一种在拉锥光纤侧面高效沉积硫化钨的方法

文档序号:3456602阅读:784来源:国知局
一种在拉锥光纤侧面高效沉积硫化钨的方法
【专利摘要】一种在拉锥光纤侧面高效沉积硫化钨的方法,包括:制成硫化钨分散液;将普通单模光纤制备成拉锥光纤;将拉锥区域的光纤浸没于硫化钨分散液中;将一定功率的激光从光纤的一端输入,并在另一端用光功率计监测输出光功率变化;通过控制输入拉锥光纤的光功率的大小和通光时间来控制硫化钨沉积在拉锥光纤侧面的多少。本发明不需要制备大面积的硫化钨材料,只需要使用硫化钨粉末即可,使光场与材料能够有更长的作用距离,使更多的光场能够与材料相互作用,可以显著提高材料的沉积速度与沉积体积。
【专利说明】一种在拉锥光纤侧面高效沉积硫化钨的方法

【技术领域】
[0001]本发明涉及将硫化钨转移到光纤侧面的方法,具体是一种在拉锥光纤侧面高效沉积硫化钨的方法。

【背景技术】
[0002]过渡金属硫化物是一种具有二维层状结构的纳米材料,表现出可调节的带隙和丰富的光电子学特性,正受到国内外越来越多的关注。硫化钨作为一种过渡金属硫化物在
2013年时被证实具有饱和吸收特性,并在2014年被发现具有光学非线性。将硫化钨作为饱和吸收体用于锁模激光器和调Q激光器的实验结果也先后被报道。因此硫化钨在脉冲激光器、非线性光纤、光信号处理等领域有广泛的应用前景。
[0003]为了使光场能作用于硫化钨材料,可以通过空间光直接照射材料,也可以将材料与光纤集成。目前尚无将硫化物集成与光纤的相关报道。已经报道的将另一种过渡金属硫化物材料硫化钼与光纤集成的方法主要有以下几种:
[0004]方法1:利用化学气相沉积的方法将纳米材料生长在某种基底材料上,然后利用化学方法去除基底材料,通常是利用某种溶液将基底材料腐蚀去除。这时纳米材料会以薄膜的形式漂浮在溶液上,将光纤端面或侧面浸没入溶液,从纳米材料下方与其接触,并提出溶液,即可实现材料与到光纤的转移。这种方法需要制备较大尺寸的纳米材料,成本很高,所需时间长。
[0005]方法2:将材料粉末分散于某种分散剂中,形成分散液。将光纤端面浸没于分散液中,在光纤中通光,利用光诱导作用使材料沉积在光纤端面上。这种方法虽然可以控制沉积材料的厚度,但最大厚度仍然有限,通常为几十微米,无法使光场与材料在一个较长距离上相互作用,因此不适用于需要光场与材料较强作用的场合,例如研宄光场与材料的非线性作用。
[0006]方法3:将材料的分散液与可成膜的聚合物(如聚乙烯脂PVA)水溶液混合,将混合溶液滴于玻璃片上烘干制成薄膜,将薄膜撕下后夹在两个光纤接头的中间,当光通过接头时,即可实现光场与材料的相互作用。由于薄膜的厚度有限,通常为几十微米,因此光场与材料的作用长度较短,同样不适合需要光场与材料较强作用的场合。
[0007]总之,以上的几种方法或者成本较高或者不适合需要光场与材料较强作用的场合。因此,需要一种方法能够在兼顾低成本的同时,实现光场与材料的强作用。


【发明内容】

[0008]本发明所要解决的技术问题是克服上述现有技术的不足,提供一种在拉锥光纤侧面高效沉积硫化钨的方法,有效将硫化钨沉积在拉锥光纤侧面,并可控制硫化钨沉积的多少。
[0009]为了解决上述问题,本发明的技术解决方案如下:
[0010]一种在拉锥光纤侧面高效沉积硫化钨的方法,具体包括以下步骤:[0011 ] 步骤1:将硫化钨材料粉末分散于高挥发性分散剂中,制成硫化钨分散液,该硫化鹤分散液的浓度为0.0001mg/ml至lmg/ml ;
[0012]步骤2:将普通单模光纤制备成拉锥光纤,拉锥区域的光纤直径控制在3至15微米;
[0013]步骤3:将拉锥区域的光纤浸没于硫化钨分散液中;
[0014]步骤4:将一定功率的激光从光纤的一端输入,并在另一端用光功率计监测输出光功率变化;
[0015]步骤5:通过控制输入拉锥光纤的光功率的大小和通光时间来控制硫化钨沉积在拉锥光纤侧面的多少。
[0016]所述的高挥发性分散剂是乙醇或丙酮。
[0017]所述的拉锥区域的光纤直径的范围是6至10微米。
[0018]所述的输入拉锥光纤的光功率范围是10至100毫瓦。
[0019]所述的通光时间范围是10秒至30分钟。
[0020]所述的步骤4中,若光源输出的光功率较低,加入光放大器放大到足够的光功率后,再输入拉锥光纤。本发明原理是通过分散剂的高挥发性和光诱导作用,使硫化钨材料沉积到拉锥光纤侧面,通过控制输入拉锥光纤的光功率的大小和通光时间,控制材料沉积的体积。
[0021]与现有技术相比,本发明具有如下优点:
[0022]本发明通过采用光诱导和高挥发性分散剂,使得硫化钨可以高效的沉积到拉锥光纤的侧面,通过控制输入光功率的大小和通光时间,可以控制材料沉积的快慢和多少。相比于【背景技术】中的方法I (制备大面积材料并转移),本发明不需要制备大面积的硫化钨材料,只需要使用硫化钨粉末即可。相比于【背景技术】中的方法2和方法3 (端面沉积,制成薄膜),本发明使硫化钨材料沉积于拉锥光纤侧面,因此可以使光场与材料能够有更长的作用距离。此外,由于使用了高挥发性的分散剂,分散剂本身的挥发作用会加速材料颗粒的布朗运动并增强光诱导沉积过程,与一般非挥发性或弱挥发性的分散剂相比,本发明可以显著提高材料的沉积速度与沉积体积。

