一种制备3D打印用球形金属粉末的装置及方法与流程

文档序号:16328622发布日期:2018-12-19 06:04阅读:253来源:国知局
一种制备3D打印用球形金属粉末的装置及方法与流程

本发明属于球形金属粉末制备技术领域,具体而言,尤其涉及一种利用脉冲微孔喷射法与离心雾化法相结合,通过金属液的纤维状分裂模式制备3d打印用球形高熔点金属粉末的装置及方法。

背景技术

3d打印技术是一种以数字模型文件为基础,运用金属粉末或塑料等可粘合材料,通过逐层打印的方式来构造物体的快速成形技术,它在航空航天、汽车等高技术领域及国防装备建设中具有重要的应用和发展前景。而用于3d打印的球形金属粉末的需求量也越来越高,且对粉末的质量也提出了很高的要求,特别是高熔点合金金属粉末,3d打印技术要求金属粉末需满足氧含量低、球形度高、粒度分布窄、平均粒径小于50μm且无卫星滴等性能。

目前国内外工业生产金属球形粉末的方法主要为雾化法,包含气雾化法、水雾化法以及离心雾化法等。但是雾化法所制备粉末的尺寸分散度大,必须通过多次筛分才能得到满足粒径要求的粉末,使生产效率大大降低,尤其当尺寸有严格要求时;雾化法易产生卫星滴,使粉末表面粘连卫星滴,降低粉末的流动性及铺展性,无法满足3d打印用粉末的要求。其他方法如切丝或打孔重熔法、均一液滴成型法都局限于制备低熔点的金属粉末,目前对高熔点球形金属粉末的制备处于空缺状态。

因此,有必要提供一种高熔点金属粉末的制备方法及制备装置以解决3d打印用粉体制备的技术难题。



技术实现要素:

根据上述提出3d打印用金属粉末制备过程中存在的圆球度差,铺展性及流动性差等问题,而提供一种制备3d打印用球形金属粉末的装置及方法。本发明主要结合脉冲微孔喷射法和离心雾化法两种方法,同时对转盘进行结构设计,且增加感应加热线圈对圆盘表面进行感应加热,从而使金属液突破了传统熔融金属的分裂模式,实现了只有当雾化介质为水溶液或有机溶液时才能实现的纤维状分裂方式,通过这种模式可以实现金属粉末的超微细化且在粒度调控方面可以取得较大的飞跃,可以制备得到圆球度高、有良好流动性和铺展性、无卫星滴、细粉收得率非常高的符合使用3d打印使用要求的球形金属粉末。

本发明采用的技术手段如下:

一种制备3d打印用球形金属粉末的装置,包括:壳体、设置于所述壳体内的坩埚和收集仓,所述坩埚置于所述壳体内的上部,所述收集仓置于所述坩埚的下部;

所述坩埚内设有与设置在所述壳体外部的压电陶瓷相连的传动杆,所述传动杆与所述坩埚顶部连接的位置由动态密封圈密封,所述传动杆的下端对着所述坩埚底部的中心孔,所述中心孔底部固定有带小孔的垫片;所述坩埚内部设有热电偶,所述坩埚外部设有电阻加热器;

所述壳体顶部设有伸入于所述坩埚内的坩埚进气口和坩埚排气阀,在所述壳体的侧壁上还设有扩散泵和机械泵,所述壳体上还设有腔体进气口和腔体排气阀,所述壳体的一侧设有炉门;

所述收集仓通过支架与所述壳体相固定,所述壳体和所述收集仓之间设有相贯通的环形降落管,所述收集仓腔体内、与所述环形降落管下端正对的位置设有转盘,所述转盘与电机相连,所述收集仓底部设有收集盘,所述收集仓的一侧设有收集仓门;

其特征在于,

所述转盘包括基体,所述基体由上部的承接部和下部的支撑部构成的纵截面呈类“t型”的主体结构,所述承接部上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20w/m/k的材料制成;

雾化平面为圆盘结构,所述圆盘与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面采用与雾化的液滴润湿角小于90°的材料制成;

