Nb、N复合强化400MPa级钢筋及其制造方法与流程

文档序号:17291430发布日期:2019-04-03 04:00阅读:268来源:国知局
Nb、N复合强化400MPa级钢筋及其制造方法与流程

本申请涉及热轧带肋钢筋轧制技术领域,具体而言,涉及一种nb、n复合强化400mpa级钢筋及其制造方法。



背景技术:

钢的微合金化及控轧控冷对于提升钢材的性能、降低制造成本非常有利。微合金化钢是采用现代冶金生产流程生产的高技术钢铁产品。它是在普通的c-mn钢或低合金钢中添加微量(质量分数通常小于0.1%)的强碳氮化物形成元素(如铌、钒、钛等)进行合金化,通过高纯洁度的冶炼工艺(脱气、脱硫及夹杂物形态控制)炼钢,在加工过程中施以控制轧制/控制冷却等新工艺,通过控制细化钢的晶粒和碳氮化物沉淀强化的物理冶金过程,在热轧状态下获得高强度、高韧性、高可焊接性、良好的成形性能等最佳力学性能配合的工程结构材料——微合金化钢。

近年来,v合金价格的持续上涨,以v\n合金为例,价格最高峰已上涨到48万元/吨,导致以v微合金化的高强钢筋制造成本急剧升高,国内钢铁企业开始研制以nb代v微合金化钢筋,以降低制造成本;《含铌400mpa热轧带肋钢筋无屈服的成因分析与对策》,山西冶金,no.4,2002.《含铌hrb400钢筋无屈服现象的研究》,物理测试,vol.28,no.1,2010.等文献研究表明,含nb钢筋极易出现屈服点不明显,金相组织分析显示存在一定量的针状铁素体/魏氏体或贝氏体组织,给推广应用带来较大阻碍;部分钢企研究采取折中路线,采用nb和v复合添加,成本有所下降。因此,钢筋以nb全部代替v微合金化工艺,技术难点在于如何解决以nb代v微合金化钢筋具有明显屈服点,并保证强、塑性满足标准要求。专利cn101538677a公布了一种采用nb微合金化制造hrb500e细晶粒抗震钢筋,钢的强化采用细晶粒强化,其加热温度、轧制温度均控制在低温区,轧制速度慢,生产效率低,且对于含nb钢筋拉伸试验是否有明显屈服未做说明。因此,开发一种经济型的nb、n复合强化400mpa级钢筋及其制造方法尤为重要。本发明因此而来。



技术实现要素:

本申请旨在提供一种nb、n复合强化400mpa级钢筋,以解决现有技术中的问题。

为了实现上述目的,根据本申请的一个方面,提供了一种nb、n复合强化400mpa级钢筋,其特征在于,所述复合强化400mpa级钢筋以其成分的质量百分比计算包括:c0.20~0.25%;mn1.25~1.60%;nb0.008~0.04%;n0.006~0.012%;si≤0.35%;p≤0.045%;s≤0.045%;其余为铁及不可避免的杂质元素。

进一步的技术方案是,所述复合强化400mpa级钢筋以其成分的质量百分比计算包括:c0.20~0.25%;mn1.25~1.60%;nb0.008~0.04%;n0.006~0.012%;si0.10~0.35%;p≤0.045%;s≤0.045%;其余为铁及不可避免的杂质元素。

进一步的技术方案是,

所述复合强化400mpa级钢筋以其成分的质量百分比计算包括:c0.20~0.25%;mn1.25~1.60%;nb0.008~0.03%;n0.006~0.010%;si0.10~0.35%;p≤0.045%;s≤0.045%;其余为铁及不可避免的杂质元素。

进一步的技术方案是,

所述复合强化400mpa级钢筋以其成分的质量百分比计算包括:c0.25%;mn1.44%;nb0.01%;n0.006%;si0.25%;p≤0.045%;s≤0.045%;其余为铁及不可避免的杂质元素。

