冶金电炉及熔炼方法与流程

文档序号:11839358阅读:511来源:国知局
本发明涉及冶金领域,更具体而言,涉及一种冶金电炉及用于该冶金电炉的熔炼方法。
背景技术
:氧在冶金工业中有广泛的应用而且非常成功,其中氧成功的用在炼钢转炉中,又成功的应用在电弧炉中废钢的熔炼,并与喷煤配合产生泡沫渣,提高效率,这些都是非常成熟而广泛应用的工艺技术。自1970年代以后又成功的应用在有色金属冶炼工艺(nonferrousmetallurgy)上。其中著名的有两类:一是Ausmelt为Outotec发展成熟地用在铅、锌、镍、铜、锡等矿物的冶炼,二是澳大利亚的MIM和CSIRO合作发展的ISASMELT也成功地应用在有色金属的冶炼。近十多年来力拓(RIOTINTO)也成功发展了应用在炼铁工艺上的HISMELT技术,也已经商业化,但目前尚未广泛应用。最近有俄罗斯公司TechnologiyaMetallov在其网站上发表其ProjectMagma。说明其吹氧喷煤的技术,不但可以应用在有色金属,也可用在黑色金属(FerrousMetallurgy)上。在现行冶金电炉中(例如钛渣电炉),从未能将化学能经吹氧喷煤的技术应用上以减低电能的消耗,提高冶炼的效率。本发明旨在推广此种吹氧喷煤的技术到此类电炉中。技术实现要素:为此,本发明的一个方面的目的在于提供一种冶金电炉。本发明的另一个方面的目的在于提供一种用于上述冶金电炉的熔炼方法。为实现上述目的,本发明的一个方面的实施例提供了一种连续操作的冶金电炉,包括:炉体,所述炉体具有炉腔;氧枪,位于所述炉腔的侧壁上,用于向熔炼过程中产生的熔渣内吹氧,且所述氧枪的出口高于所述熔渣;和煤枪,位于所述炉腔的侧壁上,用于向所述熔渣内喷煤,且所述煤枪的出口高于所述熔渣。本发明上述实施例提供的冶金电炉,尤其是明弧操作的冶金电炉中,氧枪的出口和煤枪的出口均高于熔渣的上表面,O2由氧枪自上而下吹入熔渣中,将熔渣中低价的还原态物质氧化为高价氧化态物质,氧化过程中释放大量的化学能,熔渣温度升高,所释放的化学能能够有效的将进料熔融,同时,将煤粉通过煤枪也自上而下喷入熔渣中,煤粉中的碳将上述高价氧化态物质还原为低价的还原态,在高价氧化态物质被碳还原时,有CO放出,同时该还原反应需要吸热,于是还原态物质被氧化所释放的能量也供给还原反应;在熔渣内,因为O2的存在,O2也可能与CO、C发生燃烧反应,该燃烧反应的燃烧热能够使熔渣温度升高,为进料的熔融提供热量,而且还可以为还原反应提供能量,从而氧化反应中释放的化学能,及燃烧反应中释放的能量均能用于进料的熔融,使得熔炼过程中除电能外,化学能也能为熔炼过程提供大量的能量,增加熔炼的总功率,增加产能和效率,特别是对熔炼高熔点的熔渣特别有效,从而减少了对电能的消耗。本方案中,氧枪和煤枪均设置在熔渣上方,O2和煤粉自上而下吹入熔渣中,远离炉衬,减少了对炉衬的损伤,避免炉衬使用寿命降低。由于O2自上而下并向炉腔侧壁上远离氧枪的安装位置的方向倾斜,即O2的喷吹的方向朝向炉腔侧壁上氧枪的安装位置的对面,煤粉也是自上而下并向炉腔侧壁上远离煤枪的安装位置的方向倾斜,即煤粉的喷吹的方向朝向炉腔侧壁上煤枪的安装位置的对面,引起熔渣向炉腔侧壁上氧枪和煤枪的安装位置的对面流去,但离对面炉衬很远,造成的影响低,能够保护炉衬的完整性。