容易启动、操作稳定并且高效的氢发生器的制作方法

文档序号:3469719阅读:86来源:国知局
专利名称:容易启动、操作稳定并且高效的氢发生器的制作方法
技术领域
本发明涉及容易启动、操作稳定并且热效率高的氢发生器及其操作方法,更具体的说,本发明涉及利用蒸汽转化的氢发生器及其操作方法,其中由于水以单相蒸汽的方式 被引入到所述氢发生器中,因此能够稳定地对所述氢发生器进行操作,并且可以利用合适 的热交换法使所述氢发生器实现高的热效率。
背景技术
在用于供应精炼工艺(加氢脱硫工艺、重油提质工艺等)所需的氢气的大型制氢 装置中,已经额外地采用蒸汽锅炉以稳定地供应氢气。然而,在中型或小型(1 IOOONm3/ h)的制氢装置(如用于汽车、家电、分布式发电等的燃料电池系统)中,为了增加热效率并 且降低其尺寸,需要通过自回收废气或转化气体的热量来供应蒸汽。在蒸汽转化工艺中, 保持蒸汽与烃的比例恒定是非常重要的,并且在水未被不完全蒸发的状态下产生两相蒸汽 时,产物的流速和组成由于原料的波动而发生变化,使得系统的操作变得非常不稳定,从而 导致测量装置的破坏。此外,当蒸汽与烃(S/C)的比例瞬间改变时,催化剂的活性由于焦化 等而发生劣化,从而降低了装置的耐久性。因此,必须设计并且操作能够通过自回收热量来 稳定地供应蒸汽的热交换网络或热交换器。另外,在实现操作稳定的同时,需要获得高的热效率,而不需要额外的装置或成 本。特别是,在用于发电用燃料电池的氢发生器的情况下,可以通过利用热水来回收额外的 热量并且将所回收的热量转换为可用热量以提高氢发生器的热效率。此外,必须通过以下过程平稳地对氢发生器进行操作,而不会在采用常用的电热 器对主装置进行预热时发生额外的问题(与氢气相关的安全认证、相关装置的供应和需 求、能耗等)、以及批准或许可氢发生器所涉及的问题,所述过程为将氮气(N2)引入到供 料管路中,从而将主装置(用于将转化气体中的一氧化碳(CO)转化为氢气(H2)和二氧化 碳(CO2)的水气变换器,如果需要的话,还包括脱硫反应器)预热到其反应温度并且通过将 水气变换器的末端的反应气体回收利用。

发明内容
[技术问题]因此,为了克服以上的问题,本发明人对热交换方法进行了研究,采用该方法,可 以通过稳定地供应不含两相水蒸气的蒸汽而稳定地对热交换器进行操作,并且采用该方 法,可以通过附加的热交换过程而提高热交换器的热效率。结果,他们发现,用从转化装置 中排出的废气对供应到所述转化装置中的水预先进行热交换,从而使水过热,可以使得水 转化为单相蒸汽,从而克服了供料蒸汽的波动,并且在利用制氢工艺的各步骤的放热和吸 热特性而安装热交换器时,可以显著地改善热效率。基于这些发现而完成本发明。因此,考虑到现有技术中发生的以上问题而进行本发明,并且本发明的一个目的 是提供一种利用蒸汽转化的氢发生器,其设置有其中水不发生相分离并且热效率高的热交换系统。本发明的另一个目的是提供一种操作所述氢发生器的方法。[技术方案]为了实现以上目的,本发明的一方面提供一种利用蒸汽转化的氢发生器,该氢发 生器包括脱硫器,其用于对烃原料进行脱硫;转化器(reformer),其用于通过将脱硫后的 烃原料与水原料混合、然后利用燃烧炉加热该混合物来进行蒸汽转化反应,从而形成转化 气体(reformed gas);水气变换器(water gas converter),其用于将由所述转化器得到 的所述转化气体中的一氧化碳(CO)变换为由氢气(H2)和二氧化碳(CO2)组成的变换气体 (converted gas);变压吸附单元(pressure swing unit, PSA),其用于从所述变换气体中 分离氢气(H2);第一热交换器,其用于在将所述水原料与脱硫后的烃混合之前,利用从所述 燃烧炉中排出的废气将所述水原料过热到水的蒸发温度;第二热交换器,其利用从所述转 化器中排出的所述转化气体对由脱硫后的烃原料和过热的水形成的混合物进行预热;第三 热交换器,其用于在将所述转化气体引入到水气变换器之前,利用外部空气来降低所述转 化气体的温度;以及第四热交换器,其用于在将所述变换气体引入到PSA单元之前,利用自 来水来降低从所述水气变换器中排出的气体的温度。