空气环境下激光选择性熔化金属纳米颗粒溶液增材制造疏水表面的方法与流程

文档序号:12714683阅读:587来源:国知局
空气环境下激光选择性熔化金属纳米颗粒溶液增材制造疏水表面的方法与流程

本发明属于疏水表面制备技术领域,具体涉及一种空气环境下激光选择性熔化金属纳米颗粒溶液增材制造疏水表面的方法。



背景技术:

疏水表面是一种对水具有排斥性的功能性表面,水滴在其表面无法滑动铺展而保持球型滚动状,从而达到滚动自清洁的效果。自然界当中的荷叶是该种材料的典型代表。由于该功能性表面的特殊浸润性,使得其在自清洁、防腐蚀、防雾、流体减阻等领域有着广泛的潜在应用。研究发现,具有特定的粗糙度和较低的表面自由能是疏水表面实现其超疏水性的两个必要条件。目前,制造疏水结构方法主要为:自组装法、溶胶凝胶法、等离子体刻蚀法、化学腐蚀、逐层吸附法、电化学沉积法等工艺方法,未见利用选择性激光熔化增材制造工艺制造表面疏水结构的报道。

目前,减材方式制造表面疏水结构主要为化学腐蚀、机械刻蚀等处理;而增材方式制造疏水结构主要为自组装、电化学沉积、气相沉积等。自组装是通过非共价键的方式将原子、离子或分子等连接在一起构成纳米疏水表面结构的。自组装技术需要具备两个条件:一具有足够量的非共价键存在,二是自组装体系能量足够低。这对基材的性能及组装原始材料提出了很高的要求,并且由于组装利用的是非共价键弱力,形成的疏水表面强度低,难以大规模生产和应用。电化学沉积是利用阴极过电位作为动力,在液相产生传质、电荷传递、电结晶的过程。沉积后的结构、性能与电结晶过程中晶粒的生长方式关系密切,同时与基材表面的初始晶格状态有关。在电化学沉积制造过程中,电流密度、有机物动态浓度、酸碱度、温度等均对制造后的疏水结构影响较大。气相沉积制造疏水表面技术,是在真空或气体保护的环境下,利用气态物质与固体表面发生化学反应,生成固态沉积物的过程。虽然可发生的化学反应种类很多,但同样对基材和被沉积物有特定要求。



技术实现要素:

本发明的目的是为了克服现有技术中存在的上述问题,提供一种空气环境下激光选择性熔化金属纳米颗粒溶液增材制造疏水表面的方法。

本发明提出的激光选择性熔化金属纳米颗粒溶液增材制造疏水表面结构的方法,是采用金属纳米颗粒作为被烧结物,在溶剂的保护下,空气环境中,利用激光选择性熔化的方式,在选定的区域进行疏水性结构的制造。该工艺是金属纳米颗粒与基底发生熔化的物理过程和金属纳米颗粒在液体的保护下与空气发生化学反应的耦合过程。

为实现上述目的,本发明采取的技术方案如下:

一种空气环境下激光选择性熔化金属纳米颗粒溶液增材制造疏水表面的方法,所述方法具体步骤如下:

步骤一:配置金属纳米混合溶液,将20.8wt%的聚乙烯吡咯烷酮和46.2wt%的纳米金属粉分散在33wt%的溶剂中,超声分散均匀;

步骤二:依次用无水乙醇、丙酮、氢氧化钠溶液及二次水超声清洗不锈钢基底并晾干;

步骤三:在不锈钢基底表面上均匀涂布一层金属纳米混合溶液,然后将不锈钢基底平面放置于选择性激光熔化制造装置焦距位置附近;

步骤四:激光在计算机控制下,扫描点阵、网格,纳米金属粉在溶剂的保护下,与不锈钢基底熔化连接在一起,得到表面疏水结构;

步骤五:扫描完成后,将步骤四得到的表面疏水结构放置在超声清洗机中,超声频率为40Hz,清洗30min,将未参加反应的残留物和生成物清洗干净;

步骤六:将步骤五清洗后的表面疏水结构进一步使用十三氟辛基三乙氧基硅烷的乙醇溶液35℃浸泡24小时,所述的十三氟辛基三乙氧基硅烷的乙醇溶液浓度为0.05mol/L,然后在120℃下加热1h,实现表面修饰,降低表面能,经过表面修饰后的材料具有超疏水特性。

本发明相对于现有技术的有益效果是:

(1)本发明由于仅涉及基底与被烧结物发生物理熔化反应,故本发明对基底与被烧结的纳米金属粉性质要求低,且金属通过熔化方式与基底连接,具有强度高稳定性强等优势;采用激光作为热源,在可控的条件下,可选择区域地制造疏水表面,具有极高的灵活性且操作方便;同时,整个过程发生在空气环境下,对设备的要求低,制造成本低。

(2)本发明方法通过金属纳米颗粒与基底通过物理熔化的方式进行连接,而非化学键作用,具有高强度、高稳定性、对基材要求低等特点;通过激光扫描出微米级尺度结构,在熔融液体表面张力的作用下,纳米颗粒与微米结构相互熔化连接,直接实现微纳二级疏水结构的制造;由于采用选择性激光方式作为热源,该方法具有灵活性高、可控性高、效率高的优点(现有技术中的自组装、电化学沉积、气相沉积均需要整面处理)。且由于溶剂的保护,该方法可在空气中进行,对环境要求低。