通气孔,贯通设置在所述承接部及所述支撑部内,所述通气孔的上端面与所述雾化平面的下端面接触,所述通气孔的下端与外界连通;

所述转盘的外围还设有感应加热线圈。

为方便原料加入及成品收集,所述壳体的一侧设有炉门,所述收集仓的一侧设有收集仓门。传动杆与坩埚顶部的连接处使用动态密封圈密封,传动杆伸入到坩埚的腔体内及熔体内部,熔体在传动杆的带动下喷射出带小孔的垫片的孔形成液滴,液滴自由下落通过环形降落管,降落到转盘上,在离心力作用下液滴呈纤维状铺展分裂,最后在转盘边缘离散成微细的液滴飞出,自由降落凝固形成金属粉末,最后降落到收集槽中。收集槽的面积足够大能够完全收集金属粉末,收集仓的高度满足液滴经离心破碎后自由下落时可完成凝固,收集仓的宽度满足大于液滴经离心破碎后的飞行距离,即液滴离心破碎后在下落过程中凝固成金属粉末并降落到收集槽中。

优选地,基体支撑部的高度不宜太高,小于承接部的高度为宜。所述雾化平面的上端面凸出于所述承接部上端面,凸出范围为0.1-0.5mm。凸出高度只要满足利于离散的金属液滴不接触基体,直接飞到腔室内落入收集盘内即可。所述基体采用二氧化锆陶瓷、二氧化硅玻璃或不锈钢制成,不局限于上述几种材质,只要满足导热性小于20w/m/k的材料均可。所述通气孔的上端面小于等于所述雾化平面的下端面,通气孔设置的目的是为了在抽真空时可以将转盘内间隙的气体抽的更干净,转盘高速旋转时更加安全,因此通气孔的上端面与雾化平面的下端面的接触面积越大抽真空时雾化平面的稳定性越好。

进一步地,所述坩埚上的中心孔直径大于带小孔的垫片的小孔直径,所述带小孔的垫片的小孔直径范围在0.02mm-2.0mm之间。

进一步地,所述带小孔的垫片的材料与置于所述坩埚内的熔体的润湿角大于90°。

进一步地,所述转盘转速为10000rpm-40000rpm。

进一步地,所述感应加热线圈的加热厚度范围在5-20mm之间,它与设置在所述壳体外的变频器和稳压电源相连,所述稳压电源的电压控制范围在0-50v之间。

进一步地,在所述装置自上而下的方向上,所述压电陶瓷、所述传动杆、所述坩埚、所述电阻加热器、所述垫片、所述环形降落管、所述转盘及所述感应加热线圈位于同一轴线上。

本发明还公开了一种采用上述的装置制备3d打印用球形金属粉末的方法,其特征在于包括如下步骤,

①装料:将原料研磨到预设的平均粒径后装入到坩埚内密封;

②抽真空与加热:利用机械泵和扩散泵对所述坩埚和所述壳体抽真空,并充入高纯度惰性气体;根据待加热原料的熔点设定电阻加热器的加热功率,待加热温度到熔点后保使原料完全熔化为熔体;手动调整传动杆的位置至传动杆与带小孔的垫片之间为预设距离;

③感应加热:利用电机使所述转盘在预设转速下高速旋转,接着利用感应加热线圈将高速旋转的转盘上表面加热到金属材料的熔点温度以上;

④粉末制备:首先,手动调整传动杆的位置至传动杆与带小孔的垫片之间为预设距离;其次,通过设置在所述壳体上并伸入于所述坩埚内的坩埚进气口将高纯度惰性保护气体通入,使所述坩埚内外形成正压力差,促使熔体填满所述坩埚底部的中心孔;最后,给压电陶瓷输入一定波型的脉冲信号,所述压电陶瓷产生向下位移,由与所述压电陶瓷相连的传动杆传递给中心孔附近区域的熔融金属,使得熔融金属从中心孔底部的带小孔的垫片喷出形成均匀液滴;

