环形银纳米间隙阵列及其制备方法和用途与流程

文档序号:16210096发布日期:2018-12-08 07:37阅读:157来源:国知局
环形银纳米间隙阵列及其制备方法和用途与流程

本发明涉及一种间隙阵列及制备方法和用途,尤其是一种环形银纳米间隙阵列及其制备方法和用途。

背景技术

表面增强拉曼散射(sers)光谱技术具有指纹识别能力和灵敏度高等优点,在化学、生物和医药等领域有着广泛的应用前景。为此,人们力图获得具有较高活性的sers基底,做出了不懈的努力,如题为“large-areaagnanorodarraysubstratesforsers:aaotemplate-assistedfabrication,functionalization,andapplicationindetectionpcbs”,j.ramanspectrosc.,2013,44,240-246(“大面积银纳米棒sers衬底:氧化铝模板辅助制备,功能化和在检测多氯联苯方面的应用”,2013年德国wiley出版社的《拉曼光谱期刊》44卷第240-246页)的文章。该文中提及的sers衬底由棒间距小于10nm的银纳米棒组成;制备方法包括氧化铝模板的制作等。这种sers衬底虽有着较高的sers活性,却和其制备方法都存在着欠缺之处,首先,sers衬底上的银纳米棒的间距是由氧化铝模板的孔间距决定的,难以做到精确的定位,尤为孔密度较高时;其次,制备方法不能获得具有较高密度的、等离激元间隙可控的sers衬底。



技术实现要素:

本发明要解决的技术问题为克服现有技术中的欠缺之处,提供一种密度高、等离激元间隙可控的环形银纳米间隙阵列。

本发明要解决的另一个技术问题为提供一种上述环形银纳米间隙阵列的制备方法。

本发明要解决的又一个技术问题为提供一种上述环形银纳米间隙阵列的用途。

为解决本发明的技术问题,所采用的技术方案为,环形银纳米间隙阵列包括衬底上的银纳米棒阵列,特别是:

所述组成银纳米棒阵列的银纳米棒的侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内;

所述侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒的棒长为50-1000nm、棒直径为20-300nm;

所述侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒根部的棒直径<银纳米棒的直径,其与银纳米凸环内壁的间距为0.33-30nm;

所述银纳米凸环的高为5-70nm、环壁厚为5-25nm,银纳米凸环的密度为109-1011/cm2

所述银纳米凸环的表面为银纳米颗粒膜。

作为环形银纳米间隙阵列的进一步改进:

优选地,衬底为银纳米颗粒膜下依次附有银膜和铜膜。

优选地,组成银纳米棒阵列的银纳米棒为六方有序排列。

为解决本发明的另一个技术问题,所采用的另一个技术方案为,上述环形银纳米间隙阵列的制备方法包括使用阳极氧化法获得通孔氧化铝模板,特别是完成步骤如下:

步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板,再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板;

步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜,再将其置于银电解液中以银膜为电极电沉积银纳米棒,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板;

步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜,再将其置于碱或酸溶液中溶去氧化铝模板和氧化铝薄膜,制得环形银纳米间隙阵列。

作为环形银纳米间隙阵列的制备方法的进一步改进:

优选地,蒸镀为离子溅射,或磁控溅射,或热蒸发。

优选地,银电解液为2-10g/l的硝酸银水溶液、1-10g/l的乙二胺四乙酸水溶液、5-30g/l的亚硫酸钠水溶液和5-20g/l的磷酸氢二钾水溶液的混合液。

优选地,铜电解液为0.2-20g/l的硝酸铜水溶液和1-50g/l的硼酸水溶液的混合液。

优选地,碱溶液为氢氧化钠溶液,或氢氧化钾溶液,或氢氧化锂溶液,酸溶液为磷酸溶液,或硫酸溶液,或草酸溶液。

为解决本发明的又一个技术问题,所采用的又一个技术方案为,上述环形银纳米间隙阵列的用途为:

将环形银纳米间隙阵列作为表面增强拉曼散射的活性基底,使用激光拉曼光谱仪测量其上附着的罗丹明6g(r6g),或福美双,或毒死蜱的含量。

作为环形银纳米间隙阵列的用途的进一步改进:

优选地,激光拉曼光谱仪的激发光的波长为532nm、功率为0.1-2mw、积分时间为1-30s。

相对于现有技术的有益效果是:

其一,对制得的目的产物使用扫描电镜进行表征,由其结果可知,目的产物为侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒组成的银纳米棒阵列;其中,银纳米棒的棒长为50-1000nm、棒直径为20-300nm,银纳米棒根部的棒直径<银纳米棒的直径,其与银纳米凸环内壁的间距为0.33-30nm,银纳米凸环的高为5-70nm、环壁厚为5-25nm,银纳米凸环的密度为109-1011/cm2,银纳米凸环的表面为银纳米颗粒膜。这种由侧面包覆有银纳米多孔管、根部竖立于银纳米凸环内的银纳米棒,以及银纳米棒根部与银纳米凸环内壁的间距和银纳米凸环的表面为银纳米颗粒膜组装成的目的产物,既由于银纳米棒组成的阵列,又因银纳米棒侧面包覆着的银纳米多孔管,还由于银纳米棒根部与银纳米凸环内壁之间存在着的间隙——环形银纳米间隙,以及银纳米凸环的密度为109-1011/cm2,更因银纳米凸环的表面为银纳米颗粒膜,而使其不仅具有了高密度的银纳米棒和银纳米凸环,银纳米多孔管和银纳米颗粒膜也提供了众多的等离激元,还有着银纳米棒根部与银纳米凸环内壁的等离激元间隙的精确可控,从而使目的产物的sers灵敏度和可靠性均得到了极大的提升。

