一种耐腐蚀镀膜工艺及其制得的耐腐蚀镀膜涂层的制作方法

文档序号:25987489发布日期:2021-07-23 20:56阅读:361来源:国知局
一种耐腐蚀镀膜工艺及其制得的耐腐蚀镀膜涂层的制作方法

本发明涉及表面工程技术领域,具体涉及一种基于pecvd和pvd的耐腐蚀镀膜工艺及其制得的耐腐蚀镀膜涂层。



背景技术:

由于物理气相沉积(pvd)涂层具有良好的膜基结合效果和耐磨性,在装饰、耐磨等表面处理领域发挥着重要作用,例如广泛应用在3c制品的外壳和耐磨件、车用发动机零部件、工模具等行业中。

但是在实际使用中发现,pvd涂层的铁基产品在无油的环境中抗腐蚀效果较差,即容易生锈或因腐蚀导致涂层剥落。造成这种现象的原因在于pvd涂层沉积的过程中会生产许多微孔缺陷或者表面掺杂有涂层“液滴”,微观上涂层表面存在大量微孔缺陷,形成的是不完全封闭的“保护膜”。由于pvd涂层属于化学惰性物质,涂层后会通过这些微孔缺陷发生电化学腐蚀,所以在部分情况下pvd涂层可能会加速铁基金属的腐蚀。

目前常见的解决方式是在涂层后采用后处理的方式封闭涂层表面的微孔缺陷,或者避免使用铁基金属,这样的方式对涂层的应用场合和范围有严格限制,无法广泛应用。

目前也有一些涂层工艺用来做抗腐蚀涂层使用,比较典型的是采用化学气相沉积(cvd)的类金刚石(dlc)涂层,可以在石油管道、海洋、体液、化学介质等腐蚀性比较强烈的条件下使用。例如公布号cnl02498232a的专利介绍了一种pvd+pacvd(等离子体辅助化学气相沉积)涂覆dlc的工艺,采用dlc+si-c-h的复合方式得到具有摩擦学和防腐蚀的涂层;公布号cn107326363a的专利采用cr基层、cr/wc梯度化过渡层、功能层、润滑层结构沉积dlc层。这些技术都可以得到耐腐蚀效果良好的涂层,但是其外层的功能层只有dlc,并不能通过增加其他高硬耐磨或者具有装饰作用的表层来获得更多应用。

公布号cn110438465a的专利介绍了一种ti/ticx/dlc、ticx/ti/ticx/dlc交替层叠层和顶层的工艺,如果将顶层膜层的成分进行调整可以得到各种技术需求的复合膜,虽然各层间采用了化学梯度过渡的方式,但没有考虑到含氢dlc与外层ticx的结合问题,在高负载条件下极易产生ticx与下层dlc剥离的情况。

因此亟待研发一种兼具结合力和多功能的抗腐蚀涂层。



技术实现要素:

为了解决上述技术问题,本发明提出了一种基于pecvd和pvd的耐腐蚀镀膜工艺。

为了实现上述目的,本发明的技术方案公开了一种耐腐蚀镀膜工艺,包括以下步骤:

s1、对金属基体表面进行预处理,以使得所述金属基体表面粗糙度ra≤0.5μm;

s2、在金属基体表面依次沉积第一cr结合层、第一cr/wc过渡层、第一wc-c:h过渡层,再采用pecvd技术在所述第一wc-c:h过渡层表面沉积含氢dlc层;

s3、再用辉光蚀刻工艺蚀刻所述含氢dlc层背离所述第一wc-c:h过渡层的表面;

s4、再在所述含氢dlc层背离所述第一wc-c:h过渡层的表面依次沉积第二wc-c:h过渡层、第二cr/wc过渡层、表层,形成耐腐蚀镀膜。

作为本发明实施方式的进一步改进,所述步骤s2中在金属基体表面依次沉积第一cr结合层、第一cr/wc过渡层、第一wc-c:h过渡层和在所述步骤s4中再在所述含氢dlc层背离所述第一wc-c:h过渡层的表面依次沉积第二wc-c:h过渡层、第二cr/wc过渡层、表层均采用磁控溅射工艺;所述第一cr结合层、第一cr/wc过渡层、第一wc-c:h过渡层、所述第二cr结合层、第二cr/wc过渡层的厚度在0.1-2μm。