本发明的另一方面提供一种操作权利要求1或2所述的蒸汽转化氢发生器的方 法,该方法包括(a)重复预热过程,直至预先引入到第一热交换器中的水原料形成为蒸汽 时为止,所述预热过程包括下列步骤向转化器中填充氮气,使得转化器的内压为6-8巴, 利用烃原料和外部空气将转化器加热到700°C至800°C的温度,以排出高温氮气,接着使所 排出的高温氮气依次通过第二热交换器、第三交换器、水气变换器和第四热交换器,并且使 从第四热交换器末端排出的氮气循环到脱硫器的末端;以及(b)当在(a)中通过第一热交 换器形成了蒸汽时,停止向所述转化器中供应氮气,并且将烃原料引入到所述转化器中,使 得基于供入的纯水而言,蒸汽与碳的比例(S/C比)为2. 5 3. 5。[有益效果]本发明的利用蒸汽转化的氢发生器的优点在于由于除去了两相水蒸气从而能够 稳定地对所述氢发生器进行操作,并且被蒸汽转化反应加热后的所得产物可以用来对转化 反应的原料进行预热,并且额外地安装有热交换器,重复利用了热交换介质,从而最大程度 地改善了氢发生器的热效率。


图1为示出本发明的利用蒸汽转化的氢发生器的示意性流程图。〈附图中的部件说明〉1 脱硫器2:转化器3:水气变换器4:PSA 单元5 燃烧炉6:旁通管路10 第一热交换器
20 第二热交换器30 第三热交换器40:第四热交换器最佳实施方式以下将参照附图对本发明的优选实施方案进行详细说明。如上所述,本发明提供一种利用蒸汽转化并且具有热交换网络的氢发生器,其中通过高温废气或转化气体的热交换来获得转化反应所需的热量,并且单相水被引入到转化 反应器内,并且其中,在水气变换反应和PSA反应(它们的反应温度低于转化反应)中,通 过低温空气或水进行热交换,并且热交换后的空气以及PSA反应中的残余气体与烃燃料一 起被用作转化反应器的供热源,从而最大程度地降低了氢发生器的热损耗。图1为示出本发明的利用蒸汽转化的氢发生器的示意性流程图。所述氢发生器包 括脱硫器1,其用于对烃原料进行脱硫;转化器2,其用于通过将脱硫后的烃原料与过热水 混合、然后利用燃烧炉5加热该混合物来进行蒸汽转化反应,从而形成转化气体;水气变换 器3,其用于将由转化器2得到的转化气体中的一氧化碳(CO)变换为由氢气(H2)和二氧 化碳(CO2)组成的变换气体;变压吸附(PSA)单元4,其用于分离氢气(H2);第一热交换器 10,其用于在将水原料与脱硫后的烃混合之前,利用从燃烧炉5中排出的废气将水原料过 热;第二热交换器20,其用于通过从转化器2中排出的转化气体对由脱硫后的烃和过热的 水形成的混合物进行预热;第三热交换器30,其用于在将所述转化气体引入到水气变换器 3之前,利用外部空气来降低所述转化气体的温度;以及第四热交换器40,其用于在将所述 变换气体引入到PSA单元4之前,利用自来水来额外地降低从水气变换器3中排出的气体 的温度。具体而言,一部分烃被引入到脱硫器1中,而另一部分烃、通过在第三热交换器中 的所述转化气体与空气之间进行的热交换而被加热后的空气、以及流经PSA单元4的残余 气体可被用作燃烧炉5的燃料。更具体而言,例如,将LNG(液化天然气)用作供应烃的原料。此外,可以将气态或 液态烃用作原料,其中所述气态或液态烃包括LNG、LPG (液化石油气)、石脑油、汽油、煤油 等。可将LNG分为原料和燃料,并且将原料引入到脱硫器1中,而将燃料引入到燃烧炉5中。在本发明中,可以将对含硫化合物进行加氢脱硫的方法或直接将含硫化合物吸附 到催化剂上的方法用作对烃进行脱硫的方法。