由增材制造随后锻造部件的操作制造金属制部件或金属基质复合物制部件的方法与流程

文档序号:11140676阅读:730来源:国知局

本发明涉及制造金属零件或金属基质复合物零件的技术领域,特别地但非限制性地,本发明涉及制造用于汽车和航空业的组件和设备。



背景技术:

增材制造(Additive manufacturing)正在发展,其使得能够通过熔合(熔融在一起)或烧结连续的层来制备零件或部件,在最早1984年的专利US4575330中定义了基本概念。

增材制造被ASTM定义为这样的方法,所述方法通常以层叠的方式(layer upon layer)连接材料以由三维(3D)模型数据制作物体,其与借以去除材料的减材制造方法(比如机械加工)不同。增材制造也是3D打印技术的别称。

该技术已经发展为通过熔合或者烧结粉末层或者通过焊接金属丝来制作金属合金零件。对金属基质复合物的测试已显示出其本身是非常有前景的。不全面地说,所使用的技术的范围从选择性激光烧结(SLS)到电子束熔融(EBM),并且包括直接金属激光烧结(DMLS)和激光金属沉积(LMD)或选择性激光熔融(SLM)。那些技术使得制造具有高几何复杂性且具有令人满意的机械性能的零件或部件成为可能,但是得到该结果的代价是通常冗长的循环时间。对于每个连续的层,必须通过辊铺展开粉末,并且电子束或激光必须扫过每个层的整个表面以便获得良好的粉末的凝聚。为了减少循环时间,制造商采用的策略是增加粉末以及所述束的数量,以便更快速地熔融(熔合)或烧结每个层,从而增加了制造机器的成本。对于EBM技术所使用的金属主要是钛合金,但是使用激光的技术更为多功能。它们使得制造铁合金零件,基于钛、铝、钴-铬、镍等合金的零件以及金属基质复合物(钛-碳化钛、铝-氧化铝、铝-碳化硅等)零件成为可能。

遗憾的是,通过增材制造获得的零件或部件经常具有残留的微孔。这样的微孔降低了零件或部件的机械性能,尤其是延展性和疲劳强度。为了获得令人满意的疲劳强度,热等静压(HIP)步骤(其特征在于将零件置于高压和高温下)通常是有必要的。

由于所使用的粉末的粒径以及在增材制造期间形成的不同层的残留痕迹,通过增材制造获得的零件或部件还具有粗糙的表面粗糙度。

由于正在获得或制作零件的同时粉末熔融,这样的零件还具铸造微观结构。特别地,对于基于钛的合金,这样的结构是层状的,并且使其不可能满足飞机结构部件的大部分规格。为了改善机械性能,需要既是层状的又是结状的双模态微观结构。那么这样的结构仅能够通过锻造类型的热变形操作、并且在昂贵且特定的实施条件下获得。

因此,考虑到那些缺点,本申请人试图想出并找到有可能缓解那些各种问题的方案。

以完全独立地方式而与增材制造并无任何关系,申请人已经自1983年(即,自对应于上述美国专利的时期)开发了一种结合铸造和锻造技术的新概念,用于铸造和锻造具有铝或具有铝合金的零件。该技术公开在欧洲专利EP119365中,并且其实施铸造第一阶段,该阶段用于在模具中铸造具有铝或具有铝合金的零件,以便构建预制件,然后使所述预制件在较小尺寸的模具中经历锻造操作,而使获得要获得的最终形状(其具有该专利中指出的非常特殊的性能)成为可能。该“铸造与锻造”技术以“COBAPRESS”的商标出售并且现在在全球广泛使用。

自该时期,1983-1984年,即,在过去的三十年内,已经发现,为了弥补增材制造经历的上述缺点所提出的方案是冗长且昂贵的,并且没有找到用于获得双模态微观结构的方案,所述双模态微观结构在绝大多数由钛合金制成的飞机结构部件中是必要的。

面对针对增材制造要解决的问题,申请人发现在这样的制造中遇到的微孔的问题也存在于铸件的制造过程中。



技术实现要素:

因此,申请人的方法聚焦于寻找由增材制造和由铸造与锻造技术构成的两种技术的预料不到的结合,尽管该两种技术自1983-1984年的时期就已经是已知的,但是它们似乎是不兼容的。

以完全预料不到的方式,并且在申请人进行的试验的基础上,实施两种技术的结合已似乎能够响应于和弥补增材制造中观察到的缺点。

根据本发明,已开发的方案在于通过以下方式获得金属合金零件或金属基质复合材料零件:增材制造以便形成预制件;以及然后在所述预制件为热的、半热的或冷的同时,在单个步骤中锻造所述预制件,所述锻造在两个模具之间实施,目的在于获得要获得的所述零件的最终形状。

因此,所获得的零件具有其最终形状,并且在去毛刺之后或没有去毛刺的情况下,除了功能区具有有限的耐力范围之外,具有适用的功能尺寸而无需额外的机械加工。

以完全预料不到的方式,该方法可以克服通过增材制造获得的零件发现的上述缺点和局限性。

锻造步骤(其在于使材料变形)利用增材结构的不同层的均匀粘结,使得将微孔再闭合和再粘结成为可能。这给予了改善的延展性和疲劳强度。

在两个抛光模具之间进行锻造的该步骤还使得能够大幅度降低表面粗糙度,从而使得改善疲劳强度和表面外观成为可能。

具体实施方式

已经进行的所述试验似乎是非常有前景的。自1983-1984年已知的两种技术中的任何一个都没有迹象暗示将它们结合,因为获得的预制件所处的状态不同,在“铸造与锻造”技术中是通过铸造获得预制件,然而在增材制造中是通过熔合(熔融在一起)或烧结连续的层来获得预制件。

在实施本发明的环境下,所述零件可以是金属合金(基于钢、铁、铝、镍铬铁合金、镍、钛、铬-钴等)零件或金属基质复合材料(钛-碳化钛、铝-氧化铝、铝-碳化硅等)零件。

本发明的用于锻造由增材制造获得的预制件的锻造的第二步骤可以以热的、半热的或冷的方式执行。可以任选地抛光模具。

模具锻造由增材制造获得的预制件的该技术还可以应用于具有非粘结的或部分固结的粉末区的预制件,随后在锻造步骤期间使所述粉末区变形和粘结。

锻造通过单轴模压或等压成型制造的粉末预制件已经是已知的方法。在本发明中使用的技术的新颖之处在于将粉末捕获于具有粘结的边缘的预制件之内。并非所有粉末都是粘结的事实使得在制造期间节省大量的循环时间成为可能。为了在增材制造期间烧结或熔融粉末,对于每个层,激光或电子束需要扫过零件的整个表面。最佳地,通过仅在预制件的外轮廓上执行粉末熔合,由此通过固体粘结的外壳将部分固结的或非固结的粉末捕获在其内部来构成预制件,预制件以填充有非粘结的粉末的固体外壳的形式获得。锻造该预制件使得能够获得最终零件或部件。对于由EBM制造的预制件来说,在热变形期间使粉末粘结是特别有效的,由于这样的制造在真空下进行,这使其可以捕获材料内部的任何气体。

由于没有粉末熔合的事实,该技术还提供获得具有细颗粒的微观结构的优点。在钛合金的增材制造期间已经发现在较低的层上的颗粒的外延生长。这样的生长产生具有相当粗糙的颗粒的微观结构,其不利于机械性能。在没有粉末熔合的情况下,微观结构的细度得到保持。因此,预制件的非粘结的区在最终的零件或部件上提供了具有非常细的微观结构的区,因为在锻造步骤期间粘结发生在固相中。不具有任何晶体织构的这样的细微结构非常有利于零件或部件的静态和循环机械性能。

实施本发明的以上强调的优点和预料不到的结果,在加工由增材制造获得的金属零件或金属基质复合物零件方面构成了重要进展。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1