作为本发明实施方式的进一步改进,所述表层选自tisin、tin、金属cr、彩色ta-c中的一种。

作为本发明实施方式的进一步改进,所述采用pecvd技术沉积含氢dlc层时使用的工艺气体为低分子碳氢化合物。

作为本发明实施方式的进一步改进,所述低分子碳氢化合物为乙炔。

作为本发明实施方式的进一步改进,所述含氢dlc层的厚度大于等于所述金属基体表面粗糙度的5倍。

作为本发明实施方式的进一步改进,所述辉光蚀刻工艺中采用惰性工作气体,所述惰性工作气体选自he、ne、ar、kr、xe中的任意一种。

作为本发明实施方式的进一步改进,沉积于所述含氢dlc层的第二wc-c:h过渡层的厚度为0.2-1.0μm。

作为本发明实施方式的进一步改进,所述耐腐蚀镀膜工艺的工艺温度区间为100-220℃。

另一方面,本发明提供了一种耐腐蚀镀膜涂层,由上述的基于pecvd和pvd的耐腐蚀镀膜工艺制备得到。

采用上述技术方案的有益效果是:

1、本发明采用了等离子体辅助化学气相沉积(pecvd)的工艺,在涂层中间形成一个表面完全封闭的类金刚石(dlc)夹层,阻断电化学腐蚀的通道;

2、本发明实施例把含氢dlc层作为中间层,把wc-c:h引入进来作为含氢dlc层表面的化学梯度过渡层,且在含氢dlc层表面增加了气体蚀刻工艺,目的一是为了增加含氢dlc层表面的微观粗糙程度和微缺陷,提高了表面积并改善了表面能量状态,让wc-c:h容易成膜;二是利用蚀刻过程中离子的能量破坏含氢dlc层表面的部分c-h键,形成悬键状态,促进界面的化学结合;具有同时增加涂层的抗腐蚀能力和增强结合强度的优点。

附图说明

为了更为清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。

图1为本发明涉及的一种耐腐蚀镀膜涂层的结构示意图;

图2为本发明涉及的采用pecvd工艺沉积的dlc层的电镜图;

图3为本发明涉及的具体例1的耐腐蚀镀膜涂层的结构图;

图4为本发明涉及的对比例2的耐腐蚀镀膜涂层的结构图;

图中数字所表示的相应的部件名称如下:

1-金属基体;2-第一cr结合层;3-第一cr/wc过渡层;4-第一wc-c:h过渡层;5-含氢dlc层;6-第二wc-c:h过渡层;7-第二cr/wc过渡层;8-表层。

具体实施方式

为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

为了实现本发明的目的,一方面,本发明实施例公开了一种的耐腐蚀镀膜工艺,包括以下步骤:

s1、对金属基体表面进行预处理,以使得金属基体表面粗糙度ra≤0.5μm;

s2、在金属基体表面依次沉积第一cr结合层、第一cr/wc过渡层、第一wc-c:h过渡层,再采用pecvd技术在第一wc-c:h过渡层表面沉积含氢dlc层;

s3、再用辉光蚀刻工艺蚀刻含氢dlc层背离第一wc-c:h过渡层的表面;辉光蚀刻工艺中采用惰性工作气体优选kr,也可以选自he、ne、ar、xe中的任意一种。

s4、再在含氢dlc层背离第一wc-c:h过渡层的表面依次沉积第二wc-c:h过渡层、第二cr/wc过渡层、表层,形成耐腐蚀镀膜。

其中,步骤s2中在金属基体表面依次沉积第一cr结合层、第一cr/wc过渡层、第一wc-c:h过渡层和在步骤s4中再在含氢dlc层背离第二wc-c:h过渡层的表面依次沉积第二wc-c:h过渡层、第二cr/wc过渡层、表层均采用磁控溅射工艺。

优选地,第一cr结合层、第一cr/wc过渡层、第一wc-c:h过渡层、第二cr结合层、第二cr/wc过渡层的厚度在0.1-2μm。

优选地,采用pecvd技术沉积含氢dlc层时使用的工艺气体为低分子碳氢化合物,在本发明实施例中,采用乙炔。采用pecvd工艺沉积的含氢dlc层,表面基本无颗粒和空穴缺陷,如图2所示。

