增氮的CoCrMo合金及其熔炼工艺的制作方法

文档序号:17538765发布日期:2019-04-29 14:18阅读:549来源:国知局
增氮的CoCrMo合金及其熔炼工艺的制作方法
本发明涉及金属冶炼领域,特别涉及一种cocrmo合金及其熔炼工艺。
背景技术
:cocrmo合金是医学上常用的生物兼容性材料,在20世纪30年代初,开始用于牙科、生物医疗领域。铸造用cocrmo合金因弹性模量与人骨组织相近,且具有优良的机械性能、耐腐蚀性及生物相容性,而广泛应用于临床及医疗领域,如今cocrmo合金仍被认为是最可靠的金属生物兼容性材料,由于其良好的机械性能,以及耐腐蚀耐磨损性,被广泛用于外科植入体、心血管支架、以及牙科修复,同样也适用于活动关节,但是cocrmo合金在人体各种体液、分泌物的作用下会受到侵蚀,并有co、cr、ni等金属离子释放出,这些金属离子不但会对造成局部不良反应,而且会干扰整个人体的微量元素平衡。另一方面,作为骸关节常用的的对偶材料,在磨损过程中易产生大量磨粒,这些磨粒在植入物与肌肉界面聚集,导致生物对异体的反应,诱发相应数量的细胞吞噬这些颗粒,使细胞变异进而导致骨溶解,摩擦磨损产生的有毒的磨屑(潜在毒性的金属离子和磨损后的磨损颗粒)将导致一系列的病变,甚至导致关节过早发生无菌性松动而失效,故制作的人工关节在体内的松动率较高,究其原因是由于金属磨损微粒所致。机械磨损中产生的磨损微粒会使巨噬细胞和淋巴细胞产生炎性细胞,最终导致破骨细胞的生成,诱导溶骨症的发生。因此减少该合金材料的磨损是延长人体植入物服役寿命的关键。由于所要求的最终成品形状的特殊性和不规则性,精密锻造模具成本过高,因而主要采用铸造法进行制备。同时为了降低关节头的磨损,减少金属离子的释放,提高金属关节的生物相容性对钴铬钼合金进行表面改性。目前研究最多的方法是n离子注入,在cocrmo合金表面形成硬的氮化物注入层,提高耐磨性能井减少有害离子的释放,但是氮离子注入厚度有限,对于承重和频繁运动的髓和膝关节假体,所形成厚度的渗层很难满足要求。同时该工艺繁琐复杂,表层渗氮成本较高。技术实现要素:发明目的:针对现有技术中存在的问题,本发明提供一种增氮的cocrmo合金及其熔炼工艺,制备的cocrmo合金能形成较厚氮化层,表面硬度及抗磨损性能较好,同时对合金与体液环境直接接触进行有效隔离,有效防止有害离子的释放。技术方案:本发明提供了一种增氮的cocrmo合金,主要包括以下重量百分比的组分:c:0.25~0.31%,cr:27~30%,mo:5.0~7.0%,si:0.75~0.92%,mn:0.3~0.4%,n:0.18~0.25%,co:61.12~66.51%,其余为杂质。优选地,所述的cocrmo合金由以下重量百分比的组分组成:c:0.3%,cr:29%,mo:6%,si:0.9%,mn:0.4%,n:0.25%,co:63.15%。本发明还提供了一种增氮的cocrmo合金的熔炼工艺,包括以下步骤:s1:将c、co、mo、si、mn、crn按照配比量取后,分层加入真空熔炼炉的坩埚内,并将c夹在中间位置;s2:将真空熔炼炉抽真空,当真空度达到20pa时停泵充氮至20000pa;s3:将真空熔炼炉的功率从80kw逐渐升高至350kw,对其中的混合原料进行加温熔化至炉料化清;s4:保持功率为350kw继续对混合原料加温至精炼温度精炼10min,然后降低功率至160kw并保持所述精炼温度精炼10min;s5:停电将混合原料降温至1500-1530℃后,再通电将混合原料升温至浇注温度时进行浇注,得cocrmo合金。优选地,在所述s3中,经以下具体步骤将所述混合原料加温熔化至炉料化清:s3-1:将所述真空熔炼炉的功率在80kw对混合原料加温20mim;s3-2:将功率升高至150kw对混合原料加温20mim;s3-3:将功率升高至250kw对混合原料加温20mim;s3-4:将功率升高至350kw对混合原料加温20mim。优选地,在所述s4中,所述精炼温度为1680±10℃。优选地,在所述s5中,所述浇注温度为1590±10℃。优选地,在所述s5中,经以下具体步骤将所述混合原料升温至所述浇注温度:s5-1:以功率为250kw送电升温10min;s5-1:降低功率至150kw至温度达到所述浇注温度。有益效果:本发明在真空冶炼时通过充氮气,提高功率激发n离子,使co-n相增加,形成以co2n和cr2n相为主的氮化物,使制备的合金能形成较厚氮化层,改性层致密且厚度可达几十微米,有利于提高cocrmo合金的表面硬度及抗磨损性能;氮原子作为间隙原子挤进金属晶格中,使表面硬度提高;另外这种间隙原子在磨损期间还有牵制作用,可以阻碍位错运动,产生硬表面层,从而提高耐磨性,即通过提高表面硬度来改善耐磨性;增氮后合金表面粗糙度有所增加,进而表面积增加;同时对合金与体液环境直接接触进行有效隔离,有效防止有害离子的释放。与现有技术相比,本发明中的cocrmo合金具有以下优点:1、cocrmo合金中钴铬钼的含氮量显著增强,其中表面成分以cr2n、crn以及co2n为主,氮化层厚度较未充氮气前有显著提高。由于冶炼过程中氮气的充入,氮化处理试样的硬度有着显著提高,材料的耐磨损性得到改善。