一种调质型低温压力容器用钢板及其制备方法

文档序号:3261903阅读:188来源:国知局
专利名称:一种调质型低温压力容器用钢板及其制备方法
技术领域
本发明属于冶金领域,特别涉及一种压力容器用钢板,具体地说是一种超极限厚度(60_)的低裂纹敏感性高强度调质型低温压力容器用钢板及制备方法。
背景技术
压力容器用调质高强钢板,由于具有低焊接裂纹敏感指数特性(Crack-Free),也简称为CF钢,而被广泛应用于水电行业及球罐制造业。随着压力容器设备向高参数、大型化方向发展,不仅需要考虑设备大型化的问题,安全性也是首先必须解决的问题,也即水电和球罐用CF钢必须保证低温使用性能的要求,如丙烯和乙烯储罐的设计温度由20世纪80年代的-20°C -35°C降到当今的-30 -50°C。1985年以前,我国压力容器调质高强度钢板全部依赖进口,其中以日本低裂纹敏 感性调质高强度CF钢为多。1989年,我国首先将国产低温(-20 _40°C)压力容器用调质高强度钢列入国标GB150-1989 ;2003年,由武钢牵头起草制定了压力容器用调质高强度钢板标准GB19189-2003,此时,武钢研制的07MnCrMoVR(CF_62)钢板与国外相比,强度、韧性、焊接性能都接近,甚至超过日本SPV490的JISG3115标准。2011年,仍然由武钢牵头,联合中国通用机械工程总公司、冶金工业信息标准研究院、新余钢铁集团有限公司、湖南华菱湘潭钢铁有限公司、合肥通用机械研究院、南钢、鞍钢、济钢、首钢和中国特种检测设备研究院,对GB19189-2003进行了修订,于2012年2月I日实施新的国标GB19189-2011,新国标中按照低温区范围不同增加了一个新的压力容器用调质钢牌号,即07MnNiMoDR。值得注意的是,在新国标中规定该钢的厚度是l(T50mm,-50°C冲击功吸收能量不低于80J。考虑到目前在某些特殊场合下,要求钢板超出新国标中规定的极限厚度,甚至达到60mm,同时还要求保证新国标中的力学和工艺性能要求,对于制造企业来说还没有开发过类似产品的先例,这给生产制造企业带来一定的难度。

发明内容
本发明的目的是提供一种超极限厚度^Omm)的低裂纹敏感性高强度调质型低温压力容器用钢板及制备方法。本发明通过适当的合金元素设计和热轧及热处理方法,满足这类钢的力学性能和工艺性能要求。本发明的目的是通过以下技术方案来实现的
一种调质型低温压力容器用钢板,其特征在于该钢板化学成分按重量百分比为C O. 065 O. 085% ;Si O. 15 O. 25% ;Mn I. 3(Γ · 50% ;Ni O. 4(Γθ· 45%, Cr O. 15 O. 25%, MoO. 20 0· 25%, V O. 035 O. 045% ;Nb 0. 030 0· 045% ;Ti 0. 025 0· 03% ;Alt O. 020 0· 05% ;Ρ£0. 015% ;S £0. 005% ;余量为Fe ;其轧态金相组织为粒状贝氏体和板条贝氏体,淬火态的金相组织为板条贝氏体,最终回火态的组织为回火索氏体+贝氏体。本发明的超极限厚度出0_)低裂纹敏感性高强度调质型低温压力容器用钢板,室温屈服强度360010^,抗拉强度365010^,断口伸长率3 20%,-50 °C冲击功大于120 J (冲击试样尺寸为55 mmXIO mmXIO mm),冷弯性能合格,焊接冷裂纹敏感系数Pem £0. 19 %。—种调质型低温压力容器用钢板的制备方法,其特征在于该方法包括以下步骤
1)按设定的化学成分冶炼钢水并铸成厚度为220mm的铸坯;设定的化学成分按重量百分比为C O. 065 O. 085% ;Si O. 15 O. 25% ;Mn I. 30 1· 50% ;Ni O. 40 0· 45%, CrO. 15 O. 25%, Mo O. 20 0· 25%, V O. 035 O. 045% ;Nb 0. 030 0· 045% ;Ti 0. 025 0· 03% ;AltO. 020 0· 05% ;Ρ £0. 015% ;S £0. 005% ;余量为 Fe ;
