异(绝对值(absolut gesehen))优选为至少1重量% (I Cr (7)-Cr (10)彡1重量% )。两个层7,10的铬含量的差异(绝对值)优选为至少1重量% (I Al (7)-Al (10) I彡1重量% ),更优选为至少2重量%。保护层13优选只由两个不同的MCrAlX层7,10构成。还提供金属保护层13,相对于至今使用的层来说,它在同样良好的热机械特性下比目前使用的MCrAlX层具有更好的抗氧化性。这通过所用的双层-层体系的方式来实现, 所述双层-层体系满足在与基础材料优化的分散-相互作用方面的不同要求,且另一方面在与陶瓷的相界上形成优化的TGO层。通过所应用的具有不同化学组成的两种MCrAlX合金来实现这个目标。内层7的铬含量高于外层10的铬含量,外层10的铝含量高于内层7的铝含量。 这同样优选适用于含有钇(Y)的层体系7,10。较高的钇含量意味着至少绝对值为0. 15重量%的差异,(|Y(7)-Y(10) I 彡 0. 15 重量% )。靠近基础材料(基材4)的内层7在所用的粉末或铸块(Ingot)的化学组成中具有优选下列基本组成(重量% ) =Ni为约38%至约66. 6%和Co为8%至22%。所述基本组成具有如下效果尽管21%至四%的高的Cr含量,但只出现极少或没有出现α-Cr-相, 且保持了所述层的良好延展性。相对高的Cr含量和Y含量在基础材料中起到硫的吸气剂的作用,并且应抑制对TGO的损害作用。4%至9%的相对低的Al含量促进层7的延展性能,同时也导致与基础材料(基材)的低程度的相互扩散。另一方面,它也足够高以对隔热涂层16的使用寿命产生有利的影响,因为存在足够的Al来进行后扩散。在主要合金组成成分的所述浓度下,在新的和运行应力的状态下出现的相是Y (伽马)、Y ’和β (贝塔)。 钇含量应优选大于0. 4重量%至0. 9重量%,并且同样对硫起到吸气剂的作用。此外,钇还应该可以扩散到位于其上的外层10中。任选地所述层还可以包含最高的Re,以便进一步延迟相互扩散。位于其上的MCrAlX外层10具有一定的厚度,该厚度在制造公差范围内优选与第一层7的厚度相同。所述基本组成与优选较低的约20重量% Cr含量和优选11. 5重量% Al含量相结合,导致Al2O3顶层的形成,通过0. 2 %至0. 4 %的低Si含量和0. 1 %至0. 2 %的低Y含量也有助于其形成和附着。低Y含量避免了钇的内部氧化并在初始相的氧化中在MCrAlX上不形成铝酸钇。这导致相对低的层生长,并且由此导致低的铝消耗。层10基本上具有伽马、 贝塔的相组成,是热稳定的并且避免了易碎的相,这进而导致了 MCrAlX层10的良好延展特性。MCrAlX 层 7,10 优选是 NiCoCrAlY 层。保护层13具有两个互相堆叠的层,层7优选具有下列组成(重量%计)Ni,
Co 8%至 22%优选19%至21%,更优选20%,Cr 21% 至 29%优选23%至25%,更优选对%,Al 4%至 9%优选6%至8%,更优选7%,Y 0.4 至 0.9%优选0.4%至 0.6%,更优选 0.5%,Re 0%至 1.0%优选0%上面的列表(Ni, Co, Cr,Al,Y,Re)优选是最终的,和外层10优选具有下列组成Co,Ni 29% 至 39%优选至36%,更优选;35%,Cr 17% 至 24%优选19%至21%,更优选20%,Al 9%至 14%,优选11%至 12%,更优选 11. 5%,Y 0.05%至 0.5%,优选0.1%至 0.2%,任选地Si 0.1%至 1.1%,优选0.2%至 0.4%,更优选 0.3%,上面的列表(Co,Ni,Cr,Al,Y,Si)优选是最终的。
其它元素例如Hf,Zr,P和另外的痕量元素最高0. 3%的百分比,其可以通过相互作用产生有利的特性。图3示例性示出纵向部分剖面的燃气涡轮机100。在内部,燃气涡轮机100具有带有轴的转子103,其安装为可以围绕转动轴102转动,也被称为涡轮机转子。沿着转子103依次为进气壳104、压缩机105、具有多个共轴布置的燃烧器107的例如圆环体类型的燃烧室110,特别是环形燃烧室、涡轮机108和排气壳109。所述环形燃烧室110与例如环形热气通道111连通。在那里通过例如4个连续相连的涡轮级(Turbinenstufe) 112构成涡轮机108。各个涡轮级112例如由两个叶环(Schaufelring)构成。沿着工作介质113的流动方向上,在热气通道111中,导叶列115之后接着是由动叶(LaufSChaufel)120构成的列 125。导叶130被固定在定子143的内壳138上,而列125的动叶120例如利用涡轮盘 133安装在转子103上。