具体的,以熔渣中的还原态物质为Me2O3为例,吹氧喷煤过程中熔渣内发生的化学反应有:Me2O3+0.5O2=2MeO2(1)2MeO2+C=Me2O3+CO(2)CO+0.5O2=CO2(3)O2+C=CO2(4)吹入O2后,发生反应(1),O2将Me2O3氧化为MeO2,该氧化反应为放热反应,反应中放出大量的化学能,用于进料的熔融;喷入煤粉后,发生反应(2),碳将MeO2还原为Me2O3,同时释放出CO,反应(2)为吸热反应,反应(1)中释放的化学能除用于进料熔融外,还为反应(2)提供能量;熔渣中的O2也可能与CO和C发生燃烧反应(3)和(4),燃烧热的一部分释放到熔渣中,用于进料熔融和供给反应(2),因为反应(1)、反应(3)和反应(4)均为放热反应,反应中释放的化学能加在电能之上,增加了熔炼总功率,降低了对电能的消耗。同时反应(2)中有大量的CO放出,形成气泡,将熔渣鼓起成为泡沫渣,泡沫渣的形成有利于O2的吹入。本发明的电炉是固定不动,连续加料不停止,铁水达到一定液位,打开金属液出口放出金属液,这时照常加料,照常喷吹氧和煤。金属液流出一定流量后,用堵口机把金属液出口堵住,一段时间后,渣位太高时,打开渣口出渣,照常加料,照常喷吹氧和煤。另外,本发明上述实施例提供的冶金电炉还具有如下附加技术特征:上述技术方案中,优选地,所述连续操作的冶金电炉包括多个所述氧枪,沿所述炉腔的侧壁均匀分布;和多个所述煤枪,沿所述炉腔的侧壁均匀分布;其中,所述氧枪位于所述煤枪的下方,或者,所述氧枪与所述煤枪位于所述炉腔的侧壁的同一高度上。在本发明的一个具体实施例中,氧枪位于煤枪的下方,优选地,氧枪的数量和煤枪的数量相等,煤枪位于氧枪的正上方,两者上下布置。在本发明的另一个具体实施例中,氧枪与煤枪位于炉腔1的侧壁11的同一高度上,呈左右布置。优选地,多个氧枪沿炉腔的侧壁周向均匀分布,并位于炉腔侧壁的同一高度上;多个煤枪沿炉腔的侧壁周向均匀分布,并位于炉腔侧壁的同一高度上。优选地,一个煤枪和一个氧枪可以摆在同一个冷却套中,氧枪和煤枪在熔池的射入点之间的距离不小于300毫米。上述实施例中,氧枪和煤枪位于熔池上方,O2和煤粉从上到下吹入炉腔1,O2流速为超音速射穿泡沫渣,煤也能被射入熔池中,在炉腔的侧壁上均匀分布多个氧枪,能够提高O2吹入熔渣中的均匀性,从而提高还原态物质被氧化的过程中所释放的化学能在熔渣中分布的均匀性,提高炉腔中各处进料熔融的均匀性;在炉腔的侧壁上均匀分布多个煤枪,提高高价氧化态物质被还原为低价还原态物质的转化率。优选地,氧枪和煤枪安装在炉腔的侧壁上,穿过耐火材料,进入炉腔。上述技术方案中,优选地,所述连续操作的冶金电炉还包括喷管,所述喷管位于所述炉腔的侧壁上,用于向炉膛净空内喷吹碳氢化合物,所述喷管的出口高于所述熔渣。上述实施例中,部分电能和化学能用于反应(2),反应(2)产生的CO进入炉膛净空,且CO携带大量能量,且反应(3)和(4)释放的燃烧热的一部分用于熔融进料和反应(2),一部分将气体(CO、CO2、O2)升温并进入炉膛净空,作为碳氢化合物裂解气化的热源,生成煤气,从而使得本发明在提高熔炼的总功率的同时,生成了煤气,避免了烟气中所含的能量的浪费。炉膛净空又名自由净空,是指熔池上方、炉盖下方的空间。具体来说,碳氢化合物在炉膛净空中发生的反应有:CnHm=nC+m/2H2(5)2CnHm+CO2=2(n+1)CO+mH2(6)CnHm+nH2O=nCO+(n+m/2)H2(7)C+CO2=2CO(8)C+H2O=H2+CO(9)由于炉膛净空的空间有限,反应(5)、(6)、(7)、(8)、(9)可能达不到化学平衡,最后的温度和气体组成取决于系统的动力平衡。