一种柔性硬质复合涂层及其制备方法和涂层刀具与流程

文档序号:13842100阅读:325来源:国知局
一种柔性硬质复合涂层及其制备方法和涂层刀具与流程
本发明涉及硬质涂层
技术领域
,特别涉及一种柔性硬质复合涂层及其制备方法和涂层刀具。
背景技术
:硬质涂层是进行材料表面强化、发挥材料潜力、提高生产效率的有效途径,它是表面涂层的一种,是指通过物理或化学方法在基地的表面沉积的显微硬度大于某一特定值的表面涂层。硬质涂层已经被广泛应用于切削业、模具工业、地质钻探、纺织工业、机械制造以及航空航天领域,并发挥着越来越重要的作用。其中,硬质涂层在切削业的应用,不仅可以加工普通切削工具如刀具、钻头等难以加工的材料,而且可以提高切削的精准度,发挥出超硬、强韧、耐磨、自润滑等优势,被认为是切削史上的一次革命。硬质纳米复合涂层是新一代涂层的代表,典型的代表如二元nc-tin/a-si3n4硬质复合涂层,其优点主要在于提升涂层的硬度,使涂层获得尽可能高的硬度。镀膜领域通常将硬度h>40gpa的纳米复合涂层称为超硬纳米复合涂层。目前主要有两大类二元纳米复合涂层能够提升硬度,硬质合金相/硬质相纳米复合涂层和硬质相/软质相纳米复合涂层。然而硬度的提升并不是评价硬质纳米复合涂层的唯一指标,对于许多应用场合,提高涂层的韧性比追求超高硬度更重要。然而超硬材料通常都是脆性的,几乎不发生塑性变形,在非常小的应变条件下即发生失效。如现有涂层中的超硬纳米复合涂层如tisin,tisialn,nc-tin/a-si3n4涂层的硬度非常高,但韧性很差,塑性变形小,容易开裂;而高分子有机材料塑性较好,但硬度较差,不适应高速加工的需求。因此,提高硬质涂层的韧性,使其在高应变条件下亦不易产生裂纹,以满足大部分应用需求成为目前硬质涂层的研究重点。技术实现要素:本发明的目的在于提供一种柔性硬质复合涂层及其制备方法和涂层刀具。本发明提供的柔性硬质复合涂层具有良好的硬度和韧性。本发明提供了一种柔性硬质复合涂层,包括在基体表面依次设置的alcrn过渡层和纳米复合层,所述纳米复合层包括在alcrn过渡层表面依次交替设置的cron层和alon层。优选的,每层cron层和alon层的厚度分别独立地为3~20nm。优选的,所述cron层的数量为10~50层。优选的,所述cron层按原子百分比计,包括:铬34~45at.%,氧12~18at.%和氮40~50at.%。优选的,所述cron层为包括crn纳米晶和cr2o3非晶的纳米复合结构。优选的,所述alon层按原子百分比计,包括:铝35~43at.%,氧10~20at.%和氮38~48at.%。优选的,所述alon层为包括aln纳米晶和al2o3非晶的纳米复合结构。优选的,所述alcrn过渡层的厚度为200~500nm。本发明提供了一种上述技术方案所述柔性硬质复合涂层的制备方法,包括以下步骤:(1)在基体表面沉积alcrn过渡层;(2)在所述步骤(1)中的alcrn过渡层的表面依次交替沉积cron层和alon层,得到柔性硬质复合涂层。本发明还提供了一种涂层刀具,包括刀具基体和设置在所述刀具基体表面的涂层,所述涂层为上述技术方案所述的柔性硬质复合涂层或按照上述技术方案所述制备方法制备的柔性硬质复合涂层。本发明提供的柔性硬质复合涂层,包括在基体表面依次设置的alcrn过渡层和纳米复合层,所述纳米复合层包括在alcrn过渡层表面依次交替设置的cron层和alon层。本发明以alcrn为过渡层,增强纳米复合层与基体之间的结合力,cron层和alon层组成的纳米复合层能够提高涂层韧性,并且cron层和alon层的依次交替可以降低涂层的应力,增加涂层的晶面结构及晶界,进一步提高硬度和抗高温氧化特性。