连接在转子103上的是发电机或工作机器(Arbeitsmaschine)(未显示)。在燃气涡轮机100运行期间,压缩机105通过进气壳104吸入空气135并且压缩。 在压缩机105的涡轮一侧的末端提供的经过压缩的空气被引入燃烧器107,并在那里与燃料(Brermmittel)混合。所述混合物随后在燃烧腔室110中燃烧,形成工作介质113。工作介质113从那里沿着热气通道111流过导叶130和动叶120。工作介质113在动叶120处膨胀、传送其动量,使得动叶120驱动转子103和连接在其上的工作机器。在燃气涡轮机100运行期间,暴露于热的工作介质113的部件承受热负荷。沿着工作介质113流动方向上,第一涡轮级112的导叶130和动叶120以及在环形燃烧室110 中加衬的热屏蔽元件承受最大热负荷。为了能够承受那里主导的温度,可以利用冷却剂进行冷却。部件的基材同样可以具有定向结构,也就是说是单晶体的(SX结构)或具有仅仅纵向取向的晶粒(DS结构)。作为部件的材料,特别是用于涡轮叶片120、130和燃烧室110的部件的材料,使用例如基于铁、镍或钴的超级合金。所述超级合金从例如EP 1 204 776 Bi、EP 1 306 454、 EP 1 319 729 AUffO 99/674 或 WO 00/44949 中公知。导叶130具有面向涡轮机108的内壳138的导向叶根(在此未显示)和在所述导向叶根的相对端处的导向叶头(Leitschaufelkopf)。所述导向叶头面向转子103并且固定在定子143的紧固环140上。图4以透视图的方式示出沿着纵轴121延伸的流机(Stroemungsmaschine)的动叶120或导叶130。所述流机可以是航空器的燃气涡轮机或发电厂用于发电的燃气涡轮机,蒸汽涡轮机或者是压缩机。叶片120、130沿着纵轴121相继地具有紧固区域400,与其邻接的叶片平台403以及主叶片部406和叶片尖端415。作为导叶130可以在其叶片尖端415处具有其它的平台(未显示)。在紧固区域400内形成叶根183,它起到将动叶120、130固定在轴或盘上(未显示)。叶根183例如被构造成锤头形。其他构造例如杉形叶根或燕尾形叶根也是可以的。叶片120、130具有前缘409和后缘412,用于流过主叶片部406的介质。对于传统的叶片120、130,在叶片120、130的所有区域400、403、406使用例如实心金属材料,特别是超级合金。所述超级合金例如从EP 1 204 776 Bi、EP 1 306 454、EP 1 319 729 AUffO 99/674 或 WO 00/44949 中公知。叶片120、130可以通过浇铸方法,通过定向固化,通过锻造方法,通过铣切方法或它们的组合来制造。具有单晶(einkristallin)结构的工件用作机器的部件,所述机器在运行时经受高的机械、热和/或化学负荷。这类单晶工件的制造例如通过从熔体定向的固化来进行。 在此涉及铸造方法,将液态的金属合金固化以形成单晶结构,也就是单晶工件,或者定向固化。在此过程中枝状晶体沿着热流方向定位并形成柱状晶粒结构(也就是说在工件的整个长度上结晶,在此根据常用语被称为定向的固化)或者单晶结构,也就是整个工件由单晶体构成。在这种方法中必须避免转变成球形(globulitischM多晶体)固化,因为通过不定向的生长必然形成横向和纵向的晶界,它们破坏定向固化或单晶体部件的良好特性。如果针对的是定向固化的结构,则既表示不具有晶界或最多是小角度晶界的单晶体,也表示具有纵向分布的晶界而不具有横向的晶界的柱状晶体结构。对于所述第二种晶体结构也称其为定向固化的微结构。这种方法从US-PS 6,OM,792和EP 0 892 090 Al中公知。叶片120、130同样可以具有对抗腐蚀或氧化的涂层,例如(MCrAlX,M是至少一种选自铁(Fe)、钴(Co)、镍(Ni)的元素;X是活性元素并代表钇(Y)和/或硅和/或至少一种稀土元素,或铪(Hf)。