用矫顽力很低的稀土-过渡金属-硼合金制造永久磁铁的制作方法

文档序号:109589阅读:372来源:国知局
专利名称:用矫顽力很低的稀土-过渡金属-硼合金制造永久磁铁的制作方法
本发明介绍用含有一种或多种轻稀土元素、一种或多种过渡金属(TM)和硼(B)的完全晶体合金制造高矫顽力、高能量积磁铁的方法,这些合金的铸态不是永磁性的。本发明详细地介绍用热加工大颗粒或非永久磁性的坯料、晶体、铸造合金来制造强的永久磁铁,这些铸造合金含有主要相RE2TM14B其中TM包括铁。
本发明的高矫顽力、高能量积的轻稀土-铁(RE-Fe)基永久磁铁乃是美国专利A-4,496,395、欧洲专利申请0108474(通用汽车公司)和欧洲专利申请0144112(通用汽车公司)的主题。最佳磁铁成分基于稀土元素钕(Nd)或镨(Pr)或钕和镨、过渡金属铁(Fe)或铁和钴的混合物、和硼(B)。该最佳成分含有大部分的RE2TM14B相,其中TM是包括铁在内的一种或多种过渡金属元素。
上述专利和专利申请所公开的处理这些合金的最佳方法包括快速凝固熔融合金,得到一种基本上为非晶态、具有各向同性的永久磁性的很细小结晶的显微组织。人们相信,在最高能量积合金中的结晶有序距离与最佳单磁畴大小相当。在合适的温度下可以退火过淬火的合金,使晶粒长大,并且由此诱发出磁矫顽力。至今淬火状态Nd-Fe-B-基合金的最高磁能量积约为15兆高斯奥斯特。
欧洲专利申请号0133758(通用汽车公司)介绍了一种用热加工引起快速凝固的Re-Fe-B-基合金的各向异性的磁性的方法。在高温下加工那些过淬火的基本上是非晶体显微组织的合金,在高温下加工,使晶粒成长,并使徵晶定向而产生比最好的快速凝固态合金更高的能量积。虽然64兆高斯奥斯特的能量积在理论上是可能达到的,但是至今由热加工得到的旋转熔体的Nd-Fe-B合金的最高能量积约为45兆高斯奥斯特。
众所周知,通过常规的定向压制烧结(OPS)法可以使轻RE-Fe-B基体合金具有高矫顽力和高能量积,该定向压制烧结法用来制造钐钴合金和其他稀土钴永久磁铁已有20多年的历史。该方法受到严格的工业条件的限制,因为它要求有许多必须在受控制的无氧化气氛中进行的处理工序。采用把晶体合金磨成很细(小于5微米)的粉末、压强磁场中用磁力定位和压实粉末以及烧结压块的方法,可以得到高的矫顽力和能量积(大于10兆高斯奥斯特)。由定向压制烧结法制造的磁铁是脆的,并且一般需要完成数量相当大的最后磨碎的粉末,除非有最简单的细粉末合金。
用铜代替RECo5和RE2Co17成分中的钴,以及通过在400和500℃间的适当热处理可以诱发铸态合金的矫顽力,这也是众所周知的。一般认为,矫顽力是畴壁粘合现象引起的。至今还没有获得类似沉淀硬化的铸造RE-Fe-B-基合金的组成,而发现了大于痕迹量的铜的存在将剧烈地减少RE-Fe-B-基合金的能量积。众所周知,可以使某些不含稀土元素的铸态Cr-Co-Fe合金成分沿着单轴向进行冷加工,使能量积达到大约5兆高斯奥斯特。
虽然对RE-Fe-B-基合金成分的进行快速凝固和热加工的方法,可以认为是比定向压制烧结更经济和实用的方法,但是仍然希望有一种不必经最初快速凝固就能够制造出高矫顽力、高能量积的RE-Fe-B-基永久磁铁的方法。文中所谓的快速凝固是指一开始就在合金的熔点温度以上以每分钟约105℃或更高的冷却速度使合金凝固。也就是用普通铸造的完全晶体的合金制造RE-Fe-B永久磁铁是方便的,而不需要定向压制烧结的磨碎和均压工序。普通铸件引起的冷却速度基本上小于每分钟105℃。然而,在本发明之前,都不知道可采取这种方法或不曾提出过这类方法。