2)将铸坯按照两阶段加热均匀化后进行粗轧,第一阶段加热至900°C,保温2h;第二阶段加热至1150 1200 °C,保温I h;粗轧轧制道次为3道次,粗轧开轧温度为1050 1150 °C,终轧温度为1000°C以上;每道次压下率不低于20%,总压下率为50 55%,获得厚度为110 100 mm的中间坯;其中,粗轧首道次压下率为20%,第2道次压下率为22. 5%,第3道次的压下率为26% ;
3)将中间坯精轧3道次,前两道次压下率分别不低于10%,最终道次压下率为20%以上,总压下率为40% ;精轧开轧温度为900 920°C,终轧温度为850 °C以上;精轧后钢板的厚度为60 mm ;
4)将精轧后的钢板以15 60°C/s的速率冷却至600 °C以下,随后进行离线调质热处理,将钢板重新加热至930°C,保温2h,而回火工艺为(61(T630)°C X lOOmin,回火时间以达到实际温度开始计算,得到调质型低温压力容器用钢板。本发明得到的是一种超极限厚度出0_)低裂纹敏感性高强度调质型低温压力容器用钢板,本发明的成分设计是基于以下几点
C虽然对钢板的强化有明显效果,但随着C含量增加则会造成塑性和冲击韧性降低,使钢的韧脆转变温度降低,对焊接热影响区硬化和脆化的倾向增大,容易产生焊接冷裂纹,对钢的成形性、焊接性能极为不利;在低温压力容器用钢的成分设计中,为了使钢板具有良好的焊接性能和较好的低温冲击韧性,钢中的碳含量必须控制在O. 065、. 085%较低的范围内。Mn是钢的强化合金元素,是扩大奥氏体区元素。Mn含量增加可提高奥氏体稳定性,降低临界冷却速度,强化铁素体,显著提高淬透性,同时可使淬火后回火过程中组织分解转变速度减慢,提高回火组织稳定性,但含量过高将使钢在高温下引起晶粒粗化,而且增加钢的回火脆性倾向,随Mn/C的增加,钢的脆性转变温度显著降低,Mn/C控制在18 19为宜;另外,Mn太高使碳当量提高,对焊接性也不利。钢中Mn含量过高,也会给冶炼和轧制带来困难,对钢的韧性也不利。因此,Mn含量控制在I. 3(Tl. 50%范围内。Si元素可以提高钢中固溶体硬度和强度,不仅可以增加钢的淬透性,而且还可以增加淬火钢的抗回火性,使钢能在较高温度下回火,从而改善钢的韧性和耐延迟断裂性能;Si能显著提高钢的弹性极限、屈服强度和屈强比。Si含量高时会使钢产生自由碳而石墨化,使钢的塑性和焊接性能降低;另外,Si含量过高会使钢的导热性变差,钢锭、钢坯表面易出现开裂或裂纹缺陷。因此,Si的含量控制在O. 20%左右。Al是钢中常用的脱氧剂。钢中加入少量的Al,可细化晶粒,提高冲击韧性,铝还有一定的抗氧性和抗腐蚀性,但铝含量过高将影响钢的热加工性能、焊接性能和切削加工性,因此控制在O. 02 O. 05 %范围内;
随Mo含量的提高,钢的屈服强度、抗拉强度均增加,而抗拉强度的提高幅度要高于屈服强度,屈强比随Mo的加入而降低。就调质钢而言,随Mo含量增加,其强度、塑性和低温冲击韧性均有较大提高。由于Mo固溶于铁素体和奥氏体时,可使钢的C曲线右移,增强过冷奥氏体的稳定性,从而显著提高钢的淬透性,而且Mo能显著提高钢的再结晶温度,提高回火稳定性,调质后可获得细晶粒的索氏体,使强韧性得到改善。当形成Mo的碳化物时,可起到弥散强化作用。当Mo含量较低时(〈O. 30%),主要以固溶强化、提高淬透性和回火稳定性为主。考虑到本发明中的钢板属于超极限厚度,将Mo含量控制在O. 2(Γ0. 25%为宜。Ni在钢中属于全部固溶的元素,具有明显降低冷脆转变温度的作用,对提高钢的低温冲击韧性有重要作用。其作用机理是Ni与Fe会以互溶形式存在于a和g铁相中,通过其在晶粒内的吸附作用细化铁素体晶粒,提高钢的冲击韧性。但是,Ni也同时是扩大奥氏体区元素,降低奥氏体的转变温度,从而会影响碳与合金元素的扩散速度,阻止奥氏体向珠光体转变,降低钢的临界冷却速率,可提高钢的淬透性,易使钢中出现贝氏体及马氏体。因此,控制合适的Ni含量是改善冲击韧性的关键,本钢种设计的Ni含量为O. 4(Γ0. 45%。