其二,将制得的目的产物作为sers活性基底,经分别对罗丹明6g、农药福美双和毒死蜱进行不同浓度下的多次多批量的测试,当被测物罗丹明6g的浓度低至10-15mol/l、福美双的浓度低至0.5nmol/l、毒死蜱的浓度低至10nmol/l时,仍能将其有效地检测出来,且其检测的一致性和重复性于目的产物上的多点和任一点都非常的好。

其三,制备方法科学、有效。不仅制得了密度高、等离激元间隙可控的目的产物——环形银纳米间隙阵列,还使其具有了较高的sers灵敏度,以及结构的均匀性和信号的重复性均非常高的性能,更有着便于简单廉价地批量制备大面积、高密度、等离激元间隙可控阵列的优点,进而使目的产物可作为sers的活性基底来测量其上附着的痕量有机污染物。

附图说明

图1是目的产物的制备流程图。

图2是对获得的中间产物——表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板的剖面使用扫描电镜(sem)进行表征的结果之一。sem图像中没有氧化铝薄膜的箭头指示,是由于使用原子层沉积法沉积的氧化铝薄膜的厚度<10nm,因而无法在此用sem清晰的观察到。

图3是对制备方法制得的目的产物使用扫描电镜进行表征的结果之一。其中,图1中的a图为目的产物的sem图像;b图为a图的高倍率sem图像,图中箭头指示的是环形纳米间隙的上端。

图4是对含有1fmol/l的罗丹明6g的目的产物使用激光拉曼光谱仪进行表征的结果之一。

图5是对含有0.5nmol/l的福美双的目的产物使用激光拉曼光谱仪进行表征的结果之一。

图6是对含有10nmol/l的毒死蜱的目的产物使用激光拉曼光谱仪进行表征的结果之一。

具体实施方式

下面结合附图对本发明的优选方式作进一步详细的描述。

首先从市场购得或自行制得:

孔密度为109-1011/cm2的通孔氧化铝模板;

作为碱溶液的氢氧化钠溶液、氢氧化钾溶液和氢氧化锂溶液;

作为酸溶液的磷酸溶液、硫酸溶液和草酸溶液。

接着:

实施例1

制备的具体步骤为:

步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。

步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为2g/l的硝酸银水溶液、10g/l的乙二胺四乙酸水溶液、5g/l的亚硫酸钠水溶液和20g/l的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。

步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为0.2g/l的硝酸铜水溶液和50g/l的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得近似于图3所示的环形银纳米间隙阵列。

实施例2

制备的具体步骤为:

步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。

步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为4g/l的硝酸银水溶液、7g/l的乙二胺四乙酸水溶液、14g/l的亚硫酸钠水溶液和17g/l的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。

步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为1g/l的硝酸铜水溶液和38g/l的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得近似于图3所示的环形银纳米间隙阵列。

实施例3

制备的具体步骤为:

步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。

步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为6g/l的硝酸银水溶液、5g/l的乙二胺四乙酸水溶液、23g/l的亚硫酸钠水溶液和13g/l的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。

步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为8g/l的硝酸铜水溶液和25g/l的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得如图3所示的环形银纳米间隙阵列。

实施例4

制备的具体步骤为:

步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。

步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为8g/l的硝酸银水溶液、3g/l的乙二胺四乙酸水溶液、32g/l的亚硫酸钠水溶液和9g/l的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。

步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为14g/l的硝酸铜水溶液和13g/l的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得近似于图3所示的环形银纳米间隙阵列。

实施例5

制备的具体步骤为:

步骤1,先于通孔氧化铝模板的表面溅射银,得到表面覆有银纳米颗粒膜、孔内壁覆有银纳米多孔管的通孔氧化铝模板。再于其上使用原子层沉积法沉积氧化铝薄膜,得到表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板。

步骤2,先于表面依次覆有银纳米颗粒膜和氧化铝薄膜、孔内壁依次覆有银纳米多孔管和氧化铝薄膜的通孔氧化铝模板的表面蒸镀银膜;其中,蒸镀为离子溅射。再将其置于银电解液中以银膜为电极电沉积银纳米棒;其中,银电解液为10g/l的硝酸银水溶液、1g/l的乙二胺四乙酸水溶液、30g/l的亚硫酸钠水溶液和5g/l的磷酸氢二钾水溶液的混合液,得到表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板。

步骤3,先将表面依次覆有银纳米颗粒膜、氧化铝薄膜和银膜、孔内壁依次覆有银纳米多孔管、氧化铝薄膜和银纳米棒的氧化铝模板置于铜电解液中,于银膜电极的表面电沉积铜膜;其中,铜电解液为20g/l的硝酸铜水溶液和1g/l的硼酸水溶液的混合液。再将其置于碱(或酸)溶液中溶去氧化铝模板和氧化铝薄膜;其中,碱溶液为氢氧化钠溶液。制得近似于图3所示的环形银纳米间隙阵列。

再分别选择蒸镀为磁控溅射或热蒸发,以及选用作为碱溶液的氢氧化钠溶液或氢氧化钾溶液或氢氧化锂溶液,作为酸溶液的磷酸溶液或硫酸溶液或草酸溶液,重复上述实施例1-5,同样制得了如或近似于图3所示的环形银纳米间隙阵列。

环形银纳米间隙阵列的用途为:

将环形银纳米间隙阵列作为表面增强拉曼散射的活性基底,使用激光拉曼光谱仪测量其上附着的罗丹明6g(r6g),或福美双,或毒死蜱的含量,得到如或近似于图4或图5或图6所示的结果;其中,激光拉曼光谱仪的激发光的波长为532nm、功率为0.1-2mw、积分时间为1-30s。

显然,本领域的技术人员可以对本发明的环形银纳米间隙阵列及其制备方法和用途进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1