附图说明

图1为本发明制备的疏水表面XRD图;

图2为X100放大倍率下,烧结网格形疏水表面的表面形貌SEM图;

图3为X300放大倍率下,烧结网格形疏水表面的表面形貌SEM图;

图4为X11000放大倍率下,烧结网格形疏水表面的表面形貌SEM图;

图5 为本发明制备的疏水表面结构与水的接触角约为157°的图片展示。

具体实施方式

下面结合附图和实施例对发明的技术方案进一步说明,但并不局限于此,凡是对本发明技术方案进行修正或等同替换,而不脱离本发明技术方案精神范围,均应涵盖在本发明的保护范围之中。

具体实施方式一:一种空气环境下激光选择性熔化金属纳米颗粒溶液增材制造疏水表面的方法,本实施方式制备疏水表面的方法,是先配置金属纳米混合溶液,并在金属基底表面均匀涂布一层后,利用激光选择性烧结,得到表面具有疏水性能的表面结构;所述方法具体步骤如下:

步骤一:配置金属纳米混合溶液,将20.8wt%的聚乙烯吡咯烷酮(黏度K30,相对分子质量Mr 10000)和46.2wt%的纳米金属粉(颗粒直径小于100nm)分散在33wt%的溶剂中,超声分散均匀;

步骤二:依次用无水乙醇、丙酮、氢氧化钠溶液及二次水超声清洗不锈钢基底并晾干;

步骤三:在不锈钢基底表面上均匀涂布一层金属纳米混合溶液,然后将不锈钢基底平面放置于选择性激光熔化制造装置焦距(激光光斑小于20微米)位置附近;

步骤四:激光在计算机控制下,扫描点阵、网格,纳米金属粉在溶剂的保护下,与不锈钢基底熔化连接在一起,得到表面疏水结构;

步骤五:扫描完成后,将步骤四得到的表面疏水结构放置在超声清洗机中,超声频率为40Hz,清洗30min,将未参加反应的残留物和生成物清洗干净;

步骤六:将步骤五清洗后的表面疏水结构进一步使用十三氟辛基三乙氧基硅烷的乙醇溶液35℃浸泡24小时,所述的十三氟辛基三乙氧基硅烷的乙醇溶液浓度为0.05mol/L,然后在120℃下加热1h,实现表面修饰,降低表面能,经过表面修饰后的材料具有超疏水特性。

具体实施方式二:具体实施方式一所述的空气环境下激光选择性熔化金属纳米颗粒溶液增材制造疏水表面的方法,步骤一中,纳米金属粉为铜、金、银、钛或镍金属,或者是上述金属的氧化物中的一种。

具体实施方式三:具体实施方式一或二所述的空气环境下激光选区熔化金属纳米颗粒溶液增材制造疏水表面的方法,步骤一中,所述溶剂为乙二醇、乙醇或丙三醇。

本发明的原理是(以铜金属为例进行说明):铜纳米颗粒由于尺寸效应,熔点较低,将铜纳米颗粒在聚乙烯吡咯烷酮分散剂作用下,分散于乙二醇中,形成溶液,这样可防止铜纳米颗粒的团聚和沉淀。铜纳米混合溶液均匀铺在基底表面。在激光的作用下,金属颗粒吸热熔化与不锈钢基底结合,制造出一定微米尺度的结构。由于混合溶液中铜纳米粉比例较高,熔化凝固后的表面粘附有铜纳米颗粒,从而形成具有微纳二级结构的表面疏水结构。同时,在激光的作用下,溶液将发生蒸发沸腾等现象,从而导致熔化态的铜纳米颗粒与空气接触,进而导致氧化。由于毛细作用,反应区周围未反应的乙二醇与氧化铜接触,发生还原反应。得到纯铜的微纳二级表面疏水结构。该工艺可直接制造微纳二级表面结构,无需在微米级表面结构上制造纳米结构。由于本方法为金属粉末通过物理熔化与基底产生连接,连接强度高,性能稳定。

在空气环境下,通过乙二醇溶剂保护的形式,实现铜纳米与不锈钢基底通过物理熔化方式连接制造纯铜表面疏水结构的方法,该方式可一步实现微纳二级表面结构的制备。

实施例:

通过具体的实验对本发明制备的超疏水超亲油性表面的性能进行检测和分析。

检测仪器:XRD采用日本理学株式会社生产的(D/Max-rB);SEM采用荷兰飞利浦公司的场发射型扫描电镜(Helios NanoLab 600i);接触角仪采用德国 Dataphysics 仪器公司(OCA20)。

从实验得出的XRD图(即图1)可以看出,图1中均为铜的出峰位置,说明该工艺可实现纯铜的制造;图2、图3、图4分别为X100、X300、X11000放大倍率下,烧结网格形疏水表面的表面形貌SEM图,从这三幅图中可以看出,烧结后的表面网格为微米级,在微米级表面上粘附有纳米级铜颗粒,从而实现微纳二级疏水表面制造;图5 为本发明制备的疏水表面结构与水的接触角约为157°的图片展示,可以看出,修饰后的表面具有超疏水结构性能。

综上所述,本发明提供了一种纳米金属粉选择性激光熔化制备疏水表面结构的方法。该方法可实现无气体保护环境下,纯铜表面疏水结构的制造。该工艺方法可应用于金属基底材料疏水结构的制造。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1