在低温压力容器用钢中,Cr含量一般不超过0.3%,其作用主要有三个方面1) 生成碳化物,提高钢的强度、硬度和耐腐蚀性;2)使CCT曲线右移,增加钢的淬透性;3)细化马氏体和珠光体片层尺寸。为了保持高温奥氏体组织的稳定性,通常加入少量的铬,这主要是由于大部分铬的碳化物(M7C3)被奥氏体的基体或其转化物所包围,处于碳化物状态并溶于奥氏体基体之中。Cr元素含量对珠光体的精细度和硬度有一定影响,这是由于加入微合金元素Cr后,提高了钢的淬透性,使钢的CCT曲线向右移动,从而抑制了先共析铁素体的析出,在一定冷却速度不变的情况下,珠光体及马氏体片层间距得到细化,从而提高了调质型容器板的强度而不降低其塑性。在压力容器用钢板07MnCrMoVDR中,对强度和淬透性的提升显得非常重要,本钢种在设计时Cr的含量范围为O. 15^0. 25%。在钢中也通常加入钛元素,主要是利用Ti与C、N有很好的亲和性,形成TiC、TiN以去除基体中的C、N间隙原子以改善钢的塑性或韧性。同时,钛也会产生沉淀强化作用。随着含钛量增加,沉淀强化的效果增加。如果加入钛的百分比足够高,它对控制硫化物的形状是有利的。在微合金钢中加入少量的钛(质量分数小于O. 02%)后,即使在高温下也会显示出一种强烈抑制奥氏体晶粒长大的效果。抑制奥氏体晶粒长大是由于钢中存在非常细小的TiN微粒(<20nm),它可以在整个后续加工过程(加热、热轧过程和焊接加工)中仍然保持相对的稳定性。因此,即使在较高的终轧温度下,也可以获得具有良好的强韧性均衡的产品。由于Ti是强碳化物形成元素,对N、O、C具有极强的亲和力,Ti和S的亲和力大于Fe和S的亲和力,可以降低了生成硫化铁的几率,减少钢的热脆性。Ti与C形成的碳化物结合力极强、极稳定、不易分解,只有当加热温度达1000°C以上时,才开始缓慢地溶入固溶体中,在未溶入前富集于钢的晶界处,TiC微粒有阻止晶粒长大的作用。Ti能溶入g和a相中,形成固溶体,产生强化。Ti与N的化合物TiN,即使1250°C也可以阻止奥氏体晶粒粗化,利用这一特性,可以阻止焊接过程中奥氏体在高温下过分粗大,从而提高容器板焊接性,一般钢中Ti的加入量应大于O. 02%,本钢种中的Ti含量按照£0. 03%Ti设计。微合金元素V随淬火加热温度的提高,使其固溶到奥氏体中的量有所增加,V在铁素体中的溶解度比在奥氏体中的溶解度小的多。随着相变的进行,在一定的热力学和动力学条件下,V在低碳微合金钢中主要以碳氮化物的形式存在于基体和晶界上,增加钢淬火后的回火稳定性,回火组织易产生二次硬化现象,有细化晶粒和析出强化的作用。V的作用是通过形成V(C,N)影响钢的组织和性能,主要在奥氏体晶界的铁素体中沉淀析出,在轧制过程中能抑制奥氏体的再结晶,并阻止晶粒长大,从而起到细化非调质状态下珠光体和贝氏体晶粒尺寸,从而提高钢的强度和韧性。V对钢的淬透性有重要影响,当钢被加热到临界温度时,V溶于最初形成的奥氏体高碳区,从而增加了钢的淬透性,在快速冷却过程中产生马氏体组织。本钢种的设计中,V含量控制范围是O. 035、. 045%。Nb与V、Ti等元素一样,也是低合金钢中最常用的微合金化元素。它们在钢中的作用,主要表现在两个方面1)在热加工过程中,抑制奥氏体的形变再结晶并阻止其晶粒的长大;2)通过其碳氮化合物的应变诱导析出,发挥Nb、V、Ti的沉淀强化作用。Nb在钢中具有最强的晶粒细化强化效果,V在钢中具有最强的沉淀强化效果,Ti则介于Nb和V两者之间。