优选地,炉腔的侧壁上设有多个均匀分布的喷管。上述技术方案中,优选地,所述碳氢化合物向所述炉膛净空中的喷吹方向与所述炉腔的侧壁相切。优选地,碳氢化合物自上而下喷吹。本发明第二个方面的实施例提供一种熔炼方法,用于上述任一实施例所述的冶金电炉,其中,熔渣中包括能够被O2氧化的还原态物质,所述熔炼方法包括:通过氧枪向所述熔渣内吹氧,以将所述还原态物质氧化为氧化态物质;通过煤枪向所述熔渣内喷煤,以还原被氧化的所述氧化态物质。本发明上述实施例提供的熔炼方法,O2自上而下吹入熔渣中,将熔渣中低价的还原态物质氧化为高价氧化态物质,氧化过程中释放大量的化学能,能够有效的将进料熔融,同时,将煤粉也自上而下喷入熔渣中,将上述高价氧化态物质还原为低价的还原态,同时释放CO,该还原反应为吸热反应,于是还原态物质被氧化所释放的能量也供给还原反应;在熔渣内,因为O2的存在,O2也可能与CO、C发生燃烧反应,该燃烧反应的燃烧热能够使熔渣温度升高,为进料的熔融提供热量,还能够供给还原反应所需的能量,从而氧化反应中释放的化学能及燃烧反应中释放的能量均能用于进料的熔融,使得熔炼过程中除电能外,化学能也能为熔炼过程提供大量的能量,增加熔炼的总功率,增加产能和效率,特别是对熔炼高熔点的熔渣特别有效,并且减少了对电能的消耗。上述技术方案中,优选地,氧吹入所述熔渣的深度不超过所述熔渣厚度的二分之一。上述技术方案中,优选地,氧吹入所述熔渣的深度位于所述熔渣厚度的三分之一至所述熔渣厚度的二分之一的范围内。上述实施例中,对于不同的熔渣系统,O2吹入熔渣中的深度占熔渣总厚度的比例是不同的,如果熔渣系统需要控制在极低的氧位势下,以还原需要回收的金属氧化物,则氧吹入熔渣纵深的三分之一至熔渣纵深的二分之一的范围内,煤粉可以喷入更深位置以确保低氧位势。上述技术方案中,优选地,所述煤为无烟煤或褐煤。电弧炉炼钢中只能使用无烟煤或焦炭末,不能使用褐煤,但本申请中可以使用无烟煤,也可以使用褐煤,当然本申请中还可以使用焦炭末。上述技术方案中,优选地,在通过所述煤枪向所述熔渣内喷煤后,还包括:通过喷管向所述炉膛净空内喷吹碳氢化合物。上述实施例中,碳氢化合物自上而下吹入炉膛净空中,氧化反应放出的CO所携带的能量、CO与O2发生的燃烧反应产生的化学能、C与O2发生的燃烧反应所产生的化学能,能够作为碳氢化合物裂解气化的热源,从而在炉膛净空中产生煤气。上述技术方案中,优选地,所述碳氢化合物包括天然气或轻油。当然,在炉膛净空中喷入甲烷气体、固体褐煤等均能够转化成煤气,在熔池中产生的气体(CO、CO2、H2、H2O)的温度极高(温度大于1700℃),含大量热能进入炉膛净空,将上述碳氢化物喷入炉膛净空中,与CO2、H2O发生吸热化学反应,裂解成为煤气。上述技术方案中,优选地,在通过喷管向所述炉膛净空内喷吹碳氢化合物的同时,还包括:通过所述喷管向所述炉膛净空内喷吹液态水和/或气态水。上述实施例中,若要增加煤气中氢气的含量,在喷吹碳氢化合物的同时,还可以喷入少量水。当然,也可以在炉腔的侧壁上设置额外的喷管,用于喷吹水。本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。