按照本发明的最佳实施是用坩埚把适量的一种或多种的稀土元素、包括铁在内的一种或一多种过渡金属和硼熔化在一起。成分的比例应该选择含主要由RE2TM14B晶粒组成的铸造材料,在晶界处有一层含稀土的次要相。RE2TM14B晶粒最好是细而扁平的薄片。
最佳的稀土元素是铷和镨,最佳的过渡金属(TM)是铁或铁和钴的混合物。而Nd16.5Fe76.3B7.2是该最佳材料的额定总成分。本合金次要的第二相为相对的富钕和镨。
将熔融金属浇铸到冷铸块上或浇铸到高热传导材料的冷铸模中。这种冷凝速度比旋转熔体或其他快速凝固方法慢几个数量级。对于6-12毫米厚的铸坯而言,在相当厚的冷铸块上冷却,产生薄片形的晶体,最小尺寸至少为5微米,一般不大于50微米。每个薄片的C晶轴垂直于它的主平面。在最小尺寸的情况下,这些单晶薄片大于定向压制烧结法中最大的有效磨碎颗粒的尺寸。
在由若干薄片(少者4片或多者30片或30片以上)组成的层状区内,这些薄片依次成群地平面对平面列成一行,所有薄片以最小尺寸(薄片的厚度)取向,垂直于冷凝方向。下文称为“束”的层状区具有长程有序,最小尺寸从50到几百微米,最大尺寸到冷凝铸锭的总厚度。由从浇注薄片的冷凝表面的定向冷却引起薄片取向。薄片的C晶轴平行于冷凝表面。RE2TM14B晶体最佳磁性定向的方向是沿着C晶轴。此铸造材料的矫顽力是很低的-如果能检测到的话,则小于500奥斯特。
在一个最佳的方法中,可以将铸造合金粗略地粉碎到平均尺寸大约在50和600微米之间的颗粒。该坯料优先在束间的界面破裂,因此每个颗粒主要由单个束构成。于是,在每个颗粒中具有大体上均匀的结晶取向。
用普通冷压机可以把这些颗粒预压到大约80%的密度,或可以把这些不经预压的颗粒注到成型容器或罐中。该罐最好由一种容易变形的金属制成,例如极软的铁或铜。一旦将这些颗粒放入罐中,就把它密封好。
然后把罐和内容物加热到第二相熔点温度以上。一般,在650℃以上和800℃以下的温度是合适的。就处理Nd16.5Fe76.3B7.2成分的温度而言,最佳温度为730℃±30℃。一旦该材料达到此温度就会变形,从而可进行适宜的热加工,使该材料产生矫顽力和高磁性定向。该热加工使原始的软磁合金发挥出优良的永久磁铁的性能,即具有数千奥斯特的矫顽力、数千高斯的剩磁和10兆高斯特以上的能量积。
另一种最佳实施是浇注熔融的RE-Fe-B金属,而产生定向凝固的合金,该合金可以被切割成适于进一步处理的尺寸和碎片,无需磨碎罐中所装的试样。最好在平行于合金的C晶轴方向,即在垂直于冷却方向的方向,在大约730±30℃的非氧化气氛中热加工定向凝固的试样。
另一种处理方法包括切割具有部分定向的薄片(即不是完全定向凝固的)的铸坯试样以及按照如处理定向凝固合金的方法进行热加工。
通过下面详细的描述和附图将可以更好地理解本发明主题的实施和范围,其中图1是Nd2Fe14B合金晶体的部分分解图。
图2(a)-图2(e)是为获得永久磁铁而对完全晶体RE-Fe-B合金进行热加工的最佳方法的工艺流程图。
图3是Nd16.5Fe76.3B7.2合金铸入钢质冷铸模的光学显微照片。
图4-7是装罐、加热、然后热轧的Nd-Fe-B晶体合金试样的第二象限去磁曲线。图4表示热加工温度的影响;图5表示试样厚度压缩的影响;图6表示不同形状的母体合影响;图7表示以两种不同相互垂直方向热加工试样的影向。
图8(a)-图8(d)是一种为获得永久磁铁而进行的完全晶体定向凝固或部分定向凝固合金的热加工工艺流程图。