这种合金是从EP 0 486 489 BUEP 0 786 017 BUEP 0 412 397 Bl或EP 1 306 454 Al公知的,这些合金的化学组成构成本发明的一部分。密度优选是理论密度的95%。在MCrAlX层(作为中间层或作为最外部的层)上形成起保护作用的氧化铝层 (TG0 =热生长氧化物层)。所述层优选具有组成Co-30Ni-28Cr-8Al_0. 6Y-0. 7Si 或 Co-28Ni-24Cr-10Al-0. 6Y。除了这种基于钴的保护涂层之外,还优选使用基于镍的保护层,例如 Ni-10Cr-12Al-0. 6Y-3Re 或 Ni-12Co-21Cr-llAl-0. 4Y-2Re 或 Ni-25Co-17Cr-10Al-0. 4Y-1. 5Re。在MCrAlX上还可以存在隔热涂层,它优选是最外部的层,并且例如由&02、 Y2O3-ZrO2构成,也就是说,没有通过氧化钇和/或氧化钙和/或氧化镁稳定化的、通过氧化钇和/或氧化钙和/或氧化镁部分稳定化的或者完全稳定化的。所述隔热涂层覆盖了整个 McrAlX层。通过适当的涂覆方法例如电子束物理气相沉积(EB-PVD)在隔热涂层中产生柱状晶粒。可以考虑其它涂覆方法,例如大气等离子体喷涂(APS)、LPPS、VPS或CVD。所述隔热涂层可以包括多孔或具有微裂纹-或宏观裂纹(mikro-oder makrorissbehaftet)的晶粒,以改善耐热冲击性。隔热涂层还优选比MCrAlX层更具多孔性。叶片120、130可以设计成是空心的或者实心的。在应该冷却叶片120、130的情况下,它是空心的并且任选地还具有薄膜冷却孔(FilmkuhllOCher)418(虚线部分)。图5示出燃气涡轮机100的燃烧室110。燃烧室110例如被构造成所谓的环形燃烧室,在此在圆周方向围绕转动轴102布置了很多燃烧器107,其通向共同的燃烧腔室154, 产生火焰156。为此将燃烧室110整体构造成围绕在转动轴102周围的环状结构。为了达到相对高的效率,燃烧室110中工作介质M达到约1000°C至1600°C的相对高的温度。为了在这种对材料来说不利的运行参数下仍然实现比较长的使用期限,在燃烧室壁153的面对工作介质M的一侧上设置由热屏蔽元件155构成的内衬层。由于燃烧室110内部的高温,另外可以对热屏蔽元件155或它的固定元件提供冷却系统。热屏蔽元件155例如是空心的并且任选地还具有冷却孔(未显示),其通向燃烧室的空间1540由合金构成的各个热屏蔽元件155在工作介质一侧设置有特别耐热的保护层 (MCrAlX层和/或陶瓷涂层),或者是由耐高温的材料(实心陶瓷砖)制成的。所述保护层可以与涡轮机叶片类似,即例如为MCrAlX :M是至少一种选自铁(Fe)、 钴(Co)、镍(Ni)的元素;X是活性元素并代表钇(Y)和/或硅和/或至少一种稀土元素, 或铪(Hf)。这种合金是从 EP 0 486 489 Bi、EP 0 786 017 Bi、EP 0 412 397 Bl 或 EP 1 306 454 Al公知的。
8
在MCrAlX上还可能存在例如陶瓷隔热涂层,且例如由&02、Y2O3-ZrO2构成,也就是说,没有通过氧化钇和/或氧化钙和/或氧化镁稳定化的、通过氧化钇和/或氧化钙和/ 或氧化镁部分稳定化的或者完全稳定化的。通过适当的涂覆方法例如电子束物理气相沉积(EB-PVD)在隔热涂层中形成柱状晶粒。可以考虑其它涂覆方法,例如大气等离子体喷涂(APS)、LPPS、VPS或CVD。所述隔热涂层可以包括多孔的或具有微裂纹-或宏观裂纹的晶粒,用于改善耐热冲击性。重新整修(翻新)表示,在涡轮机叶片120、130或热屏蔽元件155使用之后必须移除保护层(例如通过喷砂)。之后除去腐蚀层和/或氧化层或氧化产物。任选地还要修理涡轮叶片120、130或热屏蔽元件155中的裂缝。之后重新涂覆涡轮机叶片120、130,热屏蔽元件155,并再次使用涡轮机叶片120、130或热屏蔽元件155。
权利要求