附图说明本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:图1是本发明的实施例所述的冶金电炉结构示意图,其中A处箭头表示氧气向熔渣内的吹入方向,B处箭头表示煤粉向熔渣内的喷入方向;图2是图1所示冶金电炉的俯视结构示意图,其中C处箭头表示氧气和煤粉向熔渣内的喷入方向;图3是本发明的实施例所述的冶金电炉局部的俯视结构示意图,其中D处箭头表示碳氢化合物吹入炉膛净空的方向。其中,图1至图3中附图标记与部件名称之间的对应关系为:1炉腔,11侧壁,2电极,3熔渣,4金属液。具体实施方式为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。下面参照附图描述根据本发明一些实施例的冶金电炉及用于该冶金电炉的熔炼方法。如图1和图2所示,根据本发明一些实施例提供的一种冶金电炉,包括炉体、氧枪和煤枪。其中,炉体具有炉腔1;氧枪位于炉腔1的侧壁11上,用于向熔炼过程中产生的熔渣3内吹氧,且氧枪的出口高于熔渣3;煤枪位于炉腔1的侧壁11上,用于向熔渣3内喷煤,且煤枪的出口高于熔渣3。本发明上述实施例提供的冶金电炉,尤其是连续操作的冶金电炉,特别是明弧操作的冶金电炉中,氧枪的出口和煤枪的出口均高于熔渣3的上表面,O2由氧枪自上而下(沿图1中箭头A的方向、图2中箭头C的方向)吹入熔渣3中,将熔渣3中低价的还原态物质氧化为高价氧化态物质,氧化过程中释放大量的化学能,熔渣3温度升高,所释放的化学能能够有效的将进料熔融,将煤粉通过煤枪也自上而下(沿图1中箭头B的方向、图2中箭头C的方向)喷入熔渣3中,煤粉中的碳将上述高价氧化态物质还原为低价的还原态,在高价氧化态物质被碳还原时,有CO放出,同时该还原反应需要吸热,于是还原态物质被氧化所释放的能量也供给该还原反应;在熔渣3内,因为O2的存在,O2也可能与CO、C发生燃烧反应,该燃烧反应的燃烧热能够使熔渣3温度升高,为进料的熔融提供热量,而且还可以为还原反应提供能量,从而氧化反应中释放的化学能,及燃烧反应中释放的能量均能用于进料的熔融,使得熔炼过程中除电能外,化学能也能为熔炼过程提供大量的能量,增加熔炼的总功率,增加产能和效率,特别是对熔炼高熔点的熔渣3特别有效,从而减少了对电能的消耗。本方案中,氧枪和煤枪均设置在熔渣3上方,O2和煤粉自上而下吹入熔渣3中,远离炉衬,减少了对炉衬的损伤,避免炉衬使用寿命降低。如图1中箭头A所示,由于O2自上而下并向炉腔1侧壁11上远离氧枪的安装位置的方向倾斜,即O2的喷吹的方向朝向炉腔1侧壁11上氧枪的安装位置的对面,如图1中箭头B所示,煤粉也是自上而下并向炉腔1侧壁11上远离煤枪的安装位置的方向倾斜,即煤粉的喷吹的方向朝向炉腔1侧壁11上煤枪的安装位置的对面,引起熔渣向炉腔1侧壁11上氧枪和煤枪的安装位置的对面流去,但离对面炉衬很远,造成的影响低,能够保护炉衬的完整性。具体的,以熔渣3中的还原态物质为Me2O3为例,吹氧喷煤过程中熔渣3内发生的化学反应有:Me2O3+0.5O2=2MeO2(1)2MeO2+C=Me2O3+CO(2)CO+0.5O2=CO2(3)O2+C=CO2(4)吹入O2后,发生反应(1),O2将Me2O3氧化为MeO2,该氧化反应为放热反应,反应中放出大量的化学能,用于进料的熔融;喷入煤粉后,发生反应(2),碳将MeO2还原为Me2O3,同时释放出CO,反应(2)为吸热反应,反应(1)中释放的化学能除用于进料熔融外,还为反应(2)提供能量;熔渣3中的O2也可能与CO和C发生燃烧反应(3)和(4),燃烧热的一部分释放到熔渣3中,用于进料熔融和供给反应(2),因为反应(1)、反应(3)和反应(4)均为放热反应,反应中释放的化学能,增加了熔炼总功率,降低了对电能的消耗。