在这种情况中,可以将诸如钴(Co)、锌(Zn)、 铜(Cu)等金属及其氧化物或硫化物,沸石,活性炭等用作所述催化剂。根据原料的条件,可 以通过在室温下使用沸石或活性炭来吸附含硫化合物或者通过在300°C 400°C的温度下 对烃进行加氢脱硫,从而从烃中除去含硫化合物。将脱硫后的烃(原料)与水混合,然后引入到转化器2中。在这种情况下,首先 通过第一热交换器10(废气(a)从该第一热交换器中通过)将与脱硫烃混合的水过热至 180°C 220°C的温度,然后将其与脱硫后的烃混合,从而形成混合物。随后,通过第二热交 换器20 (从转化器2中排出的转化气体(b)从该第二热交换器中通过)将由脱硫后的烃和 过热的水形成的混合物预热到450°C 500°C的温度,然后将其引入到转化器2中。如上所 述,原料中所包含的水不是以分离为液相和气相这两相的状态被引入到转化器中,而是以 充分蒸发、从而保持为单一蒸汽相的状态被引入到转化器中,这是因为水的温度由于热交换而升高。在考虑到被引入到第一热交换器中的水的压力以及在该压力下的蒸发温度的条 件下,通过适当地设计热交换器,从而使水形成并保持为单一蒸汽相状态。即,在提供热交 换器并且供应适量的废气时,可以连续地保持单一蒸汽相状态,其中通过所述热交换器,用 于将水的温度升至高于在所施加给水的压力下的蒸发点所需的热量可以从废气转移到水 中。根据本发明的一个实施方案,在通过第一热交换器10将废气由660°C或更高冷却 到60°C或更低时,废气的热量被施加到蒸馏水(其被加压至Satm或更高,并且由供料泵 (图中未示出)提供)上,从而使得蒸汽的温度为180°C或更高并且压力为8. 5atm。在这种情况中,由于蒸汽在8. 5atm的压力下的冷凝温度为175°C,因此可以稳定地提供单一相的
蒸汽。 此外,优选的是,将引入到转化器中的烃原料与蒸汽混合,使得蒸汽与碳的比例 (S/C比)为2. 5 3. 5。此处,当S/C比低于2. 5时,存在着由于蒸汽不足而导致转化催化 剂被碳毒化,从而使得转化器的性能劣化的问题,在S/C比高于3. 5时,存在着由于引入过 量的蒸汽而导致转化器的热效率劣化的问题。同时,本发明中所用的热交换器可包括(但是并不限于)翅片管型热交换器和 壳-管型热交换器。优选的是,本发明中所用的热交换器可以包括设置有真逆流热交换器 的翅片管热交换器和设置有扭曲带涡流(twisted tape vortex)产生器的多管回弯管壳型 热交换器。转化器2用于使混合物与转化催化剂接触,并且对混合物进行蒸汽转化,以制备 含有高浓度氢的气体。转化器2在其下部设置有用于加热转化器2的燃烧炉。作为转化 催化剂,可以使用这样的催化剂,在该催化剂中,诸如氧化铝、二氧化硅等载体负载有钌、镍 等。在转化器2中,脱硫烃的蒸汽转化通过下列反应过程进行CmHn+mH20 — mCO+ (m+n/2) H2
CO + 3H2 — CH4 + H2O
CO + H2O — CO2 + H2转化器2被燃烧炉5加热,并且其工作温度保持为500°C 800°C,以便供应催化 反应所对应的反应热,并且提高氢气的形成率。将已经加热过转化器2的650°C 700°C的 废气引入到第一热交换器10中,并且将由蒸汽转化反应所形成的550°C 600°C的转化气 体(C0、C02、CH4、H2)引入到第二热交换器20中。将转化气体引入到第二热交换器20中,然后通过将热量转移到已流入到转化器2 中的脱硫后的烃和过热的蒸汽上使转化气体冷却。为了在将转化气体引入到水气变换器3 之前,进一步降低已被第二热交换器20冷却的转化气体的温度,采用鼓风机(图中未示出) 将外部空气引入到第三热交换器30内,使得外部空气与转化气体发生热交换,从而在转化 气体到达水气变换器3的入口之前将转化气体冷却至约180°C 200°C的温度。