2、cocrmo合金的表面抗磨损性能得到显著改善,其原因在于氮化层中硬质氮化物相cr2n、crn的形成提高了表面硬度,其次氮化层致密的纳米组织结构,也起到了很好的抗磨作用。3、本发明采用高温气体渗氮冶炼,对医用钴铬钼合金进行高温渗氮处理,基体中奥氏体含量增多,显微硬度提高,耐盐水腐蚀性提高,耐磨损性能提高。离子氮化以后的合金硬度、表面粗糙度会增大,显微硬度明显提高,抗磨损性能显著提高。4、本发明制备工艺简单,成本较低,在生物以及医用等领域具有较大发展前景。附图说明图1为本发明中cocrmo合金的冶炼工艺路线图;图2为现有普通方法(左)与本发明(右)制备的cocrmo合金在干摩擦下的表面形貌图对比图;图3为现有普通方法(左)与本发明(右)制备的cocrmo合金的二维表面形貌对比图。具体实施方式下面结合附图对本发明进行详细的介绍。实施方式1:本实施方式提供了一种增氮的cocrmo合金及其熔炼工艺,由以下重量百分比的组分组成:c:0.3%,cr:29%,mo:6%,si:0.9%,mn:0.4%,n:0.25%,co:63.15%。上述cocrmo合金通过以下工艺步骤制备:s1:将c、co、mo、si、mn、crn按照上述重量百分比量取后,分层加入真空熔炼炉的坩埚内,并将c夹在中间位置;s2:将真空熔炼炉抽真空,当真空度达到20pa时停泵充氮气至20000pa;s3:将真空熔炼炉的功率调节到80kw对混合原料加温20mim,然后将功率升高至150kw对混合原料加温20mim,接着将功率升高至250kw对混合原料加温20mim;最后将功率升高至350kw对混合原料加温20mim,以对其中的混合原料进行加温熔化至炉料化清。炉料化清的判断一般是以熔池平静、停止冒泡、液面停止翻膜为标志。s4:炉料全部化清后,可保持大功率350kw送电,倾动真空熔炼炉内的坩埚2-3次,以促使熔池均匀化,利用红外测温仪进行测温,直至温度达到cocrmo合金的精炼温度1680±10℃(测温),进入精炼期精炼10min;然后降低功率至160kw,并在精炼温度下保持10min。s5:精炼期结束后,即可停电降温,当混合原料降温至1500-1530℃后,以功率为250kw送电升温10min,然后降低功率至150kw至温度达到浇注温度1590±10℃进行浇注,得cocrm合金。浇注过程中钢液要连续,不能有断流现象。浇注速度把握“慢—快—慢”的原则,至最后“细流补缩”。完成以后停止对感应圈的送电,浇注后在炉内保持10-15min。上述cocrmo合金的熔炼工艺的如图1所示。实施方式2:本实施方式提供了一种增氮的cocrmo合金及其熔炼工艺,由以下重量百分比的组分组成:c:0.27%,cr:28%,mo:5%,si:0.8%,mn:0.35%,n:0.2%,co:65.38%。上述cocrmo合金的制备工艺与实施方式1完全相同,此处不做赘述。实施方式3:本实施方式提供了一种增氮的cocrmo合金及其熔炼工艺,由以下重量百分比的组分组成:c:0.25%,cr:30%,mo:7%,si:0.85%,mn:0.3%,n:0.19%,co:61.41%。上述cocrm合金的制备工艺与实施方式1完全相同,此处不做赘述。实施方式4:本实施方式提供了一种增氮的cocrmo合金及其熔炼工艺,由以下重量百分比的组分组成:c:0.31%,cr:27%,mo:6.5%,si:0.92%,mn:0.3%,n:0.18%,co:64.79%。上述cocrmo合金的制备工艺与实施方式1完全相同,此处不做赘述。下表1为上述实施方式1至4与现有普通方法制备得到的cocrmo合金的性能比较。表1编号表面粗糙度(μm)硬度(hv)干摩擦磨损量(mg)实施方式10.152912540.067实施方式20.147311750.052实施方式30.161213160.078实施方式40.139611340.061普通方法0.01764780.14从表1可以看出:实施方式1至4中制备得到的cocrmo合金中,氮化层厚度较普通方法有显著提高。普通方法熔炼所得cocrmo合金表面粗糙度为0.0176μm,实施方式1至4中所得cocrmo合金表面粗糙度分别为0.1529μm、0.1473μm、0.1612μm、0.1396μm,硬度分别为1254hv、1175hv、1316hv、1134hv,比普通方法所得cocrmo合金的硬度478hv提高了接近3倍;由于冶炼过程中氮气的充入,氮化处理试样的硬度有着显著提高,材料的耐磨损性得到改善。实施方式1至4中所得cocrmo合金在干摩擦条件下的摩擦系数稳定在小于0.1mg,磨损量分别为0.067mg、0.052mg、0.078mg、0.061mg,相比普通方法所得cocrmo合金0.14mg的磨损量,磨损率下降了接近50%。如图2和3所示,实施方式1至4中所得cocrmo合金磨损程度轻,磨痕浅,仅显示出光亮的磨损痕迹,为黏着擦伤。而普通方法所得cocrmo合金在干摩擦条件下磨痕宽度深度最大,产生塑性变形,为磨粒磨损,磨损表面存在宽且深的犁沟和疲劳破坏形成的剥落坑上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1