同时反应(2)中有大量的CO放出,形成气泡,将熔渣3鼓起成为泡沫渣,泡沫渣的形成有利于O2的吹入。电极2在炉腔中的分布如图1和图2所示,优选地,3个电极呈品字形分布。本发明的电炉是固定不动,连续加料不停止,铁水达到一定液位,打开金属液出口放出金属液4,这时照常加料,照常喷吹氧和煤。金属液4流出一定流量后,用堵口机把金属液出口堵住,一段时间后,渣位太高时,打开渣口出渣,照常加料,照常喷吹氧和煤。优选地,如图1和图3所示,连续操作的冶金电炉包括多个氧枪和多个煤枪,多个氧枪,沿炉腔1的侧壁11均匀分布;和多个煤枪,沿炉腔1的侧壁11均匀分布。在本发明的一个具体实施例中,氧枪位于煤枪的下方,优选地,氧枪的数量和煤枪的数量相等,煤枪位于氧枪的正上方,两者上下布置。在本发明的另一个具体实施例中,氧枪与煤枪位于炉腔1的侧壁11的同一高度上,呈左右布置。优选地,如图2所示,多个氧枪沿炉腔1的侧壁11的同一高度周向均匀分布,多个煤枪也沿炉腔1的侧壁11的同一高度周向均匀分布。优选地,一个煤枪和一个氧枪可以摆在同一个冷却套中,氧枪和煤枪在熔池的射入点之间的距离不小于300毫米。上述实施例中,氧枪和煤枪位于熔池上方,O2和煤粉从上到下吹入炉腔1,O2流速为超音速射穿泡沫渣,煤也能被射入熔池中。在炉腔1的侧壁11上均匀分布多个氧枪,能够提高O2吹入熔渣3中的均匀性,从而提高还原态物质被氧化的过程中所释放的化学能在熔渣3中分布的均匀性,提高炉腔1中各处进料熔融的均匀性;在炉腔1的侧壁11上均匀分布多个煤枪,提高煤粉喷入熔渣3中的均匀性,提高高价氧化态物质被还原为低价还原态物质的转化率。优选地,氧枪和煤枪安装在炉腔1的侧壁11上,穿过耐火材料,进入炉腔1。优选地,如图3所示,连续操作的冶金电炉还包括喷管,喷管位于炉腔1的侧壁11上,用于向炉膛净空内喷吹碳氢化合物,喷管的出口高于熔渣3。上述实施例中,部分电能和化学能用于反应(2),反应(2)产生的CO进入炉膛净空,且CO携带大量能量,且反应(3)和(4)释放的燃烧热的一部分用于熔融进料和反应(2),一部分将气体(CO、CO2、O2)升温并进入炉膛净空,作为碳氢化合物裂解气化的热源,生成煤气,从而使得本发明在提高熔炼的总功率的同时,生成了煤气,避免了烟气中所含的能量的浪费。炉膛净空又名自由净空(freeboard),是指熔池上方、炉盖下方的空间。具体来说,碳氢化合物在炉膛净空中发生的反应有:CnHm=nC+m/2H2(5)2CnHm+CO2=2(n+1)CO+mH2(6)CnHm+nH2O=nCO+(n+m/2)H2(7)C+CO2=2CO(8)C+H2O=H2+CO(9)由于炉膛净空的空间有限,反应(5)、(6)、(7)、(8)、(9)可能达不到化学平衡,最后的温度和气体组成取决于系统的动力平衡。优选地,如图3所示,碳氢化合物向炉膛净空中的喷吹方向与炉腔1的侧壁11相切。优选地,碳氢化合物自上而下喷吹(沿图3中箭头D的方向)。