可以通过空气旁通管路6来精密地控制引入到水气变换器3中的转化气体的温 度。当转化气体的温度低于180°C时,引入到第三热交换器30中的外部空气迂回通过空气 旁通管路6,使得与转化气体进行热交换的外部空气的量降低,从而升高了引入到水气变换器3中的转化气体的温度。与此形成对比的是,当转化气体的温度高于200°C时,可以通过增加引入到第三热交换器3中的外部空气的量来降低引入到水气变换器3中的转化气体的温度。水气变换器3及其中所进行的水气变换反应对本领域的技术人员而言是熟知的, 并且水气变换器3填充有用于将转化气体中的一氧化碳(CO)变换为二氧化碳(CO2)和 氢气(H2)的水气变换催化剂。作为水气变换催化剂,可以使用铁-铬系催化剂(例如, Fe2O3-Cr2O3催化剂)或铜系催化剂(其为铜-锌的氧化物)。在Fe2O3-Cr2O3催化剂的情 况下,优选在300°C 450°C的温度下进行水气变换反应,而在铜系催化剂的情况下,优选 在200°C 250°C的温度下进行水气变换反应。在这种情况下,水气变换反应由下式表示 C0+H20^~^C02+H2o通过第四热交换器40(其中,气体与自来水进行热交换)将由水气变换器3排出 的气体冷却到30°C 40°C的温度(即PSA单元4的入口的温度),然后将其引入到PSA单 元4中。在这种情况下,用于冷却从水气变换器3中排出的气体的自来水以约60°C或更高 的热水的形式被回收,因此其可以在个人住房、公寓或集体居住设施的发电系统中用作沐 浴用的热水或者加热地板用的热水。PSA(变压吸附)通常被本领域的技术人员用来分离氢气,并且PSA是一种通过从 含有高浓度氢的气体中吸附并除去杂质而制备高纯度氢气的方法。可以根据需要来适当地使用由PSA单元4所获得的高纯度氢气,并将从PSA单元 中所获得的残余气体(废气)回收,然后将该废气用作加热转化器2用的燃烧炉5的燃料。将诸如LNG等烃燃料、通过第三热交换器预热后的空气、以及从PSA单元排出的残 余气体(废气)用作加热转化器用的燃烧炉的燃料。将为蒸汽转化反应所需的吸热反应提 供燃烧热的废气引入到第一热交换器10内,从而用于将水过热。[本发明的具体实施方式
]以下,将详细描述设置有热交换网络的氢发生器在启动过程中的操作方法。通过供料管路将预定量的氮气(N2)引入到转化器中,以将热量从转化器转移到水 气变换器中,从而对水气变换器预热,然后将水气变换器末端的氮气循环利用,从而能够使 氢发生器容易地启动,而无需额外地消耗氮气。具体而言,将烃燃料和空气引入到燃烧炉内以开动燃烧炉,并且将氮气(N2)引入 到转化器内,以将转化器的内压增加到6 8巴,然后加热到700 800°C的温度,随后将加 热后的氮气流经第二和第三热交换器以及水气变换器,以对它们进行预热,从而能够在引 入烃燃料和空气后立即在水气变换器内进行水气变换反应。在氮气流经第二和第三热交换器以及水气变换器的同时,氮气的温度逐渐降低, 并且在氮气流经第四热交换器时,氮气的温度在第四热交换器的末端进一步降低。然后,通 过C管路使温度已降低的氮气循环到脱硫器的末端,但是循环的氮气的温度随着转化器温 度的升高(这是由于用燃烧炉加热转化器而导致的)而逐渐升高。连续地进行预热氮气的过程,直至通过引入相当于正常操作时所用水的约25% 35 %的水,然后使水与第一热交换器中的高温废气进行热交换,从而使水形成为蒸汽时为 止。当确认已经形成蒸汽时,停止氮气的循环,根据水的含量引入烃原料,从而自发地纯化 存在于反应器中的氮气。此后,将水的含量逐渐升至100%,然后通过PSA单元制得纯度为99. 99%或更高的氢气,而将残余气体(废气)转移到用于加热转化器的燃烧炉内,然后回收并用作燃料。 在本发明的设置有热交换网络的氢发生器中,多个热交换器彼此有序地组合,并 且由PSA单元排出的残余气体(废气)被再用作原料,从而使得热效率比利用蒸汽转化的 常规氢发生器的热效率高70%。