在本发明实施例中,含氢dlc层的厚度大于等于金属基体表面粗糙度的5倍;沉积于所述含氢dlc层的第二wc-c:h过渡层的厚度为0.2-1.0μm。

在本发明实施例中,表层选自高硬耐磨的tisin、tin、金属cr、彩色ta-c中的一种。

整个耐腐蚀镀膜工艺的工艺温度区间为100-220℃。

另一方面,本发明提供了一种耐腐蚀镀膜涂层,由上述的基于pecvd和pvd的耐腐蚀镀膜工艺制备得到,如图1所示,耐腐蚀镀膜涂层包括在金属基体1表面依次沉积第一cr结合层2、第一cr/wc过渡层3、第一wc-c:h过渡层4、含氢dlc层5;

在含氢dlc层5背离第一wc-c:h过渡层4的表面再依次沉积第二wc-c:h过渡层6、第二cr/wc过渡层7、表层8,形成耐腐蚀镀膜涂层。

具体例1:

将清洗后ra为0.5μm的304不锈钢零件装入带有pvd和pecvd功能的涂层机,加热至200℃并将真空抽至4mpa以内;用气体辉光放电工艺蚀刻零件表面后,依次涂0.2μm金属cr(第一cr结合层2)、0.3μmcr/wc过渡层(第一cr/wc过渡层3)和0.5μmwc-c:h过渡层(第一wc-c:h过渡层4),此第一wc-c:h过渡层4中wc靶材功率15kw,乙炔流量由10sccm逐步增至500sccm;过渡层沉积结束后,将电磁线圈设置10a,通入1000sccm乙炔,基片偏压设置为900v进行含氢dlc层5的沉积,含氢dlc层5的厚度为3μm;含氢dlc层5涂层结束后涂层机内通入kr气,并调整真空度为3e-3mbar,开启离子源产生辉光放电,将基片偏压设置为300v,蚀刻60min。蚀刻结束后再次开启wc靶至15kw,乙炔流量由500sccm逐步降至10sccm沉积第二wc-c:h过渡层6,厚度为0.5μm;再依次沉积厚度为0.2μm的第二cr/wc过渡层7和厚度为1μm的tin作为表层8,得到耐腐蚀的金黄色tin膜。经过测试其盐雾试验可达96小时以上,涂层结合力为hf1-hf2级(vdi3198-1992)。

对比例1:

将清洗后ra为0.5μm的304不锈钢零件装入涂层机,加热至200℃并将真空抽至4mpa以内;用气体辉光放电工艺蚀刻零件表面后,涂厚度为5-6μm的tin涂层,得到金黄色镀膜。经过测试在盐雾时间为48小时即发生显著点状腐蚀(不涂层的零件可以达到72小时),涂层结合力为hf1-hf2级(vdi3198-1992),抗腐蚀能力不达标,低于不涂层状态。

对比例2:

将清洗后ra为0.5μm的304不锈钢零件装入带有pvd和pecvd功能的涂层机,加热至200℃并将真空抽至4mpa以内;用气体辉光放电工艺蚀刻零件表面后,依次涂0.2μm金属cr(第一cr结合层2)、0.3μmcr/wc过渡层(第一cr/wc过渡层3)和0.5μmwc-c:h过渡层(第一wc-c:h过渡层4),此第一wc-c:h过渡层4中wc靶材功率15kw,乙炔流量由10sccm逐步增至500sccm;过渡层沉积结束后,将电磁线圈设置5a,通入1000sccm乙炔,基片偏压设置为900v进行含氢dlc层的沉积,含氢dlc层厚度为3μm;含氢dlc层涂层结束后再次开启wc靶至15kw,乙炔流量由500sccm逐步降至10sccm沉积第二wc-c:h过渡层6,厚度为0.5μm;再依次沉积厚度为0.2μm的第二cr/wc过渡层7和厚度为1μm的tin,得到耐腐蚀的金黄色tin膜。经过测试其盐雾试验可达96小时以上,涂层结合力为hf6级(vdi3198-1992),压痕周围表层金黄色tin剥落,结合力不合格。

具体例2:

将清洗后ra为0.1μm的高碳钢装饰件装入带有pvd和pecvd功能的涂层机,加热至150℃并将真空抽至4mpa以内;用气体辉光放电工艺蚀刻表面后,依次涂0.1μm金属cr(第一cr结合层2)、0.2μmcr/wc过渡层(第一cr/wc过渡层3)和0.3μmwc-c:h过渡层(第一wc-c:h过渡层4),此第一wc-c:h过渡层4中wc靶材功率10kw,乙炔流量由10sccm逐步增至300sccm;过渡层沉积结束后,将电磁线圈设置1a,通入700sccm乙炔,基片偏压设置为600v进行含氢dlc层的沉积,含氢dlc层厚度为1.5μm;含氢dlc层结束后涂层机内通入ar+kr的混合气,并调整真空度为3.5e-3mbar,开启离子源产生辉光放电,将基片偏压设置为150v,蚀刻90min。蚀刻结束后再次开启wc靶至10kw,乙炔流量由300sccm逐步降至10sccm沉积第二wc-c:h过渡层6,厚度为0.2μm;再依次沉积厚度为0.2μm的第二cr/wc过渡层7和0.5μm的ta-c层,得到耐腐蚀的彩色装饰镀膜。经过测试其盐雾试验可达48小时以上,涂层结合力为hf1-hf2级(vdi3198-1992)。

对比例3:

将清洗后ra为0.1μm的高碳钢装饰件装入涂层机,加热至150℃并将真空抽至4mpa以内;用气体辉光放电工艺蚀刻表面后,依次涂0.2μm金属cr(第一cr结合层2)和0.5μm的ta-c层,得到彩色装饰镀膜。经过测试其盐雾时间不足2小时(和不涂层效果一致),涂层结合力为hf1-hf2级(vdi3198-1992)。

对比例4:

将清洗后ra为0.1μm的高碳钢装饰件装入带有pvd和pecvd功能的涂层机,加热至150℃并将真空抽至4mpa以内;用气体辉光放电工艺蚀刻表面后,依次涂0.1μm金属cr(第一cr结合层2)、0.2μmcr/wc过渡层(第一cr/wc过渡层3)和0.3μmwc-c:h过渡层(第一wc-c:h过渡层4),此第一wc-c:h过渡层4中wc靶材功率10kw,乙炔流量由10sccm逐步增至300sccm;过渡层沉积结束后,将电磁线圈设置1a,通入700sccm乙炔,基片偏压设置为600v进行含氢dlc层的沉积,含氢dlc层厚度为1.5μm;含氢dlc层涂层结束后再次开启wc靶至10kw,乙炔流量由300sccm逐步降至10sccm沉积第二wc-c:h过渡层6,厚度为0.2μm;再依次沉积厚度为0.2μm的第二cr/wc过渡层7和0.5μm的ta-c层,得到耐腐蚀的彩色装饰镀膜。经过测试其盐雾试验可达48小时以上,涂层结合力为hf6级(vdi3198-1992),压痕周围表层的彩色ta-c层剥落,结合力不合格。

如图3所示,采用本方案制备的耐腐蚀涂层结合力检测结果良好,如图3所示,可以达到hf1级,测试标准为vdi3198-1992;采用对比例2和对比例4制备的耐腐蚀涂层结合力,如图4所示,压痕周围自含氢dlc层至表层全部剥落,打底层和过渡层结合情况良好,涂层整体结合力评价不合格,为hf6级,测试标准为vdi3198-1992。

采用上述技术方案的有益效果是:

1、本发明采用了等离子体辅助化学气相沉积(pecvd)的工艺,在涂层中间形成一个表面完全封闭的类金刚石(dlc)夹层,阻断电化学腐蚀的通道;

2、本发明实施例把含氢dlc层作为中间层,把wc-c:h引入进来作为含氢dlc层表面的化学梯度过渡层,且在含氢dlc层表面增加了气体蚀刻工艺,目的一是为了增加含氢dlc层表面的微观粗糙程度和微缺陷,提高了表面积并改善了表面能量状态,让wc-c:h容易成膜;二是利用蚀刻过程中离子的能量破坏含氢dlc层表面的部分c-h键,形成悬键状态,促进界面的化学结合;具有同时增加涂层的抗腐蚀能力和增强结合强度的优点。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1