1.一种层体系(1,120,130,155),具有基材(4)和两子层的MCrAlX层(13),所述层 (13)具有MCrAlX外层(10)和MCrAlX内层(7),其中MCrAlX外层(10)的铬含量低于 MCrAlX内层(7)的铬含量,并且MCrAlX外层(10)的铝含量高于MCrAlX内层(7)的铝含量,所述MCrAlX内层(7)包含(重量% )Co 至 22%,优选 19%至 21%, Cr 至,优选23%至25%, Al 至 9%,优选 6%至 8%,Y0. 4%至 0. 9%,优选 0. 4%至 0. 6%, Re 至 1.0%,优选0%,Ni,特别是余量镍(Ni)。
2.一种层体系(1,120,130,155),具有基材(4)和两子层的MCrAlX层(13),所述层 (13)具有=MCrAlX外层(10)和MCrAlX内层(7),其中X表示至少钇(Y),且MCrAlX外层 (10)的钇含量低于MCrAlX内层(7)的钇含量,所述MCrAlX内层(7)包含(重量% )Co 至 22%,优选 19%至 21%, Cr 至,优选23%至25%, Al 至 9%,优选 6%至 8%,Y:0. 4%至 0.9%,优选 0.4%至 0.6%, Re 至 1.0%,优选0%,Ni,特别是余量镍(Ni)。
3.根据权利要求1或2的层体系,其中所述MCrAlX保护外层(10)具有下列组成 Ni 至 39%,优选 34%至 36%,Cr :17%M 24%,优选 19%至 21%, Al 至 14%,优选 11%至 12%,Y0. 05%至 0. 5%,优选 0. 至 0. 2%, 任选 Si 0. 至 1. 1%,优选 0.2%至 0.4%, Co,优选余量Co。
4.根据权利要求1、2或3的层体系,其中所述NiC0CrAlX保护外层(10)包含至少一种选自铪(Hf)、锆(Zr)和磷(P)的元素,特别是包含至少0. 05重量%,特别是最高至0. 3重量%的百分比。
5.根据权利要求1、2、3或4的层体系,其中所述McrAlX层(13)仅由两个子层(7,10)组成。
6.根据权利要求1、2、3、4或5的层体系,其中所述MCrAlX内层(7)具有与所述MCrAlX 外层(10)同样的层厚度。
7.根据权利要求1、2、3、4或5的层体系,其中所述MCrAlX外层(10)比所述McrAlX内层(7)明显更薄。
8.根据权利要求1、2、3、4、5、6或7的层体系,其中所述McrAlX层(7,10)具有 NiCoCrAlX层(7,10),特别是由它们构成,其中X = Y5Re0
9.根据权利要求3的层体系,其中所述外层(10)中硅(Si)的比例为0.2重量%至0.4重量%。
10.根据权利要求3的层体系,其中所述外层(10)中硅(Si)的比例为0.7重量%至1. 0重量%。
11.根据权利要求1或3的层体系,其中所述外层(10)不含硅(Si)。
12.根据权利要求2的层体系,其中所述外层(10)的Y含量为0.05重量%至小于0.4 重量%,特别是0. 1重量%至0. 2重量%。
13.根据权利要求2的层体系,其中所述内层(7)的Y含量为从大于0.4重量%至0.9 重量%,特别是直至0. 6重量%。
14.根据权利要求1、2、3或4的层体系,其中在所述两子层的McrAlX层(13)上存在陶瓷隔热外涂层(16)。
15.根据前述权利要求中一项或更多项的层体系,其中所述层体系由基材G)、两子层的MCrAlX层(7,10)、在所述MCrAlX层(7,10)上的陶瓷隔热涂层(16)以及任选在所述 MCrAlX外层(10)上的TGO层组成。
16.根据前述权利要求中一项或更多项的层体系,其中所述层体系由基材G)、两子层的MCrAlX层(7,10)和任选在所述MCrAlX外层(10)上的TGO层组成。
17.根据权利要求1、2、3、4、5、6、7、8、9、13、14、15或16的层体系,其中X=钇。
全文摘要
本发明涉及一种两子层的MCrAIX层,其中镍和钴以及Cr、Al和Y的含量明显不同,以改善抗氧化性以及改善热机械稳定性。
文档编号C23C28/02GK102272354SQ200980154046
公开日2011年12月7日 申请日期2009年12月14日 优先权日2009年1月8日
发明者弗里德黑尔姆·施米茨, 沃纳·斯塔姆 申请人:西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1