⑤形成粉末:均匀液滴下落通过环形降落管自由降落在高速旋转的转盘上,熔融状态下的均匀液滴,先滴落在转盘的中心,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘上呈纤维线状离散至转盘边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,降落至收集盘上。

⑥收集粉末:制备结束后,停止电阻加热器的加热、感应加热线圈的加热及转盘的旋转,关闭机械泵、扩散泵、腔体进气口、腔体排气阀、坩埚进气口和坩埚排气阀,打开收集仓门,取出收集盘中的金属粉末。

进一步地,所述原料通过炉门装入到所述坩埚中,原料放入量为所述坩埚容积的1/4-3/4。

进一步地,手动调整传动杆的位置至传动杆与带小孔的垫片之间的距离为2cm-5cm。

进一步地,所述感应加热线圈的感应加热电压范围为0-50v,感应加热时间为5-15min。

进一步地,所述坩埚的坩埚腔与所述壳体的腔体之间达到差压为0-200kpa。

较现有技术相比,本发明具有以下优点:

本发明提供了一种脉冲微孔喷射法与离心雾化法相结合的,可在转盘上实现金属液滴的纤维状分裂,从而可以实现制备微细高熔点金属球形粉末的装置,本发明公开的转盘为镶嵌式结构,采用导热性较差即导热性小于20w/m/k的材料作为基体,可有效减少由转盘传递到高速电机上的热量,防止其影响高速电机正常工作;采用与雾化熔体材料具有良好润湿性即润湿角小于90°的材料作为雾化平面,有利于液滴在雾化平面的铺展,从而可以使金属液雾化充分;

坩埚中熔化的高熔点金属材料在差压和脉冲扰动的作用下,通过坩埚底部小孔喷出,形成均匀液滴,熔融状态下的均匀液滴,先滴落在转盘的中心,由于转盘雾化平面的材料与金属液滴润湿性好,且转盘中心离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘上呈纤维线状离散至转盘边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,脉冲微孔喷射法可以克服其他方法在高熔点金属喷射上的不足,实现高熔点金属均匀液滴的喷射,并且喷射出的液滴无卫星滴,球形度高。脉冲微孔喷射法与雾化法结合后,使得雾化后液滴的尺寸大大减小,实现了金属粉末的超微细化,也实现了粒径可控,产量高,满足工业生产的要求。

本发明的工艺方法可控性强,表现在如下几点:通过电阻加热器可精确控制坩埚的加热温度;通过向坩埚与壳体内通入惰性气体,可控制坩埚与壳体内的压力差;坩埚底部带小孔的垫片的小孔的尺寸可以控制液滴的尺寸,经过离心雾化,进一步控制金属微粒子的粒径分布;感应加热线圈可以控制转盘表面的温度,转盘的转速可控,可以控制熔融金属的纤维状分裂效果,从而可以进一步控制金属微粒子的粒径分布;工艺参数的可调节与可控制,可以得到满足不同要求的粒径尺寸及分布的球形金属粉末,且生产效率得到提高。

通过本发明能够高效制备出满足要求的3d打印用高熔点球形金属粉末,粒度微细且可控、粒径分布区间窄,圆球度高、无卫星滴、流动性与铺展性良好,且生产效率高、成本低,适宜工业化生产。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明的结构示意图。

图2为本发明转盘的结构示意图。

图3为本发明的转盘在实验后其表面与原转盘实验后的表面对比图,其中,(a)为呈纤维状分裂的转盘表面,(b)为现有技术中转盘表面。

图中:1、压电陶瓷;2、动态密封圈;3、传动杆;4、熔体;5、坩埚;6、电阻加热器;7、螺钉;8、炉门;9、支架;10、环形降落管;11、转盘;12、金属粉末;13、收集仓;14、收集仓门;15、收集盘;16、电机;17、感应加热线圈;18、液滴;19、壳体;20、垫片;21、腔体进气口;22、机械泵;23、扩散泵;24、腔体排气阀;25、坩埚腔;26、坩埚排气阀;27、坩埚进气口;28、承接部;29、支撑部;30、雾化平面;31、通气孔。