喷吹方向与炉腔1侧壁11相切的目的在产生气体的循环,增加气体停留在炉腔1内的时间,以产生较多的反应。但如喷管占位置太大,影响设计,喷管与炉腔1侧壁11垂直亦可,即碳氢化合物向炉膛净空中的喷吹方向与炉腔1侧壁11垂直。优选地,炉腔1的侧壁11上设有多个均匀分布的喷管。本发明第二个方面的实施例提供一种熔炼方法,用于上述任一实施例所述的冶金电炉,其中,熔渣3中包括能够被O2氧化的还原态物质,该熔炼方法包括:通过氧枪向熔渣3内吹氧,以将还原态物质氧化为氧化态物质;通过煤枪向熔渣3内喷煤,以还原被氧化的氧化态物质。本发明上述实施例提供的熔炼方法,O2自上而下(沿图1中箭头A的方向、图2中箭头C的方向)吹入熔渣3中,将熔渣3中低价的还原态物质氧化为高价氧化态物质,氧化过程中释放大量的化学能,能够有效的将进料熔融,同时,将煤粉也自上而下(沿图1中箭头B的方向、图2中箭头C的方向)喷入熔渣3中,将上述高价氧化态物质还原为低价的还原态,同时释放CO,该还原反应为吸热反应,于是还原态物质被氧化所释放的能量也供给还原反应;在熔渣3内,O2与CO、C发生燃烧反应,该燃烧反应的燃烧热能够使熔渣3温度升高,为进料的熔融提供热量,还能够供给还原反应所需的能量,从而氧化反应中释放的化学能及燃烧反应中释放的能量均能用于进料的熔融,使得熔炼过程中除电能外,化学能也能为熔炼过程提供大量的能量,增加熔炼的总功率,增加产能和效率,特别是对熔炼高熔点的熔渣3特别有效,并且减少了对电能的消耗。优选地,氧吹入熔渣3的深度不超过熔渣3厚度的二分之一。这样在熔渣3的上部是高氧化区,也就是高反应区,而下部不受喷吹影响,仍然是高还原区,对金属的回收不受影响。当然,也可以先吹氧后喷煤,也可以吹氧与喷煤同时进行。上述技术方案中,优选地,氧吹入熔渣3的深度位于熔渣3厚度的三分之一至熔渣3厚度的二分之一的范围内。上述实施例中,对于不同的熔渣3系统,O2吹入熔渣3中的深度占熔渣3总厚度的比例是不同的,如果熔渣3系统需要控制在极低的氧位势下,以还原需要回收的金属氧化物,则氧吹入熔渣3纵深的三分之一至熔渣3纵深的二分之一的范围内,煤粉可以喷入更深位置以确保低氧位势。优选地,煤为无烟煤或褐煤。电弧炉炼钢中只能使用无烟煤或焦炭末,不能使用褐煤,但本申请中可以使用无烟煤,也可以使用褐煤,当然本申请中还可以使用焦炭末。因为在炼钢炉中目的是要产生足够的气体(CO)造成泡沫渣,而要避免产生过多气体,导致消耗过多的氧,同时产生的过多的气体无法回收,造成浪费,因此炼钢炉中避免使用褐煤。但在本发明中要提高气体产量,并将气体全部回收使用,因此褐煤是一个优良选择,从而能够降低生产成本。优选地,在通过煤枪向熔渣3内喷煤后,还包括通过喷管向炉膛净空内喷吹碳氢化合物。上述实施例中,碳氢化合物自上而下(沿图3中箭头D的方向)吹入炉膛净空中,氧化反应放出的CO所携带的能量、CO与O2发生的燃烧反应产生的化学能、C与O2发生的燃烧反应所产生的化学能,能够作为碳氢化合物裂解气化的热源,从而在炉膛净空中产生煤气。优选地,碳氢化合物包括天然气或轻油。当然,在炉膛净空中喷入甲烷气体、固体褐煤等均能够转化成煤气,在熔池中产生的气体(CO+CO2+H2+H2O)的温度极高(温度大于1700℃),含大量热能进入炉膛净空,将上述碳氢化物喷入炉膛净空中,与CO2、H2O发生吸热化学反应,裂解成为煤气。当然,也可以在喷煤的同时将碳氢化合物吹入炉膛净空内。