权利要求
一种利用蒸汽转化的氢发生器,具有脱硫器,其用于对烃原料进行脱硫;转化器,其用于通过将脱硫后的烃原料与水原料混合、然后利用燃烧炉加热该混合物来进行蒸汽转化反应,从而形成转化气体;水气变换器,其用于将由所述转化器得到的所述转化气体中的一氧化碳(CO)变换为由氢气(H2)和二氧化碳(CO2)组成的变换气体;以及变压吸附单元(PSA),其用于从所述变换气体中分离氢气(H2);所述氢发生器的特征在于,该氢发生器包括第一热交换器,其用于在将所述水原料与所述脱硫后的烃混合之前,利用从所述燃烧炉中排出的废气将所述水原料过热到水的蒸发温度;第二热交换器,其通过利用从所述转化器中排出的所述转化气体对由脱硫后的烃原料和过热的水组成的混合物进行预热;第三热交换器,其用于在将所述转化气体引入到所述水气变换器之前,利用外部空气来降低所述转化气体的温度;以及第四热交换器,其用于在将所述变换气体引入到PSA单元之前,利用自来水额外地降低从所述水气变换器中排出的气体的温度。
2.根据权利要求1所述的氢发生器,其中,所述烃原料、通过在所述第三热交换器中进 行的所述转化气体与空气之间的热交换而被加热的空气、以及流经所述PSA单元4后的残 余气体被用作所述燃烧炉的燃料。
3.根据权利要求1所述的氢发生器,其中,所述的第一热交换器、第二热交换器、第三 热交换器和第四热交换器中的每一个均为翅片管型热交换器或者壳-管型热交换器。
4.根据权利要求1或2所述的氢发生器,其还包括旁通管路,其用于控制引入到所述第三热交换器中的空气的量,从而将在所述水气变 换器入口处的所述转化气体的温度控制为180°C 200°C。
5.根据权利要求1或2所述的氢发生器,其中,所述烃原料包括气态或液态的烃,该气 态或液态的烃包括LNG、LPG、石脑油、汽油、煤油等。
6 一种操作权利要求1或2的蒸汽转化氢发生器的方法,该方法包括(a)重复预热过程,直至预先被引入到第一热交换器中的水原料形成为蒸汽时为止,所 述预热过程包括下列步骤向转化器中填充氮气使得转化器的内压为6-8巴;利用烃原料 和外部空气将转化器加热到700°C至800°C的温度,以排出高温氮气;使所排出的高温氮气 依次流经第二热交换器、第三交换器、水气变换器和第四热交换器;并且使从第四热交换器 末端排出的氮气循环到脱硫器的末端;以及(b)当在(a)中通过第一热交换器形成了蒸汽时,停止向转化器中供应氮气,并且将 烃原料引入到转化器中,使得基于所供入的纯水而言,蒸汽与碳的比例(S/C比)为2. 5 3 · 5 ο
7.根据权利要求6所述的操作氢发生器的方法,其中,在(a)中所引入的水原料相当于 在正常操作时所用的水原料的约25% 35%。
全文摘要
本发明提供一种利用烃作为原料、通过蒸汽转化工艺来产生氢气的氢发生器及其操作方法,更具体的说,本发明提供一种通过蒸汽转化工艺来产生氢气的氢发生器及其操作方法,其中由于水以单相蒸汽的方式被引入到所述氢发生器中,因此可稳定地对该氢发生器进行操作,并且可以利用适当的热交换法使所述氢发生器实现高的热效率。根据本发明,提供一种热交换网络,其中通过高温废气或转化气体的热交换来获得转化反应所需的热量,并且,在水气变换反应和PSA反应(它们的反应温度低于转化反应的温度)中,通过低温空气或水进行热交换,并且热交换后的空气以及PSA反应中的残余气体与烃燃料一起被用作转化反应器的供热源,从而最大程度地降低了氢发生器的热损耗。
文档编号C01B3/24GK101842314SQ200880114275
公开日2010年9月22日 申请日期2008年10月29日 优先权日2007年11月1日
发明者金一洙, 金明俊, 金荣大 申请人:Sk能源株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1