图9表示在真空压力机的冲头和冲模内,垂直于坏料冷凝方向热加工的Nd-Fe-B晶体合金坯料试料的第二象限去磁曲线。
根据本发明最佳的实施,属于欧洲专利申请号0108474和0144112(前面提到的和来自参考文献的引文)具体公开和权利请求的成分系列的稀土-过渡金属-硼(RE-TM-B)在本发明的实施中是特别有用的。
过渡金属组分是铁或铁和钴、镍(Ni)、铬(Cr)或锰(Mn)中的一种或几种金属。钴和铁互换达到大约40原子百分数,从而使合金保持高能量积。而铬、锰和镍可以和较少数量的铁互换,最好小于10原子百分数。可以添加少量锆(Zr)、钛(Ti)、硅(Si)和碳(C)来修整第二象限去磁曲线的形状。该成分最好在总合金成分的基础上至少包含50原子百分数的铁。
该成分还至少包含10,最好为13至30原子百分数的稀土组分。铷和/或镨均为最佳稀土,并可替换使用。可将较少量的其他稀土元素如钐(Sm)、镧(La)和铈(Ce)同铷和镨混合,而所需的磁性基本上没有损失。可添加少量重稀土元素如铽(Tb)和镝(Dy)来增加矫顽力。最好除Nb和/或Pr以外的稀土元素所占的比例不超过稀土组分大约40原子百分数。最好,在该合金中含有足够的稀土元素,以保证第二相中的稀土组分比例大于主要的RE2TM14B相中的稀土组分。
该成分至少应含有0.5,最好是含6至10原子百分数的硼。
该主题合金的主要磁性相是RE2TM14B,其中TM主要为Fe,该磁性相具有正方结晶结构,它的室温晶格常数a=0.878毫微米和C=1.218毫微米。RE2Fe14B晶体已经N享利第人所作,1952年英国伯明翰、基诺克(Kynock)版本的国际X-射线结晶学表的P4/mnm空间群检索。图1是表示a和C晶轴的Nd2Fe14B晶体的部分分解图。下表概述了由图1所示的Nd2Fe14B相的Nd8Fe56B4单晶胞的对称晶格点和位置。
座标原子 占有率 对称位置 X Y ZNd 4 f 0.273 0.273 0.0Nd 4 g 0.128 -0.128 0.0Fe 16 k10.227 0.564 0.870Fe 16 k20.036 0.356 0.175Fe 8 j10.099 0.099 0.203Fe 8 j20.686 0.686 0.751Fe 4 e 0.0 0.0 0.391Fe 4 c 0.0 0.5 0.0B 4 g 0.364 -0.364 0.0本发明中所使用的式RE2TM14B和RE2Fe14B包括了所有具有上述正方结晶结构的合金成分,并可包括少量的任何其他元素,例如硅、碳、钙(Ca)、锶(Sr)、镁(mg),只要这些元素不破坏RE2TM14B晶体相。
大约等于或小于10%(体积)的金属最好由一个或多个次要的富稀土相组成。Fe4B4Nd暂时被确定为一个相。而接近稀土-铁共晶体的相相信也是存在的。至少第二相中有一个熔点低于主要相的熔点。
为了说明目的,将使用与如下原子比例近似的成分描述本发明Nd16.5Fe76.3B7.2当然,本发明的方法适用于上述的其他成分。
以往,高能量积(大于10兆高斯奥斯特)RE-Fe-B磁铁的取得,关键地取决于定向压制烧结方法中的快速凝固合金的亚微米微晶的大小,亦即尺寸须小于5微米的磨碎合金粉末的颗粒。
欧洲专利申请号0133758介绍了把大体上为非晶体的合金热加工为很细的晶体合金,以形成为具有细晶粒显微组织的合金,其中一些晶粒的最大尺寸有50至500毫微米(0.05到0.5微米)。