实验结果表明,本发明提供的柔性硬质复合涂层的硬度可达28gpa,弹性恢复系数可达70%。附图说明图1为本发明柔性硬质复合涂层结构示意图;其中,1为基体,2为alcrn为过渡层,3为纳米复合层,4为cron层,5为alon层;图2为本发明实施例2中柔性硬质复合涂层中纳米复合层的tem图;图3为本发明实施例2中柔性硬质复合涂层中纳米复合层的选区电子衍射图。具体实施方式本发明提供了一种柔性硬质复合涂层,如图1所示,本发明提供的柔性硬质复合涂层包括在基体1表面依次设置的alcrn过渡层2和纳米复合层3,所述纳米复合层3包括依次交替设置的cron层4和alon层5。本发明提供的柔性硬质复合涂层包括设置于基体表面的alcrn过渡层。在本发明中,所述alcrn过渡层的厚度优选为200~500nm,更优选为300~400nm,最优选为340~360nm。在本发明中,所述alcrn过渡层能够提高纳米复合层与基体之间的结合力,增强涂层的使用效果,提高涂层的使用寿命。本发明提供的柔性硬质复合涂层包括设置alcrn过渡层表面的纳米复合层,所述纳米复合层包括在alcrn过渡层表面依次交替设置的cron层和alon层。在本发明中,所述柔性硬质复合涂层的最外层优选为alon层。在本发明中,每层cron层和alon层的厚度分别独立地优选为3~20nm,更优选为5~15nm,最优选为8~12nm。在本发明中,所述cron层的数量优选为10~50层,更优选为20~40层,最优选为25~35层。在本发明中,所述cron层按原子百分比计,优选包括:铬34~45at.%,氧12~18at.%和氮40~50at.%,更优选包括:铬38~42at.%,氧14~16at.%和氮42~48at.%,最优选包括:铬40at.%,氧15at.%和氮45at.%。在本发明中,所述cron层优选为包括crn纳米晶和cr2o3非晶的纳米复合结构。在本发明中,所述cron层的晶粒度优选为2~10nm,更优选为3~6nm。在本发明中,所述cron层具有优良的抗氧化性能及韧性,同时兼具高硬度及热稳定性。在本发明中,所述alon层按原子百分比计,优选包括:铝35~43at.%,氧10~20at.%和氮38~48at.%,更优选包括:铝38~42at.%,氧12~18at.%和氮40~46at.%,最优选包括:铝40at.%,氧15at.%和氮45at.%。在本发明中,所述alon层优选为包括aln纳米晶和al2o3非晶的纳米复合结构。在本发明中,所述alon层的晶粒度优选为3~12nm,更优选为4~6nm。在本发明中,所述alon层具有优良的抗氧化性能及韧性,同时兼具高硬度及热稳定性。在本发明中,所述cron层和alon层交替周期排列,能够降低涂层的应力,增加涂层的晶面结构及晶界,进一步提高硬度和抗高温氧化特性。在本发明中,所述柔性硬质复合涂层的高温稳定性为1000℃以上,更优选为1200~1500℃。本发明还提供了上述技术方案所述柔性硬质复合涂层的制备方法,包括以下步骤:(1)在基体表面沉积alcrn过渡层;(2)在所述步骤(1)中的alcrn过渡层的表面依次交替沉积cron层和alon层,得到柔性硬质复合涂层。本发明在基体表面沉积alcrn过渡层。在本发明中,所述基体的材质优选为硬质合金或高速钢,更优选为硬质合金。本发明对所述硬质合金或高速钢的成分没有特殊的限定,采用本领域技术人员熟知的用于切削加工的硬质合金或高速钢即可。在本发明中,所述alcrn过渡层的沉积优选为高功率脉冲磁控溅射沉积。