优选地,在通过喷管向炉膛净空内喷吹碳氢化合物的同时,还包括通过喷管向炉膛净空内喷吹液态水和/或气态水。上述实施例中,若要增加煤气中氢气的含量,在喷吹碳氢化合物的同时,还可以喷入少量水。当然,也可以在炉腔的侧壁上设置额外的喷管,用于喷吹水。对于液态水和/或气态水与碳氢化合物的喷吹顺序,可以在喷吹碳氢化合物的同时喷吹水,也可以先后喷吹,具体的,可以先喷吹碳氢化合物,也可先喷吹水。下面以钛钒磁铁矿的冶炼为例,在一个中试电炉中来实行吹氧喷煤,根据原料的条件不同操作参数有所不同。下表列举这两种不同的冶炼方式的一些操作参数及获得的出铁量、煤气量和煤气成分。实施例-实施例一实施例二原料-直接冷加料预还原热加料金属化率%085入炉温度℃25650出铁量tph1.22.9出渣量tph0.81.9电功率MW2.41.9化学能功率MW4.14.6总功率MW6.56.5氧气喷吹量Nm3/h14351607天然气喷吹量Nm3/h323354褐煤喷吹量tph2.02.2无烟煤加入量tph0.590.35氮气消耗量Nm3/h198222电炉烟气流量Nm3/h63026394COVol%5957H2Vol%2930N2Vol%77CO2Vol%34H2OVol%22实施例一与实施例二的不同在于,实施例一中在冶金电炉中直接加入冷料,实施例二中将钒钛磁铁矿预还原至高度金属化率,然后热装料进冶金电炉。从实施例一和实施例二的参数看出,冶金电炉中采用吹氧喷煤的技术后,实施例一中电功率占总功率的37%,实施例二中电功率占总功率的30%,可以看出采用吹氧喷煤技术后,冶炼中均减少了对电能的消耗。实施例一和实施例二中,总功率是相同的,两者产生的煤气量和成分也大致相同,但实施例二中出铁量是实施例一中出铁量的2.4倍。实施例一中直接加冷料没有预还原,设备简单,投资少,但每吨成品总能量消耗大,使用无烟煤做还原剂用量大。实施例二中预还原热料需要投资预还原设备,但可使用廉价的褐煤作燃料和还原剂,减少无烟煤的使用量,冶炼能耗小。在实际使用过程中,选择直接加冷料还是加预还原热料可以视能源价格而定。需要说明的是,本方案主要针对含钒、钛、铁矿的冶炼,此时,反应(1)和(2)中氧化态物质为TiO2,还原态物质为Ti2O3,但也可以应用于FeO/Fe3O4系统存在的硫化铜、硫化镍矿的冶炼。综上所述,本发明实施例提供的连续操作的冶金电炉,采用吹氧喷煤的技术,O2将熔渣3中低价的还原态物质氧化为高价氧化态物质,氧化过程中所释放的化学能能够有效的将进料熔融,同时,将煤粉也自上而下喷入熔渣3中,将上述高价氧化态物质还原为低价的还原态;在熔渣3内O2与CO、C发生燃烧反应,进一步为进料的熔融提供热量,使得熔炼过程中除电能外,化学能也能为熔炼过程提供大量的能量,增加熔炼的总功率,增加产能和效率,特别是对熔炼高熔点的熔渣3特别有效,并且减少了对电能的消耗。在本发明的描述中,除非另有明确的规定和限定,术语“多个”是指两个或两个以上;除非另有规定或说明,术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。本说明书的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本发明的限制。在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1