铁基碳化钒涂层的制备方法与流程

文档序号:20770685发布日期:2020-05-19 20:15阅读:639来源:国知局

本发明属于冶金技术领域,具体涉及铁基碳化钒涂层的制备方法。



背景技术:

碳化钒具有较高的硬度、熔点和高温强度等过渡族金属碳化物的一般特性,同时具有良好的导电和导热性,在钢铁冶金、硬质合金、电子产品、催化剂和高温涂层材料等领域具有广泛应用。作为钢中的常用添加剂,碳化钒能提高钢的耐磨性、耐蚀性、韧性、强度、延展性以及抗热疲劳性等综合性能;同时,因其具有较高的活性、选择性、稳定性以及在烃类反应中抵抗“催化剂中毒”的能力,碳化钒作为一种新型催化剂也得到了广泛应用。更为重要的是,由于碳化钒具有高熔点、高耐磨性等特点,可以作为耐磨材料在不同切削和耐磨工具中使用。

此外,碳化钒还可作为晶粒抑制剂或单独作为硬质合金应用于硬质合金、金属陶瓷领域,阻止硬质合金晶粒在烧结过程中的长大,提高硬质合金及金属陶瓷的力学性能。因此,如何在成功制备碳化钒的基础上进一步实现其碳化钒在基体材料中的有效添加和有效附着,以实现基体材料综合力学性能及使用寿命的改善,是目前碳化钒产业化应用的发展方向,也是亟待解决的技术难题。

目前,关于碳化钒的研究主要集中在碳化钒及其粉末的制备工艺和方法上。中国专利文献cn100480180c、cn104495846b和cn107188177b均公开了关于碳化钒粉末的制备,由上述专利文献可知,目前碳化钒的制备除了传统作为钢铁合金添加剂采用碳热还原钒氧化物制备得到球状碳化钒/碳氮化钒之外,主要通过含钒、含碳的原料在一定条件下混合,并制备得到具有极小粒度的混合前驱体中间产品,并对该中间产品进行加热反应,从而获得具有一定粒度的碳化钒粉末,在已公开的文献和专利中少有关于将碳化钒作为表面涂层或表面包覆的制备方法及应用。

专利文献cn106319518b公开了金刚石/金属碳化物复合涂层及其制备方法和应用。该方法通过气相沉积的方法在预沉积基体表面进行至少一次金刚石涂层的沉积,并在此基础上采用真空蒸镀法在预沉积金刚石表面沉积一层金属层,并进行热处理,从而制备得到金刚石/金属碳化物复合涂层。该方法首先需要在涂层基体表面预沉积一层一定厚度的金刚石涂层,并以该涂层为中间介质,进行第二步的真空蒸镀将使金属附着于该涂层表面,或与该涂层进行二次反应生成金属碳化物,最终形成金刚石金刚石/金属碳化物复合涂层,工艺复杂,对流程工艺控制严格,从而极大地影响了产品缺陷控制难度。



技术实现要素:

本发明所要解决的技术问题是提供一种能够快速制备铁基碳化钒涂层的方法。

本发明解决上述技术问题采用的技术方案是提供了铁基碳化钒涂层的制备方法。该方法包括如下步骤:

a、将钒氯化物气化为气态钒氯化物;

b、在保护气氛下,将气态钒氯化物与ch4气体通过喷枪喷出并汇聚于预热的铁基体表面;