定向压制烧结方法一般由完全的晶体合金开始,但是要求把该合金磨成小于5微米的粉末。处理这种细粉末必须避免同任何氧气接触,以防止磁性降低及粉末的自燃。于是,该粉末必须在外加磁场中进行磁力定位、压制和烧结。
本发明由细长薄片形状的基本相晶粒的完全晶体合金开始。与定向压制烧结的磨碎粉末的最大尺寸比较,其最短的薄片的平均尺寸至少为5微米。这些薄片的C晶轴是沿着最短的尺寸,即为垂直于薄片面。在冷铸合金中,这些薄片形成薄片面相互平行的层状区。于是各个薄片的C晶轴也就相互平行;一个完整的层状区,或束的特点是简单的C晶轴方向平行于冷凝表面和垂直于冷却方向。术语“薄片”、“晶粒”和“晶体”在这里可以互换使用。
根据本发明,开始便可以把晶体合金粗略地磨碎,使聚集的薄片束分裂开。因而产生相当大的颗粒,其直径平均大约200至600微米并带有小于50微米的细颗粒。这些颗粒在空气中不会自燃。另一方面,很易直接从冷凝坯料和热压制料切割合金块。
图2表示本发明的一个最佳实施例。图2(a)中所示的第一步骤要求把熔融的RE-Fe-B合金2浇注到冷铸模4,形成最好至少1毫米厚的合金层6。引致在冷却的合金中形成大薄片8,它是通过少量薄片直至数百薄片范围内相互平行的薄片而形成。必须指出,为了说明,图所示薄片8之间的界面11的比例较大。这些C晶轴都平行于箭头所示的原始冷凝表面10。
薄片8基本上由晶体RE2TM14B相组成,其中RE主要是Nd和/或Pr,而TM主要是Fe。由熔融合金注入室温钢模所形成的平均薄片大约为10~30微米,该合金层的厚度大约为50~100微米。
图3是大约0.64厘米厚的Nd16.5Fe76.3B7.2合金钢锭上部抛光面(即对着钢质冷铸模的钢锭原始冷凝面表面的相对面)的光学显微照片。最小薄片的平均尺寸约为10微米。可是,同样成分的旋转熔体的快速凝固合金具有直径小于50毫微米的晶粒。采用光学显微照相的技术,不能够看到这样细小晶粒。这种细小的旋转熔体合金的微晶尺寸是由于其冷却速度一般至少比合金在钢质冷铸模的冷却速度快1000倍的结果。
从这显微照片也可明显地看到,这些薄片形成相似的定位薄片束。这些区域可延伸到100微米或更大直径(如箭头32)并且一般如箭头30所示的为许多薄片层的厚度。在显微照片上由暗区所示的更少量第二相在RE2TM14B薄片的周围形成。电子显微探针分析表明,与主要的RE2TM14B相比较该相是富稀土的,并具有接近RE-Fe共晶体的成分。该次要相的熔点低于RE2TM14B相。
图2(b)表示由粗略磨碎的冷铸合金6所形成的颗粒12。合金6优先地沿着束的界面或沿着薄片8间的界面11破裂。虽然必须注意避免过量水份或会引起颗粒氧化的过量的热量,但是可使用任何合适的磨碎设备来粗磨该坯料。图2(b)表示合金6在破碎机轧辊13之间破碎。最佳颗粒尺寸范围是大于50微米和小于600微米的平均直径。现已发现,用颚式破碎机和辊式破碎机(图中没有示出)破碎该合金,在正常分布颗粒尺寸范围内产生尺寸相当均匀的颗粒。该破碎方法产生少量小于50微米的细颗粒。
图2(c)表示在热加工之前把颗粒12分散在软铁罐14或其他合适的密封容器中。如果需要,颗粒在入罐前,或入罐后,可用普通冷压方法将颗粒12压实到大约80%的密度,但是也可将颗粒松散地装填在罐14中。罐14最好用不会降低合金磁性的软而可变形的金属制造。虽然可以使用在高的热加工温度下没有不利影响的其他有展性的材料,但是已发现软钢和铜是合适的。将颗粒12装入罐14后,用盖16封闭或简单地夹紧或焊死,防止内容的合金在加工时有任何严重的氧化。