本发明对所述alcrn过渡层的高功率脉冲磁控溅射沉积的操作没有特殊的限定,采用本领域技术人员熟知的高功率脉冲磁控溅射沉积的技术方案即可。本发明优选在沉积alcrn过渡层前对所述基体依次进行预处理、溅射清洗和活化。本发明对所述预处理的操作没有特殊的限定,采用本领域技术人员熟知的预处理的技术方案即可。在本发明中,所述预处理优选依次包括洗涤和干燥。在本发明中,所述洗涤优选包括在丙酮和无水乙醇中依次超声;所述丙酮和无水乙醇中超声的时间优选独立地为10~20min,更优选为15min。在本发明中,所述干燥优选为洁净的压缩空气吹干。在本发明中,所述溅射清洗的参数优选为:基体转速2~8rpm,溅射温度300~500℃,溅射气体氩气,溅射气体压力0.3~1.0pa,偏压800~1200v,溅射清洗时间10~30min,更优选为:基体转速4~6rpm,溅射温度350~450℃,溅射气体氩气,溅射气体压力0.5~0.8pa,偏压900~1100v,溅射清洗时间15~25min。在本发明中,所述溅射清洗能够提高基体与alcrn过渡层之间的结合能力。本发明优选在所述溅射清洗完成后,直接打开cr靶,并调整各参数至活化的参数进行活化。在本发明中,所述活化的参数优选为:基体转速2~8rpm,溅射温度300~500℃,溅射气体氩气,溅射气体压力0.3~1.0pa,偏压300~500v,靶材平均电流2~10a,靶材峰值电流400~800a,靶材峰值电压500~900v,占空比2~7%,溅射时间5~15min,更优选为:基体转速4~6rpm,溅射温度350~450℃,溅射气体氩气,溅射气体压力0.5~0.8pa,偏压350~450v,靶材平均电流4~8a,靶材峰值电流500~700a,靶材峰值电压600~800v,占空比3~5%,溅射时间8~12min。在本发明中,所述活化通过cr离子轰击基体表面,增加基体表面的粒子的能量状态,生成金属层,增强涂层与基体的结合力。本发明优选在所述活化完成后,直接打开cr靶和al靶,并调整各参数至alcrn过渡层的高功率脉冲磁控溅射沉积的参数进行alcrn过渡层的沉积。在本发明中,所述alcrn过渡层的高功率脉冲磁控溅射沉积的参数优选为:基体转速2~8rpm,溅射温度300~500℃,溅射气体氩气,反应气体氮气,溅射气体压力0.6~1.2pa,偏压100~150v,靶材峰值电流400~600a,靶材峰值电压400~700v,占空比3~7%,溅射时间5~20min,更优选为:基体转速4~6rpm,溅射温度350~450℃,溅射气体氩气,反应气体氮气,溅射气体压力0.5~0.8pa,偏压350~450v,靶材峰值电流450~550a,靶材峰值电压500~600v,占空比4~6%,溅射时间10~15min。得到alcrn过渡层后,本发明在所述alcrn过渡层表面依次交替沉积cron层和alon层,得到柔性硬质复合涂层。在本发明中,所述alon层和cron层的沉积优选为高功率脉冲磁控溅射沉积。在本发明中,所述高功率脉冲磁控溅射沉积能够进一步使涂层具有优异的膜基结合力,降低涂层内应力,提高抗裂纹性能。本发明优选在alcrn过渡层的沉积完成后,关闭al靶,打开cr靶,并将参数调整至cron层的高功率脉冲磁控溅射沉积参数进行沉积,然后再关闭cr靶,打开al靶并将参数调整至alon层的高功率脉冲磁控溅射沉积参数进行沉积,交替打开和关闭cr靶和al靶,至纳米复合层沉积完成。