本发明的另一目的在于提供一种所述的nb、n复合强化400mpa级钢筋的制造方法,其特征在于,所述方法包括:

s1)与废钢一起转炉钢水冶炼;

s2)利用钢包精炼炉对所述钢水进行精炼;

s3)采用钢液真空循环脱气法对所述钢水进行精炼;

s4)钢坯连铸浇铸,经加热、轧制和冷却后得到所述的nb、n复合强化400mpa级钢筋;

其中s1)步骤中出钢1/3~2/3时,按顺序加入硅锰合金、铌铁、氮化硅铁和普通增碳剂,控制c0.20~0.25wt%,mn1.25~1.60wt%,nb0.008~0.04wt%,n0.006~0.012%。

进一步的技术方案是,所述方法中s2)步骤和s3)步骤全程进行惰性气体底吹搅拌,使用的惰性气体为氩气。

进一步的技术方案是,所述方法中s4)步骤钢坯连铸后再加热,其中,连铸浇铸中包过热度控制在30~50℃,连铸强化水冷操作,拉速≤5.0m/min;钢坯加热温度控制为950~1200℃,均热温度控制为1060~1200℃,加热和均热总时间为60~100min,开轧温度控制在980~1100℃。

进一步的技术方案是,所述方法中s4)步骤板坯连铸后再加热,其中,采用连续式棒材轧制生产线轧制,轧制终轧速度大于14.5m/s,轧后经穿水器加速冷却,上冷床温度控制在850~950℃。

本发明专利采用nb、n复合强化,采用低mn合金化,钢中的si为硅锰合金带入,不单独采用硅铁补充si含量,终轧速度可达到14.5m/s高速轧制,轧后穿水控制上冷床温度,不仅实现了合金的经济性和合金的最佳配备,即nb微合金化配合低mn低si成分避免了组织中出现贝氏体异常组织,保证了拉伸试验有明显屈服点,钢中适量的n含量保证了屈服强度满足标准要求,同时也确保了轧制生产效率的高效化,综合制造成本最经济。

附图说明

图1为本发明的一个实施例的屈服强度与氮气含量之间的线性关系。

图2为本发明的一个实施例获得带肋钢筋的显微组织照片。

具体实施方式

应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个部件或者模块或特征与其他部件或者模块或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了部件或者模块在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的部件或者模块被倒置,则描述为“在其他部件或者模块或构造上方”或“在其他部件或者模块或构造之上”的部件或者模块之后将被定位为“在其他部件或者模块或构造下方”或“在其他部件或者模块或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该部件或者模块也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。

本发明的目的在于降低钢筋的制造成本,应对v合金价格的持续上涨带来的制造成本的持续上升,提供一种性价比较高的钢筋产品,本发明提供了一种经济型nb、n复合强化400mpa级钢筋及制造方法,解决了nb微合金化钢筋的中异常贝氏体组织及拉伸试验屈服点不明显或无屈服点技术难题。

本发明提供了一种经济型nb、n复合强化400mpa级钢筋,其化学成分按重量百分比计为:c:0.20~0.25wt%,mn:1.25~1.60wt%,nb:0.008~0.04wt%,n:0.006~0.012%,si≤0.35%,p≤0.045%,s≤0.045%,其余为fe及不可避免的残余元素。

本发明提供了一种经济型nb、n复合强化400mpa级钢筋的制造方法,包括以下步骤:高炉铁水经顶底复吹转炉冶炼,转炉出钢并合金化,钢水经底吹搅拌成分均匀后上连铸成坯;钢坯经加热、轧制、穿水冷却、冷床冷却后剪切成定尺光圆钢筋或带肋钢筋,经检验及打捆后堆垛发运。

进一步的,上述经济型nb、n复合强化400mpa级钢筋的制造方法,包括以下步骤:

转炉内加入废钢后兑入高炉铁水,废钢比15~25%,过程中加入渣料,经顶底复吹冶炼,转炉出钢温度≥1650℃;出钢1/3~2/3时,按顺序加入硅锰合金、铌铁、氮化硅铁和普通增碳剂,控制c:0.20~0.25wt%,mn:1.25~1.60wt%,nb:0.008~0.04wt%,n:0.006~0.012%;出钢至连铸之间全过程采用惰性气体底吹搅拌,连铸浇铸中包过热度控制在30~50℃,连铸强化水冷操作,拉速≤5.0m/min,钢坯断面为150mm×150mm/140mm×140mm的方坯;钢坯加热温度控制为950~1200℃,均热温度控制为1060~1200℃,加热和均热总时间为60~100min,开轧温度控制在980~1100℃,采用连续式棒材轧制生产线轧制成光圆钢筋或带肋钢筋成品,轧制终轧速度大于14.5m/s,轧后经穿水器加速冷却,上冷床温度控制在850~950℃,之后在空气中冷却至室温,经剪切定尺、打捆堆放。

本发明采用nb替代v合金,在v合金持续上涨的情况下具有明显的降本优势,且与传统的含v合金的hrb400钢筋中添加0.03%v相比,本发明充分发挥nb、n复合强化的作用,采取高温加热使得nb(cn)析出相能够发挥有效固溶与控制原始奥氏体晶粒长大,在后续的轧制及冷却过程中形成弥散的nb(cn)纳米级析出,最大限度发挥析出强化功能。

本发明采用nb、n微合金化及低mn、低si合金设计,解决了传统含nb钢筋微观组织中大量出现针状铁素体/魏氏体或贝氏体组织等异常组织,这类异常组织含量<10%,保证了拉伸试验具有明显屈服点这一技术难题,并精确研究了n对屈服强度的影响,确定了n含量精确控制区间,产品屈服强度稳定达到420mpa以上,并具有良好的抗震性能。

本发明采用连续式棒材轧制生产线轧制,轧制终轧速度大于14.5m/s,实现了高速生产,生产效率进一步提升。

实施例1-7

本实施例采用的生产工序是:

转炉内加入废钢后兑入高炉铁水,废钢添加的比例为15~25%,过程中加入渣料,经顶底复吹冶炼,转炉出钢温度≥1650℃;出钢1/3~2/3时,按顺序加入硅锰合金、铌铁、氮化硅铁和普通增碳剂,控制c:0.20~0.25wt%,mn:1.25~1.60wt%,nb:0.008~0.04wt%,n:0.006~0.012%;出钢至连铸之间全过程采用惰性气体底吹搅拌,连铸浇铸中包过热度控制在30~50℃,钢坯断面为150mm×150mm/140mm×140mm的方坯,连铸速度2.0-5.0m/min,连铸采用强化水冷操作;钢坯加热温度控制为950~1200℃,均热温度控制为1060~1200℃,加热和均热总时间为60~100min,开轧温度控制在980~1100℃,采用连续式棒材轧制生产线轧制成光圆钢筋或带肋钢筋成品,轧制终轧速度大于14.5m/s,轧后经穿水器加速冷却,上冷床温度控制在850~950℃,之后在空气中冷却至室温,经剪切定尺、打捆堆放。

其中,表1为各个实施例冶炼炉次及坯料轧制工艺过程控制参数;表2为各个实施例冶炼炉次熔炼成分表;表3为各个实施例最后获得的钢筋成品的力学性能。

图2为实施例获得带肋钢筋的显微组织照片。

表1各个实施例冶炼炉次及坯料轧制工艺过程控制参数

表2各个实施例冶炼炉次熔炼成分

表3各个实施例热轧带肋钢筋的力学性能

根据上述的表格,可以看出本实施例得到带肋钢筋成品的产品屈服强度稳定达到420mpa以上,并具有良好的抗震性能。

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1