除非另有说明,用于下述实例的罐是大约10厘米长、5.7厘米宽和1.9毫米厚的软钢块。把软钢块机加工成大约7.5厘米深、3.2厘米宽和1.3厘厚的长方形孔。把大约6.4厘米长、3.1厘米宽和1.25厘米厚的粗磨碎颗粒的预压块(大约80%致密的)放入该长方形孔中,在合适的位置焊上塞子,使长方形孔密封。在就位焊接塞子以前,是否要对长方形孔排气似乎都无关紧要。一般认为可以使用壁极薄的罐。例如在薄壁铜管中可连续处理粉末,该铜管可以快速受热、轧制减厚和切割、热槽锻与否均可合适地加工成磁铁形状。
图2(d)的热加工步骤要求把工件的温度上升到大约650℃以上,就Nd16.5Fe76.3B7.2合金而言,最好大约为730℃+30℃。此温度在次要相的熔点以上,次要相在RE2TM14B薄片间产生一个夹层。上述温度将随着合金的成分而变化。在此温度下,合适的热加工使工件产生磁的矫顽力。
参考图2(d),热加工罐14中的颗粒12的最佳方法是将它们预热到大约740℃,并且将它们通过压延机的轧辊18,使罐14中的材料的壁厚在完全压实后的减薄约为30%至70%。虽然就压块20的完整性来说,采用单道次的结果似乎比较好,但是该压缩可以用单道次或多道次完成。虽然在多道次间工件可能必须加热,但是轧辊18可以加热,也可以不加热。
在此轧制过程中,使热材料中的大而扁平的RE2TM14B薄片移动,结果C晶轴与轧制平面垂直。这就导致磁性,定向与轧制平面垂直。这种热加工关键在于将矫顽力引入材料中。
如图2(e)所示,在将该经热加工的合金压块20冷却到它的居里点温度以下后,可以用一种合适的磁化器22将它磁化。如果该罐是是磁性的,如用铁或钢,在磁化步骤之前应该把它从压块处取走。反之,它可以留在原位置。
本主题方法所引起的定向机理和矫顽力机理当时都不完全理解。但是在热加工期间发生的两个物理变化,相信有助于下列处理(1)使RE2TM14B薄片成碎片,从而减小颗粒尺寸、增加表面积以及特别暴露其不受隔离薄片的富钕相限制的新鲜表面,(2)该富钕的、低熔点的第二相共晶体混合物在热压制温度下流动,并且大体上覆盖或隔离了这些各个成碎片的RE2TM14B相颗粒。
可以相信,由热加工引起的一个或多个的物理变化将产生一个有利的畴壁捕获条件。在大的RE2TM14B铸态薄片中,有大量在相反的磁场下很容易反向的复式磁畴。铸适合金具有软磁性能的事实支持了这一点。本发明的热加工方法很可能在RE2TM14B和次要相的界面处产生畴壁捕获。畴壁捕获促进抗去磁作用和十分高的矫顽力。
实例1在真空炉中把具有额定成分(以原子百分数计)Nd16.5Fe76.3B7.2大约1500克的合金加热到高出其熔点温度大约150℃。把该合金浇注到一个室温的圆柱体的钢锭模(冷铸块)中,钢锭模的内径大约15.2厘米、底厚2.54厘米,在围绕周边的2厘米高处有6毫米厚的凸缘。所得到的钢锭约为1.27厘米厚。因为绝大多数的热量是通过锭模的厚底排出的,所以这些薄片形成组或束,它们的C晶轴大体上平行于例如图2(a)所示的冷铸板的表面。每个薄片通常具有卵形的平板形状。最小薄片的平均尺寸(即它的厚度)大约为30微米,它的最大长度约1.27厘米,这是该合金,铸造钢锭的厚度。
用颚式或辊式破碎机把钢锭破碎到尺寸大约600微米的最大颗粒、对于正常分布的尺寸较小颗粒来说其平均尺寸约200微米。极少的细颗粒小于50微米。这些破碎的颗粒在空气中不会自燃,并且似乎有相当好的抗氧化作用。每个颗粒含有许多晶体。每个晶体含有许多磁畴。在此处理阶段的颗粒施加磁场只能产生不超过几个奥斯特数量的矫顽力。也就是说这些颗粒具有软磁性能。