Nb含量在万分之几就会产生明显的效果,当Nb的含量超过O. 05%(质量分数)时,强化作用达到饱和而不起附加作用。微合金元素Nb在微合金化钢中还具有晶粒细化的重要作用。其中,凝固初期析出的碳氮化物,有利于形成较为细小的等轴铸造组织;这种细小的原始奥氏体晶粒,在加热过程中能抑制奥氏体晶粒的长大,提高奥氏体的再结晶温度;在低 温区,Nb的脱溶和应变诱导析出行为,会促进Y_a相变的富化生核;在3区,抑制铁素体晶粒长大。因此,应使Nb尽可能以化合物的形式在钢中弥散析出。Nb能细化晶粒和降低钢的过热敏感性,提高强度,析出的NbC可阻止晶粒长大,细化晶粒。尤其在Mo元素存在的情况下,其析出物细小弥散分布,析出强化作用更加明显。微量的Nb与Cu、B相互作用,使贝氏体相变温度降低,相变后得到细小的贝氏体板条。同时Nb可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。但含量高会使塑性和韧性有所下降。因此,本钢中Nb含量控制在O. 05%左右。关于P和S的控制钢中的P、S 一般是作为有害元素来处理,并且希望降低到最低水平。钢中P含量增加会使晶界断裂应力降低,脆性转变温度升高,引起冷脆,不利于冷加工和焊接,且易偏析,降低钢中P含量是冶炼的关键环节。S在钢中形成低熔点FeS共晶体,造成热脆;同时,S与其他一些元素形成化合物,以硫化物夹杂形式存在,易形成层状偏析,对钢材的冲击韧性带来极为不利的影响;当3〈0. 010%时,钢的韧性迅速得以改善。要提高钢板的低温韧性,必须尽可能降低P、S的含量。这里,给出P和S的含量控制范围为P£0.015%、S £0.005%。本发明的超极限厚度出0_)低裂纹敏感性高强度调质型低温压力容器用钢板的制备方法采用的控轧控冷以及调质热处理的依据是
轧制过程采用高温奥氏体再结晶区与未再结晶区两阶段控制轧制,随后进行快速冷却。在高温再结晶区进行多道次大变形轧制,通过动态再结晶使奥氏体晶粒得到充分细化;未再结晶区进行多道次连续累积大变形轧制,可以使奥氏体晶粒被压扁,增加奥氏体晶界面积,造成大量的亚晶界偏聚带、变形带、高密度位错区,促使冷却时贝氏体转变形核,抑制贝氏体铁素体的长大。压扁的奥氏体晶界、亚晶界偏聚带能有效阻止贝氏体板条发展生长,使贝氏体板条得到细化。调质热处理是为了保证轧后的钢板获得所需要的强度和韧性。重新加热至奥氏体区后,轧后的组织将发生奥氏体转变,在随后的淬火过程中将发生贝氏体+马氏体转变,回火过程将进一步获得所需要的回火索氏体和板条贝氏体组织。本发明从钢种的成分设计入手,开发一种超极限厚度^Omm)低裂纹敏感性高强度调质型低温压力容器用钢板的制造工艺。本发明的优点是
(I)考虑低温压力容器的强度、塑性、韧性以及焊接性能和冷弯性能的要求,优化设计了钢的化学成分,采用合理的轧制工艺和热处理工艺,获得理想的微观组织,保证其性能要求。(2)利用本发明,可以获得超极限厚度(60mm)的低温压力容器用钢板,尤其是-50 °C冲击功大于120 J,远远超出新国标中规定的指标。


图I为本发明实施例中的工艺对比I的金相组织 图2为本发明实施例中的工艺对比2的金相组织图;
图3为本发明实施例中的工艺对比3的金相组织 图4为本发明实施例中的工艺对比4的金相组织 图5为本发明实施例中的工艺对比5的金相组织 图6为本发明实施例中的工艺对比6的金相组织图。
具体实施例方式本发明实施例对低温压力容器用钢板的金相组织观察采用LEICA Q550 IW型光学
显微镜。室温拉伸、-50°C冲击试验在CMT5105-SANS微机控制电子万能实验机上进行,180°弯曲试验(D=3a)在100吨四柱压力试验机上进行。室温拉伸试样按GB/T228-2002《金属材料室温拉伸试验方法》制成矩形截面标准拉伸试样;_50°C冲击实验按照GB/T229-2007《金属材料夏比摆锤冲击试验方法》进行,设备为Instron 9250HV落锤冲击试验机,冲击试样尺寸为55mmX IOmmX 8mm ;弯曲实验则按照GB/T 232-1999《金属材料弯曲试验方法》进行。