c、开启激光束,控制激光束的能量密度为80~250j/mm3,熔化铁基体表面,碳化反应生成碳化钒,碳化钒附着于熔融的铁基体表面,形成铁基碳化钒涂层。

其中,上述铁基碳化钒涂层的制备方法中,步骤a中,所述钒氯化物为vcl4、vcl3或vcl2中至少一种。

进一步地,所述钒氯化物的纯度≥99.5%,氧含量≤0.5%。

进一步地,步骤a中,所述气化的温度为300~500℃。

其中,上述铁基碳化钒涂层的制备方法中,步骤b中,所述保护气氛为氩气或氦气;所述保护气氛的纯度≥99.99%。

进一步地,步骤b中,所述气态氯化物与ch4气体的摩尔比为1:0.8~2.5。

进一步地,步骤b中,所述喷枪的压力为1.0~5.0mpa。

进一步地,步骤b中,所述铁基体表面的预热温度为500~1000℃。

进一步地,步骤b中,所述铁基体为金属铁或铁基合金;所述铁基体的表面粗糙度≤0.1μm。

优选地,当铁基体为金属铁时,铁纯度≥99.5%。当铁基体为铁基合金,适用于所有牌号的铁合金。

其中,上述铁基碳化钒涂层的制备方法中,步骤c中,所述铁基体表面的温度≥1500℃。

本发明的有益效果是:本发明方法以气态钒源和碳源为主要原料,使碳和钒能够达到分子级的混合接触,有利于非平衡态下超细碳化钒的制备和沉积,在本发明的工艺条件下,能够快速实现铁基体表面的熔化,使铁基体与沉积产物快速结合,形成致密的碳化钒涂层。所得的碳化钒涂层的单层厚度为15~100μm,涂层中氧含量≤0.15%,涂层的相对密度为5.65~5.76。本发明通过化学气相沉积方法一次性的快速实现了碳化钒涂层的制备,本发明制备的铁基碳化钒涂层可以进一步通过热处理工艺实现其在铁及铁合金中碳化物的定点析出,从而改善钢及对应含钒微合金钢的力学性能。本发明方法通过一步气相沉积工艺即可实现碳化钒涂层的制备,工艺简单。本发明以钒氯化物为原料,减少了传统以钒氧化物为原料进行碳化钒制备过程中反应不完全及夹杂物难以控制等导致的碳化钒产物及涂层性能缺陷。

具体实施方式

具体的,本发明提供了铁基碳化钒涂层的制备方法。该方法包括如下步骤:

a、将钒氯化物在300~500℃条件下气化为气态钒氯化物;

b、在纯度≥99.99%的氩气或氦气下,将气态钒氯化物与ch4气体按摩尔比为1:0.8~2.5,通过喷枪控制喷出压力为1.0~5.0mpa喷出并汇聚于预热温度为500~1000℃的铁基体表面;

c、开启激光束,控制激光束的能量密度为80~250j/mm3,熔化铁基体表面,碳化反应生成碳化钒,碳化钒附着于熔融的铁基体表面,形成铁基碳化钒涂层。

本发明步骤a中,所述钒氯化物为vcl4、vcl3或vcl2中的至少一种。钒氯化物的纯度≥99.5%,氧含量≤0.5%。传统碳化钒的制备主要通过碳热还原法,采用的原料为钒氧化物,但是钒氧化物的还原程度不够彻底,容易导致产物中的氧含量过高,影响涂层性能。本发明创造性地以钒氯化物为原料,通过高温气化方法实现了钒氯化物与ch4气体的气相沉积工艺,从而制得碳化钒涂层,同时,以钒的氯化物为原料所得的副产物hcl气体,有利于产物纯度及夹杂物的控制。本发明方法对钒氯化物和ch4的双气化,实现了钒源和碳源的分子级混合,大幅改善反应动力学条件以及预期涂层晶粒尺寸的控制预期。

本发明步骤b中,为了避免在气相沉积过程中反应产物的氧化而影响涂层性能,采用氩气或氦气进行保护。为了保证原料能够进行充分反应,并且能减少钒氯化物的浪费,将气态钒氯化物与ch4气体的摩尔比控制为1:0.8~2.5。将喷枪的压力控制在1.0~5.0mpa,一方面是要保证原料浓度与制备效率,另一方面要保证涂层质量,压力过低易导致涂层制备效率和涂层致密度低,压力过高易导致涂层剥落或分布不均。步骤b中,所述铁基体为金属铁或铁基合金;所述铁基体的表面粗糙度≤0.1μm。本发明以铁或铁基合金为铁基体材料,制备的涂层可以进一步通过热处理工艺实现其在铁及铁合金中碳化物的定点析出,从而改善钢及对应含钒微合金钢的力学性能。步骤b所述的预热温度为500~1000℃,其中预热采用普通加热方法即可,只需保证基体温度在所述温度范围内。