这颗粒的密度预压实到80%,并且将其放入如上所述的软钢罐的长方形孔中。用电阻加热炉把罐和压块加热到大约740℃。从该电阻加热炉中取出罐,立即将其通过一对直径22.2厘米,原始温度为室温的压延机轧辊。每轧制一次罐温度降低约30~40℃,为了随后的轧制道次把罐重新加热到大约740℃。每块试样在大约700℃以上的温度总的保留时间约为20分钟。
每块试样轧制完毕后,割开罐子,从得到的完全致密的磁性材料压块上切取一些小试样。经过多道次轧制的试样边缘出现某些应力裂缝。但是,可以相信,通过采用较好的设备和作出较少的加工调节,可以消除这些裂缝。
在19千奥斯特磁场中磁化未加工变形的“铸态”对照试样和热加工试样,在室温下用普林塞顿(Princeton)应用研究的振动试样磁强计测量第二象限的去磁曲线。图4中的曲线46是铸态材料的去磁曲线。对每个热加工试样而言,最好的磁化方向是垂直于轧制平面(即平行于罐装试样厚度被减薄的方向)。
图4表示每轧制道次前的罐温度对热加工合金的磁性的影响。该罐通过压延机轧辊轧制三次,使罐中合金的厚度(使完成压实修正后)由大约1.25厘米压缩到0.67厘米,每道次大约压缩总厚度的1/3。在加热到730~740°后轧制的试样(曲线40)具有最大的剩磁、矫顽力和能量积。在710℃(曲线42)和770℃(曲线44)轧制使试样产生永久磁性,但是数值较低。因此,可以在大体上升高的温度范围内进行热加工,但是在用冷轧辊加工时,740℃左右的温度可以认为是最好的。
图5表示在每道轧制前被加热到大约740℃的试样,其变形度对磁性的影响。在实例中,以致密修正后的合金试样的原始厚度的百分比压缩率表示变形。甚至单道次以很小的15%压缩率通过轧辊也会使试样产生永久磁性。单道次30%的压缩率将改善剩磁和矫顽力。而用三道次将厚度压缩50%的试样具有最大的剩磁和最好的曲线。三道次70%压缩率产生较高的矫顽力,但剩磁较低。于是,似乎可以通过改变热加工参数使第二象限磁滞曲线的形状有某种程度的修正。
图6表示母体合金状态对1.25厘米厚合金试样去磁作用的影响。当试样在每道次轧制前被加热到大约740℃时,每个修正的试样厚度是在三道次中压缩了50%。曲线50对应于试样罐,该罐原始含有尺寸大约30微米的最小薄片的颗粒,该颗粒包括(由许多薄片组成的)被预压实到80%密度的颗粒。
曲线52表示采用类似含有较细晶粒显微组织的钢锭的方法加工的试样,其中薄片平均厚度约为10微米,而不是30微米。这导致矫顽力大于较粗的晶粒试样,同时剩磁略有降低。
曲线54表示由三道次以50%变形度压缩该合金的完全密实厚度的作用,其中简单地把这些颗度(最小薄片尺寸为30微米)注入罐中并用塞就地塞好。该原始粉末密度大约为理论密度的百分之60。
曲线56表示用50%变形度压缩3.2厘米宽×2.5厘米长×1.25厘米厚的合金块(薄片最小尺寸为30微米)的作用。用钢罐封装该钢锭块,钢锭块取向结果是薄片的C晶轴一般垂直于轧制方向。
图7曲线60表示使三个热轧道次的第一道次的轧制方向与其他两二个热轧道次垂直,对于厚度压缩率为50%的轧制试样产生的磁性略好于三个热轧道次以同样方向轧制的试样(曲线62)。所有的轧制道次都在试样被加热或再加热到大约740℃以后进行。
图8(a)至8(b)表示实施本发明的另一个实施的最佳方法的工艺流程图。
将熔融合金注入如上所述和图2(a)所示的常规冷铸模中,或是将熔融合金定向凝固,使合金中所有晶粒平行定向。图8(a)表示一种著名的快速凝固金属的方法,该方法要求把熔融合金2′注入模4′,该模通过模底10′在主要冷却方向冷凝,通过模内壁11′用冷却蛇管15′在横向加热。于是在所产生的固体合金中,定向凝固合金6′的C晶轴将大体上平行于冷凝表面10′。
