一种磁控溅射制备巨大矫顽力Mn3Ga薄膜的方法与流程

文档序号:19814291发布日期:2020-01-31 18:52阅读:580来源:国知局
一种磁控溅射制备巨大矫顽力Mn3Ga薄膜的方法与流程

本发明属于非稀土永磁材料领域,涉及非稀土永磁mn3ga薄膜的制备方法,尤其涉及一种采用磁控溅射技术制备非稀土永磁材料的制备方法。



背景技术:

具有较大矫顽力的永磁薄膜在纳米机电系统等许多领域具有广阔的应用前景。同时,伴随着稀土永磁体在工业领域的广泛应用,可应用于高温环境的永磁体逐渐被大量需求。目前主流的永磁材料是钕铁硼材料,但耐高温性能不强,居里温度很低(~320oc-380oc),在高温时会完全退磁失效。更重要的是,稀土资源是非常珍贵的,价格高昂且不可再生,因此,迫切需要新一代耐高温非稀土永磁材料。

与主流的稀土永磁材料钕铁硼相比,新型非稀土永磁材料具有以下优点:(1)价格低廉,相比于稀土材料,非稀土材料其中一个巨大的优势就是在于价格十分低廉,便于工业化生产;(2)具有高的居里温度,目前主流的稀土永磁体绝大多数会在高温下完全退磁而失效,而新型的非稀土永磁具有较高的居里温度,可以适用于高温环境;(3)产量大,稀土元素珍惜,属于不可再生资源,考虑到全球稀土资源的供应,会对今后的稀土永磁材料生产产生很大的影响。而非稀土永磁材料则没用这样的困境,依旧可以大量生产。

目前各国学者都在致力于减少稀土永磁材料中稀土的含量和大力发展非稀土永磁材料。其中mn基类合金如mn-bi、mn-al、mn-ga等再一次成为研究的热点。根据mn-ga合金的化学计量不同,mn-ga合金存在铁磁性的l10结构、亚铁磁的d022结构、反铁磁的d019结构以及立方结构。而其中mn3ga作为mn-ga合金中的一种,具有较大磁晶各向异性、较高的居里温度等优点被认为是较有前景的非稀土永磁材料。但是由于mn3ga薄膜目前的制备问题,不能制备出及表面光滑又具有巨大矫顽力的薄膜。



技术实现要素:

本发明针对非稀土永磁mn3ga薄膜无法同时具有表面光滑与巨大矫顽力的问题,提出了一种mn3ga薄膜的制备方法,采用磁控溅射技术制备出矫顽力大的非稀土mn3ga永磁薄膜。

本发明的技术方案如下:一种磁控溅射制备巨大矫顽力mn3ga薄膜的方法,包括以下步骤:

1)将磁控溅射腔体真空度抽至低于5×10-5pa;

2)在步骤1)的背底真空下,利用永磁靶头与mn3ga靶,使用直流电源的恒定功率模式,通入ar气体,使气压控制在1.0pa条件下,在衬底上溅射得到mn3ga薄膜;

3)将步骤2)中所得的mn3ga薄膜在高真空环境下进行退火,空冷至60oc以下取出样品,获得所述的巨大矫顽力mn3ga薄膜。

进一步的,步骤2)中,使用直流电源的恒定功率模式,将功率固定为60w。

进一步的,步骤2)中,在si/sio2衬底上溅射10min得到300nm的mn3ga薄膜。

进一步的,步骤3)中,所述的退火温度优选为500~600oc,退火时间为20min。

进一步的,步骤3)中,所述的高真空为低于10-5pa。

与现有技术相比,本发明具有如下有益效果:

1)本发明利用磁控溅射技术制备出表面连续、平整的非稀土且具有巨大矫顽力的mn3ga薄膜。

2)本发明不仅矫顽力有所提升且具有表面连续光滑便于加工的特点。

3)本发明的制备方法简单,成本低廉,适合工业化需求。

附图说明

图1为本发明实施例1~3制备的mn3ga薄膜x射线衍射(xrd)对比图。

图2为本发明实施例3制备的大矫顽力mn3ga薄膜的表面afm图像。

图3为本发明实施例2、3制备的mn3ga薄膜在不同温度下的磁滞回线图。

图4为本发明实施例2制备的mn3ga薄膜的磁畴图像。

图5为本发明对比例1制备的mn3ga薄膜的磁滞回线图。

图6为本发明对比例2、3制备的mn3ga薄膜的表面sem图。

具体实施方式

本发明利用磁控溅射技术制备出表面连续、平整的非稀土且具有巨大矫顽力的mn3ga薄膜。

下面结合实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。

实施例1

巨大矫顽力mn3ga薄膜的制备过程:

1)将磁控溅射腔体真空度抽至低于5×10-5pa;

2)背底真空度低于5×10-5pa时,利用永磁靶头与成品的mn3ga靶,使用直流电源的恒定功率模式功率固定为60w,通入ar气体气压为1.0pa条件下,在si/sio2衬底上溅射10min得到300nm的mn3ga薄膜;

3)将镀好的mn3ga薄膜在真空环境下进行500oc退火,退火时间为20min,获得巨大矫顽力mn3ga薄膜。

实施例2

以于实施例1相同的方法制备出300nm的mn3ga薄膜,将退火温度改为550oc。

实施例3

以于实施例1相同的方法制备出300nm的mn3ga薄膜,将退火温度改为600oc。

3个实施例获得的mn3ga薄膜在室温下的xrd衍射图(图1所示)。可以看出三个实施例样品都出现了四方相mn3ga的衍射峰。

图2为实施例3通过afm所测出的mn3ga薄膜的表面形貌图,由图中可以看出,薄膜是连续平整且致密的。

图3为实施例2与实施例3的不同测试温度磁滞回线图。从图3中可以看出在两个退火温度下都在室温下达到了较高的矫顽力。实施例2的矫顽力是3个实施例中是最大的,在室温下达到了22koe。

实施例2的磁畴图如图4所示,细小的磁畴强化了磁畴的钉扎从而增大了矫顽力。

对比例1

以于实施例1相同的方法制备出300nm的mn3ga薄膜,不进行退火处理。

通过测量本对比例的磁滞回线,如图5所示,本对比例可以看出在未退火的情况下并没有大的矫顽力存在。

对比例2

以于实施例1相同的方法制备出300nm的mn3ga薄膜,将退火温度改为100oc。

对比例3

以于实施例1相同的方法制备出300nm的mn3ga薄膜,将退火温度改为450oc。

通过图6可以知道在退火温度较低的情况下,薄膜表面由于内应力会导致碎裂,最终表面脱落无法成膜。

上述实施例为本发明较佳的实施方式,但本发明的实施方式不受上述实施例的限制,其他的任何未背离本发明的精神实质和原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1