在本发明中,所述cron层和alon层的高功率脉冲磁控溅射沉积参数优选独立地为:溅射气体氩气,反应气体氧气和氮气,氩气和氧气总气压0.4~1.2pa,氮气和氧气气压比(1~3):(3~1),基体转速2~10rpm,溅射温度300~500℃,靶材平均电流3~8a,靶材峰值电流400~900a,靶材峰值电压400~800v,占空比2~8%,溅射时间1~8min,更优选为:溅射气体氩气,反应气体氧气和氮气,氩气和氧气总气压0.6~1.0pa,氮气和氧气气压比(1~2):(2~1),基体转速4~6rpm,溅射温度350~450℃,靶材平均电流4~6a,靶材峰值电流500~700a,靶材峰值电压500~700v,占空比4~6%,溅射时间3~5min。本发明优选在纳米复合层的沉积完成后,将所述沉积的产物冷却,得到柔性硬质复合涂层。在本发明中,所述冷却优选在沉积的气氛中进行。在本发明中,所述沉积的产物在沉积的气氛中的冷却终点温度优选为150℃以下,更优选为80℃以下。本发明还提供了一种涂层刀具,包括刀具基体和设置在所述刀具基体表面的涂层,所述涂层为上述技术方案所述的柔性硬质复合涂层或按照上述技术方案所述制备方法制备的柔性硬质复合涂层。在本发明中,所述刀具基体的材质优选为硬质合金或高速钢。本发明对所述硬质合金或高速钢的成分没有特殊的限定,采用本领域技术人员熟知的用于切削加工的硬质合金或高速钢即可。本发明对所述刀具基体的形状和尺寸没有特殊的限定,采用本领域技术人员熟知的刀具即可。在本发明中,所述涂层刀具的制备优选以刀具基体为基体,按照上述技术方案所述柔性硬质复合涂层的制备方法制备即可,在此不再赘述。为了进一步说明本发明,下面结合实施例对本发明提供的柔性硬质复合涂层及其制备方法和涂层刀具进行详细地描述,但不能将它们理解为对本发明保护范围的限定。实施例1:将经预处理后的硬质合金刀具基体均匀固定在支架上,装入镀膜机中,调节工件支架转速为2rpm,抽至本底真空1.0×10-3pa,同时打开加热器,升温至300℃;打开氩气流量阀,调节真空室约为0.5pa,基体加负偏电压800v,进行辉光溅射清洗10min;然后降低基体负偏电压至300v,开启高功率脉冲磁控溅射纯cr靶,调节靶材平均电流为2a,峰值电流400v,峰值电压600v,占空比3%,以cr离子高能轰击基体5min以活化基体表面;打开氮气流量阀,基体偏压降至100v,镀膜压力0.6pa,温度300℃条件下,同时开启al靶和cr靶,控制峰值电流在400a,峰值电压在400v,占空比3%,沉积alcrn过渡层5min;通入氩气和氧气控制总气压在0.4pa,氮气/氧气比例为1/3,工件架转速2rpm,交替性打开cr靶和al靶,调节高功率脉冲磁控溅射平均电流3a,峰值电流400a,峰值电压400v,占空比2%,沉积cron/alon层40min,关闭电源,关闭流量阀,完成镀膜后,基体随炉降温至80℃后取出常温冷却即可。制备出的样品表面涂层命名为涂层1,各层原子百分比及厚度如下:铝铬氮过渡层:铝16at.%,铬28at.%,氮56at.%;厚度200nm;铝氧氮涂层:铝37at.%,氧17at.%,氮46at.%;厚度3nm;铬氧氮涂层:铬34at.%,氧18at.%,氮48at.%;厚度5nm。实施例2:将经预处理后的高速钢刀具基体均匀固定在支架上,装入镀膜机中,调节工件支架转速为8rpm,抽至本底真空5.0×10-3pa,同时打开加热器,升温至500℃;打开氩气气流量阀,调节真空室约为1.0pa,基体加负偏电压1200v,进行辉光溅射清洗30min;然后降低基体负偏电压至500v,开启高功率脉冲磁控溅射纯cr靶,调节靶材平均电流为10a,峰值电流800v,峰值电压800v,占空比7%,以cr离子高能轰击基体15min以活化基体表面;打开氮气流量阀,基体偏压降至150v,镀膜压力1.2pa温度500℃条件下,同时开启al靶和cr靶,控制峰值电流在600a,峰值电压在700v,占空比8%,沉积alcrn过渡层20min;通入氩气和氧气控制总气压在1.2pa,氮气/氧气比例为3/1,工件架转速10rpm,交替性打开cr靶和al靶,调节高功率脉冲磁控溅射平均电流8a,峰值电流900a,峰值电压800v,占空比8%,沉积cron/alon层200min,关闭电源,关闭流量阀,完成镀膜后,基体随炉降温至150℃后取出常温冷却即可。