普通铸造合金具有高比例的垂直于冷凝方向的晶粒,但是也有一些其他结晶取向的晶粒区。
参考图8(b),该第二步骤要求把多段85定向凝固的合金6′放在热压机80中的适当位置上,以便使C晶轴的取向如所示的压制方向。合适的热加工装置由具有钢模82的普通热压机组成。加热线圈84围绕模子82。图中指出,把多段85定向凝固的合金6′薄片搁在下冲头88的顶87上。多段合金的C晶轴是平行于如所示的压制方向。
参考图8(c),起用加热线圈84,直至RE-TM-B合金在大约700℃温度下大体上软化。接着一起加压上冲头86和下冲头88。合金段85破裂并且向大概以垂直于由箭头所示的合金段的C晶轴为方而流动。
仅仅将大晶粒的RE-TM-B晶体试样加热到高温是不能够产生矫顽力的。但是热加工引起在垂直于试样流动方向的最佳磁化方向。产生很大的矫顽力和剩磁。在本发明的最佳实施中,将铸造合金定向凝固,以便产生类似薄片状的RE2TM14B晶粒。定向凝固又势必产生在铸造块6′中薄片8′被定向的区。最理想的是在热加工时的压制方向大概平行于薄片的C晶轴,因为此方向的压力对磁铁产生矫顽力是最有效的。当施压力在垂直于这些薄片C晶轴的方向时,观察到产生的矫顽力很小。
仅仅加热就可在过淬火合金快速凝固的合金(例如旋转熔体)里产生矫顽力。因此,本发明方法中,使完全晶体RE2TM14B合金产生矫顽力的过程是各不同的,并且与热加工有关。
参考8(d),热压制的合金6′冷却后,在合适的如图所示的22′仪器中磁化热压制的合金6′。
实例2
从上面实例1所述的铸坯切割的具有额定成分Nd16.5F76.3B7.2和一边大约6毫米的试样,但其厚度大约只有6毫米而冷铸模是由铜制造的。大多数(但不是全部)晶粒的定位是晶粒的C晶轴垂直于冷凝方向(平行于原始冷凝表面)。
把试样在热压机中的适当位置上,以便使试样的C晶轴择优取向,平行于压制方向。在压力机中形成真空,起用加热线圈,以便把试样加热到大约725℃。对在碳化物冲头间的试样施加大约103兆帕斯卡压力(15,000磅/平方英寸)。用大约50%的变形度压缩该试样的厚度,该试样沿着垂直于压制方向的方向流动。试样大约在700℃以上保温的单时间大约10分钟。
用100千奥斯特的脉冲磁场磁化试样。开始以平行于C晶轴的方向磁化试样,该方向也是平行于压制方向的。
在普林塞顿(Princeton)应用研究的振动试样的磁强计上测量热压制试样的磁性。去磁曲线示于图9。参考图9,发现试样具有大约6千奥斯特的最大矫顽力、大约9.6千高斯的剩磁和大约15.5兆高斯奥斯特的能量积(曲线90)。然后把试样广在相同的磁场中,但以垂直于C晶轴和压制方向的方向磁化。曲线92表示,当按照如此方法磁化时,试样具有很低的矫顽力和剩磁。热加工引起试样有很大的磁性的各向异性和矫顽力。
试样在热加工前具有小于100奥斯特的矫顽力。
总之,发现了一种用热加工完全晶体RE2TM14B合金的制造永久磁铁的新颖方法。该方法很易实施,成本比现行的技术方法低。热加工任意取向、粗略磨碎的冷铸颗粒至少引起一些C晶轴接压制方向、垂直于冷颗粒流动方向定位。可以有目的地加工定向凝固的合金使其平行于RE2TM14B晶体的C晶轴,从而保证所需的定位。虽然热处理冷铸的晶体钢锭不会产生磁的矫顽力,但是同时应用热量和压力将发挥可观的矫顽力。这就是说,热加工使晶体合金从软磁转变到硬磁。