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当清楚,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员己知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任向具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。

在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制:方位词“内、外”是指相对于各部件本身的轮廓的内外。

为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其位器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。

此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。

如图1所示,本发明提供了一种制备3d打印用球形金属粉末的装置,包括:壳体19、设置于所述壳体19内的坩埚5和收集仓13,所述坩埚5置于所述壳体19内的上部,所述收集仓13置于所述坩埚5的下部;

所述坩埚5内设有与设置在所述壳体19外部的压电陶瓷1相连的传动杆3,所述传动杆3与所述坩埚5顶部连接的位置由动态密封圈2密封,所述传动杆3的下端对着所述坩埚5底部的中心孔,所述中心孔底部固定有带小孔的垫片20,所述带小孔的垫片20可以为带孔的螺栓,亦或者是其他带孔的耐高温耐腐蚀材料制成的垫片,通过螺钉7将带小孔的垫片20固定在所述坩埚5底部;所述坩埚5内部设有热电偶,所述坩埚5外部设有电阻加热器6;

所述坩埚5上的中心孔直径大于带小孔的垫片20的小孔直径,所述带小孔的垫片20的小孔直径范围在0.02mm-2.0mm之间。所述带小孔的垫片20的材料与置于所述坩埚5内的熔体4的润湿角大于90°。

所述壳体19顶部设有伸入于所述坩埚5内的坩埚进气口27和坩埚排气阀26,在所述壳体19的侧壁上还设有扩散泵23和机械泵22,所述壳体19上还设有腔体进气口21和腔体排气阀24,所述壳体19的一侧设有炉门8;

所述收集仓13通过支架9与所述壳体19相固定,所述壳体19和所述收集仓13之间设有相贯通的、用于从所述带小孔的垫片20上的小孔喷出的液滴滴落的环形降落管10,所述收集仓13腔体内、与所述环形降落管10下端正对的位置设有转盘11,所述转盘11与电机16相连,所述收集仓13底部设有收集盘15,所述收集仓13的一侧设有收集仓门14;

如图2所示,所述转盘11包括基体,所述基体由上部的承接部28和下部的支撑部29构成的纵截面呈类“t型”的主体结构,所述承接部28上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20w/m/k的材料制成;

雾化平面30为圆盘结构,所述圆盘与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面30采用与雾化的液滴18润湿角小于90°的材料制成;

通气孔31,贯通设置在所述承接部28及所述支撑部29内,所述通气孔31的上端面与所述雾化平面30的下端面接触,所述通气孔31的下端与外界连通;

所述转盘11的外围还设有感应加热线圈17。所述转盘11转速为10000rpm-40000rpm。所述感应加热线圈17的加热厚度范围在5-20mm之间,它与设置在所述壳体19外的变频器和稳压电源相连,所述稳压电源的电压控制范围在0-50v之间。

在所述装置自上而下的方向上,所述压电陶瓷1、所述传动杆3、所述坩埚5、所述电阻加热器6、所述垫片20、所述环形降落管10、所述转盘11及所述感应加热线圈17位于同一轴线上。目的是为了液滴可均匀的滴落在转盘中心,利于铺展。

本发明还公开了采用上述的装置制备3d打印用球形金属粉末的方法,包括如下步骤,

①装料:将原料研磨到预设的平均粒径后装入到坩埚5内密封;所述原料通过炉门8装入到所述坩埚5中,原料放入量为所述坩埚5容积的1/4-3/4。

②抽真空与加热:利用机械泵22和扩散泵23对所述坩埚5和所述壳体19抽真空,并充入高纯度惰性气体;根据待加热原料的熔点设定电阻加热器6的加热功率,待加热温度到熔点后保使原料完全熔化为熔体4;手动调整传动杆3的位置至传动杆3与带小孔的垫片20之间为预设距离;

③感应加热:利用电机16使所述转盘11在预设转速下高速旋转,接着利用感应加热线圈17将高速旋转的转盘11上表面加热到金属材料的熔点温度以上;所述感应加热线圈17的感应加热电压范围为0-50v,感应加热时间为5-15min。