本发明步骤c中,激光束能量密度的控制主要是为了更好的实现铁基体表面的熔化及沉积反应的进行,能量密度过低会导致沉积反应基体表面熔化不充分,能量密度过高则导致能量消耗、沉积反应产物性能以及基体熔化厚度的控制难度加大。能量密度受下述几个因素影响,其影响规律可由下述公式体现:公式e=p/vhd激光功率(p)、移动速度(v)、扫描间距(h)和层厚(d),其中v、h、d通过涂层基体的移动实现。本发明创造性将激光束的能量密度控制为80~250j/mm3,根据上述公式,对扫描间距、移动速度和激光功率进行调整,当涂层厚度达到所需要求时,反应结束。本发明以高能激光束为热源,能够实现基体表面的快速熔化及钒氯化物与ch4的快速反应,以及非平衡态下产物的快速冷却凝固,进一步控制产物晶体结构。

步骤c中,铁基体表面的温度≥1500℃,该基体表面温度是指激光覆盖面的基体表面温度,控制该基体表面温度≥1500℃的目的是为了实现基体表面熔化和碳化反应的进行,该温度也是由所述激光能量密度所决定。

采用本发明方法所得的碳化钒涂层单层厚度为15~100μm。碳化钒涂层中氧含量≤0.15%。碳化钒涂层的相对密度为5.65~5.76。

下面将通过具体的实施例对本发明作进一步地详细阐述。本发明采用的试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。

下述实施例中采用的基体铁或铁合金表面粗糙度均≤0.1μm。

实施例1

将纯度为99.5%的钒氯化物在300℃条件下快速气化,在氩气保护及喷枪压力为1.0mpa的条件下将气态钒氯化物和ch4气体按摩尔比为1:0.9喷至预热温度为500℃的金属铁基板表面。开启激光束,同时在激光能量密度为80j/mm3的条件下控制铁基体表面温度≥1500℃进行碳化反应,反应生成碳化钒附着于熔融的铁基体表面,形成铁基碳化钒涂层,所得碳化钒涂层单层厚度为16μm,涂层相对密度为5.69,涂层氧含量为0.10%,氯化钒一次利用率34.4%。

实施例2

将纯度为99.8%的钒氯化物在450℃条件下快速气化,在氩气保护及喷枪压力为3.0mpa的条件下将气态钒氯化物和ch4气体按摩尔比为1:1.3喷至预热温度为600℃的金属铁基板表面。开启激光束,在激光能量密为130j/mm3的条件下控制铁基体表面温度≥1500℃进行碳化反应,反应生成碳化钒附着于熔融的铁基体表面,形成铁基碳化钒涂层,所得碳化钒涂层单层厚度为30μm,涂层相对密度为5.70,涂层氧含量为0.10%,氯化钒一次利用率65.2%。

实施例3

将纯度为99.8%的钒氯化物在500℃条件下快速气化,在氩气保护及喷枪压力为5.0mpa的条件下将气态钒氯化物和ch4气体按摩尔比为1:2.1喷至预热温度为800℃的金属铁基板表面。开启激光束,在激光能量密为250j/mm3的条件下控制铁基体表面温度≥1500℃进行碳化反应,反应生成碳化钒附着于熔融的铁基体表面,形成铁基碳化钒涂层,所得碳化钒涂层单层厚度为38μm,涂层相对密度为5.73,涂层氧含量为0.05%,氯化钒一次利用率85.8%。

实施例4

将纯度为99.8%的钒氯化物在500℃条件下快速气化,在氩气保护及喷枪压力为3.0mpa的条件下将气态钒氯化物和ch4气体按摩尔比为1:1.5喷至预热温度为1000℃的铁铬合金(铁质量分数≥80%)基体表面。开启激光束,在激光能量密为230j/mm3的条件下控制铁基体表面温度≥1500℃进行碳化反应,反应生成碳化钒附着于熔融的铁基体表面,形成铁基碳化钒涂层,所得碳化钒涂层单层厚度为28μm,涂层相对密度为5.74,涂层氧含量为0.08%,氯化钒一次利用率65.3%。

实施例5

将纯度为99.8%的钒氯化物在500℃条件下快速气化,在氩气保护及喷枪压力为5.0mpa的条件下将气态钒氯化物和ch4气体按摩尔比为1:2.5喷至预热温度为1000℃的铁钛合金(铁质量分数≥70%)基体表面。开启激光束,在激光能量密为250j/mm3的条件下控制铁基体表面温度≥1500℃进行碳化反应,反应生成碳化钒附着于熔融的铁基体表面,形成铁基碳化钒涂层,所得碳化钒涂层单层厚度为48μm,涂层相对密度为5.75,涂层氧含量为0.05%,氯化钒一次利用率82.3%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1