因此,可以通过使用本发明的方法,采用铸造的合金锭作原始材料(而不用合金的旋转熔体或磨得很细的合金)生产硬磁合金产品。
注附图中的H(KOe)为磁场强度(千奥斯特)
权利要求
1.一种通过处理含稀土元素、铁和硼合金来制造永久磁铁的方法,该方法包括在高温高压下热加工该合金而产生磁性各向异性的和显示出永久磁性的最终物体,其特征在于该合金包括基本上由RE2TM14B晶粒组成的晶体材料,其中RE为一种或多种的稀土元素,至少60%为钕和/或镨,TM为一种过渡金属,至少60%为铁,B为元素硼,其晶粒由稀土元素含量多于RE2TM14B晶粒的合金相的晶界层隔离,该晶体材料开始具有不超过500奥斯特的矫顽力,进行所述的热加工直至该合金得到大于1000奥斯特的矫顽力。
2.根据权利要求
1所述的处理合金的方法,其特征在于RE2TM14B晶拉形状为薄的扁平薄片。
3.根据权利要求
1或2所述的处理合金的方法,其特征在于所述的RE2TM14B晶粒按它们的最小平均尺寸至少有5微米。
4.根据权利要求
1或2所述的处理合金方法,其特征在于该方法包括冷铸含有稀土元素、铁和硼的熔融金属的混合物(2、2′),以适当比例产生凝固的、具有基本上由所述的RE2TM14B晶粒组成主要相的软磁合金(6、6′),所述的晶粒各具有C结晶轴,并聚集在这些晶轴大体上相互平行的一些区内,所述的合金相为一个具有熔点低于RE2TM14B相的次要的第二相,把所述的合金(6、6′)加热到第二相熔点以上的高温,然后机加工和变形所述的合金,以便在冷却该合金时,所得到的物体(20、85)为磁各向异性的,具有永久磁铁的特性。
5.根据权利要求
2所述的处理合金的方法,其特征在于该方法包括冷铸含有稀土元素、铁和硼的熔融金属混合物(2),以适当比例产生凝固的具有基本上由扁平的RE2TM14B薄片组成主要相的软磁合金(6),所述的薄片各自具有处于垂直于其扁平面的C结晶轴,并聚集在相应的C晶轴大体上相互平行的一些区内,所述的合金相为在这些薄片(8)间的次要的第二相,该相的稀土元素含量相对地多于RE2TM14B相的稀土元素含量,将所述合金磨碎以形成尺寸大于50微米的粗颗粒(12),将所述的颗粒(12)放入有韧性的金属容器(14、16)中,将所述的容器(14、16)和合金(6)加热到使第二相熔化的高温,轧制所述的容器(14、16)使其变形。该容器变形的程度,以达到可使其中的颗粒压实到接近100%的密度。
6.根据权利要求
2所述的处理合金的方法,其特征在于该方法包括定向凝固含有稀土元素、铁和硼的熔融金属混合物,以适当比例产生凝固的具有基本上由所述的扁平的RE2TM14B薄片组成主要相的低矫顽力合金(6′),所述的薄片(8′)各自具有处于垂直于其扁平面的C结晶轴,所述的合金相是在所述薄片(8′)间的次要相,该次要相的稀土元素的含量相对地多于RE2TM14B相的稀土元素的含量,将所述的合金(6′)加热到使第二相熔化的高温,机械加工所述的合金(6′),直至合金流动,以便定位其中薄片(8′)的C晶轴,在冷却经热加工的合金时得到的物体(85)是磁各向异性的,具有永久磁铁的性能。
专利摘要
本发明介绍了一种热加工合金成为各向异性的永久磁铁体的方法。而所说合金包括含有RE
文档编号C22C1/04GK87100530SQ87100530
公开日1987年9月23日 申请日期1987年1月27日
发明者彼得·维尼亚, 罗伯特·韦尔·李 申请人:通用汽车公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1