④粉末制备:首先,手动调整传动杆3的位置至传动杆3与带小孔的垫片20之间为预设距离;其次,通过设置在所述壳体19上并伸入于所述坩埚5内的坩埚进气口27将高纯度惰性保护气体通入,使所述坩埚5内外形成正压力差,促使熔体4填满所述坩埚5底部的中心孔;所述坩埚5的坩埚腔与所述壳体19的腔体之间达到差压为0-200kpa。

最后,给压电陶瓷1输入一定波型的脉冲信号,所述压电陶瓷1产生向下位移,由与所述压电陶瓷1相连的传动杆3传递给中心孔附近区域的熔融金属,使得熔融金属从中心孔底部的带小孔的垫片喷出形成均匀液滴18;

⑤形成粉末:均匀液滴18下落通过环形降落管10自由降落在高速旋转的转盘11上,熔融状态下的均匀液滴18,先滴落在转盘11的中心,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘11上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘11上呈纤维线状离散至转盘11边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,降落至收集盘15上。

⑥收集粉末:制备结束后,停止电阻加热器6的加热、感应加热线圈17的加热及转盘11的旋转,关闭机械泵22、扩散泵23、腔体进气口21、腔体排气阀24、坩埚进气口27和坩埚排气阀26,打开收集仓门14,取出收集盘15中的金属粉末12。

实施例1

用上述装置和方法制备3d打印用铜金属粉末,具体实施方式如下:

首先,将铜块破碎成粒径为2cm大小的块状颗粒,装入底部带有中心孔的坩埚5中,铜颗粒的装入量达到所述坩埚5容量的1/2,然后将材质为石墨的带小孔的螺栓(即带小孔的垫片20)通过均布的四个螺钉7安装到坩埚5的底部,关上炉门8;用机械泵22将坩埚腔25、壳体19及收集仓13抽到低真空1pa-5pa,再用扩散泵23抽高真空至10-3pa,充入高纯度惰性气体氩气至大气压;设定功率为电阻加热器6通电,温度达到铜的熔点后继续升温到过热10℃,保温30min,使坩埚5中铜颗粒全部熔化成熔体4;利用电机16使所述转盘11在预设转速下高速旋转,接着利用感应加热线圈17将高速旋转的转盘11上表面加热到金属材料的熔点温度以上;手动调节传动杆3的位置,使传动杆3与带小孔的垫片20相距2-5cm;打开坩埚进气口27和坩埚排气阀26,向坩埚腔25充入高纯惰性气体氩气,使得坩埚腔25与壳体19之间的差压达到50kpa;

其次,给压电陶瓷1输入方形波的脉冲信号,压电陶瓷1带动传动杆3向下振动挤压熔体4,熔体4从材质为石墨的带小孔的垫片20的小孔中喷射出来形成液滴18;液滴18自由下落通过环形降落管10,降落到高速旋转的转盘11上,在离心力的作用下液滴18破碎成更小的微液滴,微液滴在下落过程中无容器凝固,形成金属粉末12,降落至收集盘15中;

最后,待制备结束,停止电阻加热器6的加热、感应加热线圈17的加热及转盘11的旋转,关闭机械泵22、扩散泵23、腔体进气口21、腔体排气阀24、坩埚进气口27和坩埚排气阀26,打开收集仓门14,取出收集盘15中的金属粉末12。

如图3所示,(b)中为现有技术雾化后得到的雾化盘,由于雾化盘材料与制备的金属粉末材料润湿性太小,且在雾化过程中转盘温度太低,导致液体呈膜状分裂,且雾化表面会出现较厚的已凝固液膜,该液膜表面十分粗糙,不利于后续金属液滴的进一步雾化,会严重影响雾化效果和雾化效率。(a)为通过本发明方法得到的雾化表面,可以看出雾化模式转变为明显的纤维状分裂模式,线状的分裂模式大大提高了金属粉末的微细化和生产效率。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1