实施例这里提供一组实验结果作为实施例,钢的成分是一致的,炼钢、连铸、锻坯加热以及轧制工艺是一致的,不同之处在于后续的调质热处理工艺制度,给出一些调质处理工艺、性能检测及金相组织作为对比例。I)炼钢冶炼了一炉钢,其实际化学成分(重量百分比%)为,C 0. 0686 %,Si O. 232%, Mn :1. 454%, Al :0. 05 %,Cr :0. 256%, Ni :0. 452%, Mo :0. 22%, Nb :0. 04 %,V :0. 043%,Ti 0. 03%, Cu 0. 0151%, S 0. 001%, P 0. 0042%, N 0. 0039%, O 0. 0028%,余量为 Fe, Cu 含量较低系残留。浇铸成规格为220πιπΓ2280πιπΓ2100πιπι的连铸坯;坯料经热检、堆冷48h、入炉
前坯料表面检验,坯料表面质量较好,无修磨坯。(2)铸坯加热和轧制将铸坯按照两阶段加热均匀化后进行粗轧,第一阶段加热至900°C,保温2h ;第二阶段加热至115(Tl20(rC,保温lh。粗轧轧制道次为3道次,粗轧开轧温度为105(Tll50 °C,终轧温度为1000°C以上;粗轧首道次压下率为20%,此时钢坯厚度为176mm,第2道次压下率为22. 5%,对应钢坯厚度为136mm,第3道次的压下率为26%,获得厚度为IOOmm的中间坯;也即每道次压下率需不低于20%,此时总压下率为55%,中间坯厚度为100 mm。随后,将中间坯在开轧温度为90(T920°C、终轧温度为850 1以上的条件下进行3道次精轧,前两道次压下率分别不低于10%,最终道次压下率为20%以上,总压下率为40% ;精轧后钢板的厚度为60 mm。将精轧后的钢板以15 60 °C/s的速率冷却至600 °C以下,随后进行离线调质热处理。(3)离线调质热处理工艺及设备将钢板重新加热至930°C,保温2h后淬火;回火工艺分别取以下6种610°C X 120min (对比例I)、630 V X 60min (对比例2)、630 0C X 80min (对比例 3)、630 °C X IOOmin (对比例 4)、630 °C X 120min (对比例 5)和6400C X80min(对比例6),回火时间以达到实际温度开始计 算;离线调质处理设备可以在淬火机上进行。其金相组织如附图所示,为回火索氏体和板条贝氏体。力学性能检测结果为

SW 处 SMiI抗拉强-50Tf+^冷弯性
m:度收能Mk
对理工 SRmZMPa° K>2/JD-3a

!930
,xOOmirf
161{;rc600 67Q 24—6128·β
X120 ITmn
9301C
2^ …656 172&3OS:
6Μ 2
:
93QV-^
3X j 2(kxnt^6^3698216124·
...............................................930 ......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
4xOQmin/64170520.3144£
630V格
X I OOrriiiI
WOaC
5^ΟΟτοιι^s卯65520. S95S
630·
X1.20mm:
93m2^
6xOCTiiin/56564520. 100格
_ 640T>—I j_I_j_I_I_
从上述的实施例中的工艺对比研究结果可知,获得良好力学性能的低温压力容器用钢的淬火及回火工艺制度是930°C /120min + (610^630) °C /IOOmin0此时的力学性能结果为常温拉伸屈服强度360010^,抗拉强度367010^,断后伸长率3 20 % ;_50°C冲击功吸收能3120J ;180°弯曲试验(D=3a)完好,冷弯性能合格,焊接冷裂纹敏感指数Pem=O. 19%。