制备出的样品表面涂层命名为涂层2,涂层的高分辨透射电镜和选区电子衍射图像如图2和图3所示,可以很明显的看到纳米晶crn和aln的电子衍射环,未发现al2o3和cr2o3的衍射环,可推测其为非晶相,因此,整体涂层为一种纳米晶镶嵌于非晶基体的纳米复合结构。其涂层原子百分比及厚度如下:铝铬氮过渡层:铝20at.%,铬31at.%,氮49at.%;厚度320nm;铝氧氮涂层:铝39at.%,氧14at.%,氮47at.%;厚度6nm;铬氧氮涂层:铬45at.%,氧11at.%,氮44at.%;厚度8nm。实施例3:将经预处理后的硬质合金刀具基体均匀固定在支架上,装入镀膜机中,调节工件支架转速为4rpm,抽至本底真空2.0×10-3pa,同时打开加热器,升温至400℃;打开氩气气流量阀,调节真空室约为0.8pa,基体加负偏电压1000v,进行辉光溅射清洗20min;然后降低基体负偏电压至400v,开启高功率脉冲磁控溅射纯cr靶,调节靶材平均电流为4a,峰值电流500,峰值电压520v,占空比3%,以cr离子高能轰击基体10min以活化基体表面;打开氮气气流量阀,基体偏压降至120v,镀膜压力0.8pa温度300℃条件下,同时开启al靶和cr靶,控制峰值电流在400a,峰值电压在450v,占空比3%,沉积alcrn过渡层10min,通入氩气和氧气控制总气压在0.8pa,氮气/氧气比例为1/1,工件架转速4rpm,交替性打开cr靶和al靶,调节高功率脉冲磁控溅射平均电流4a,峰值电流400a,峰值电压400v,占空比3%,交替沉积cron/alon层共100min,关闭电源,关闭流量阀,完成镀膜后,基体随炉降温至100℃后取出常温冷却即可。制备出的样品表面涂层命名为涂层3,其涂层原子百分比及厚度如下:铝铬氮过渡层:铝21at.%,铬34at.%,氮45at.%;厚度400nm;铝氧氮涂层:铝41at.%,氧16at.%,氮43at.%;厚度12nm;铬氧氮涂层:铬39at.%,氧17at.%,氮44at.%;厚度6nm。对比例1:采用实施例1所述方法在硬质合金基体上制备的仅含铝铬氮缓冲层的样品,命名为涂层4。对比例2:采用实施例1所述方法在硬质合金基体上制备的仅含铝铬氮缓冲层和铝氧氮涂层的样品,命名为涂层5。对比例3:采用实施例1所述方法在硬质合金基体上制备的仅含铝铬氮缓冲层和铬氧氮涂层的样品,命名为涂层6。检测实施例1~3及对比例1~3所获得的涂层的性能,结果如表1。表1实施例1~3及对比例1~3涂层性能检测结果编号硬度(gpa)结合力(n)弹性恢复率涂层1246368%涂层2286070%涂层3246562%涂层455845%涂层575044%涂层6105748%由以上对比例及实施例可以看出,本发明提供的柔性硬质复合涂层硬度高,柔性好,并且涂层与基体的结合力强。以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本
技术领域
的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1