权利要求
1.一种调质型低温压力容器用钢板,其特征在于该钢板化学成分按重量百分比为C O. 065 O. 085% ;Si O. 15 O. 25% ;Mn I. 3(Γ · 50% ;Ni O. 4(Γθ· 45%, Cr O. 15 O. 25%, MoO.20 0· 25%, V O. 035 O. 045% ;Nb 0. 030 0· 045% ;Ti 0. 025 0· 03% ;Alt O. 020 0· 05% ;Ρ£0. 015% ;S £0. 005% ;余量为Fe ;其轧态金相组织为粒状贝氏体和板条贝氏体,淬火态的金相组织为板条贝氏体,最终回火态的组织为回火索氏体+贝氏体。
2.—种权利要求I所述的调质型低温压力容器用钢板的制备方法,其特征在于该方法包括以下步骤 1)按设定的化学成分冶炼钢水并铸成厚度为220mm的铸坯;设定的化学成分按重量百分比为C O. 065 O. 085% ;Si O. 15 O. 25% ;Mn I. 30 1· 50% ;Ni O. 40 0· 45%, CrO.15 O. 25%, Mo O. 20 0· 25%, V O. 035 O. 045% ;Nb 0. 030 0· 045% ;Ti 0. 025 0· 03% ;AltO.020 0· 05% ;Ρ £0. 015% ;S £0. 005% ;余量为 Fe ; 2)将铸坯按照两阶段加热均匀化后进行粗轧,第一阶段加热至900°C,保温2h;第二阶段加热至1150 1200 °C,保温I h;粗轧轧制道次为3道次,粗轧开轧温度为1050 1150 °C,终轧温度为1000°C以上;每道次压下率不低于20%,此时总压下率为50 55%,中间还厚度为110 100 mm; 3)将中间坯精轧3道次,前两道次压下率分别不低于10%,最终道次压下率为20%以上,总压下率为40% ;精轧开轧温度为900 920°C,终轧温度为850 V以上;精轧后钢板的厚度为60 mm ; 4)将精轧后的钢板以15 60°C/s的速率冷却至600 °C以下,随后进行离线调质热处理,将钢板重新加热至930°C,保温2h,而回火工艺为(61(T630)°C X lOOmin,回火时间以达到实际温度开始计算,得到调质型低温压力容器用钢板。
3.根据权利要求I所述的调质型低温压力容器用钢板的制备方法,其特征在于步骤2)中,粗轧首道次压下率为20%,第2道次压下率为22. 5%,第3道次的压下率为26%。
全文摘要
本发明公开了一种超极限厚度低裂纹敏感性高强度调质型低温压力容器用钢板及其制备方法。其化学成分按重量百分比为C0.065~0.085%;Si0.15~0.25%;Mn1.30~1.50%;Ni0.40~0.45%,Cr0.15~0.25%,Mo0.20~0.25%,V0.035~0.045%;Nb0.030~0.045%;Ti0.025~0.03%;Alt0.020~0.05%;P£0.015%;S£0.005%;余量为Fe;其制备方法是按设定成分冶炼钢水并铸成铸坯,加热后进行二阶段轧制,即粗轧和精轧,经快速冷却后再进行调质工艺进行热处理,可以得到优良的强度、塑性、冷弯和抗冲击性能的匹配,满足低温压力容器用钢的要求。
文档编号C21D8/02GK102876999SQ201210396700
公开日2013年1月16日 申请日期2012年10月18日 优先权日2012年10月18日
发明者陈礼清, 李长生, 霍松波, 温永红, 党振旗, 黄建华, 樊振亚 申请人:南京钢铁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1