【专利附图】

【附图说明】
[0023]图1是拉锥光纤示意图
[0024]图2是在拉锥光纤侧面沉积硫化钨的示意图
[0025]图3是拉锥光纤侧面沉积硫化鹤的显微镜图
[0026]图4是拉锥光纤侧面沉积硫化钨的拉曼光谱图
[0027]1-普通光纤,2-普通光纤到拉锥光纤的过渡区域,3-拉锥光纤,4-光源,5-光纤接头适配器,6-光放大器,7-硫化钨分散液液滴,8-载玻片,9-光功率计

【具体实施方式】
[0028]下面结合附图和实施例对本发明作进一步说明,但不应以此限制本发明的保护范围。
[0029]一种将硫化钨沉积到拉锥光纤侧面的方法,其具体可以包括以下步骤:
[0030]步骤1:将硫化钨粉末分散于高挥发性分散剂中,制成分散液,硫化钨分散液的浓度为 0.000 lmg/ml 至 lmg/ml ;
[0031]其中,高挥发性分散剂是使硫化钨材料颗粒可以稳定存在,不易发生团聚,且具有高挥发性的溶剂(例如乙醇,丙酮等)。在本发明的优选实施例中,使用的分散剂是乙醇。
[0032]其中硫化钨浓度的优选范围是0.00lmg/ml至0.lmg/ml。若浓度过低则不易实现沉积,若浓度过高则不易控制材料沉积的体积。
[0033]步骤2:将普通光纤制备成拉锥光纤,拉锥区域的光纤直径控制在3至15微米;
[0034]其中拉锥光纤直径的优选范围是6至10微米。若光纤过细则容易断裂,若光纤过粗则泄露在空气中的光场太弱,无法产生有效的光诱导沉积。
[0035]步骤3:将拉锥光纤浸没于硫化物分散液中;
[0036]其中,可将拉锥光纤悬空固定在一玻璃载玻片上方,将分散液滴在载玻片上,浸没拉锥光纤。
[0037]步骤4:将一定功率的光从拉锥光纤的一端输入,并在另一端用光功率计监测输出光功率变化;
[0038]其中,输入光的波长范围可以选择从紫外到近红外波段,光源可以是激光,也可以是自发辐射光源等其他非相干光源。光源可以是连续光输出,也可以是脉冲光输出。
[0039]步骤5:通过控制输入拉锥光纤的光功率的大小来控制硫化物沉积在拉锥光纤侧面的速度,通过控制通光时间来控制硫化钨沉积的多少。
[0040]其中,输入拉锥光纤的光功率的优选范围是10至100毫瓦,若光源输出的光功率较低,则需要如图2所示加入光放大器放大到足够的光功率后,再输入拉锥光纤。光源与拉锥光纤的耦合,可以如图2所示采用光纤接头适配器,也可以采用空间光耦合。通光时间的优选范围是10秒至30分钟。当硫化钨开始在拉锥光纤侧面沉积时,会对光产生吸收,通过观察光功率计的读数,即可了解材料在光纤侧面沉积的体积。光功率越高,则沉积的越快。通光时间越长,则沉积的越多。通过控制光功率大小和通光时间,即可实现对材料沉积体积的控制。
[0041]图3给出了当硫化钨沉积于拉锥光纤时的显微镜图,可以明显的观察到硫化钨沉积于光纤的侧面。图4给出了硫化钨分散液与硫化钨沉积于拉锥光纤后的拉曼光谱测试图,可以确认沉积于拉锥光纤上的确实是硫化钨材料。
【权利要求】
1.一种在拉锥光纤侧面高效沉积硫化钨的方法,其特征在于,该方法包括以下步骤: 步骤1:将硫化钨材料粉末分散于高挥发性分散剂中,制成硫化钨分散液,该硫化钨分散液的浓度为0.0001mg/ml至lmg/ml ; 步骤2:将普通单模光纤制备成拉锥光纤,拉锥区域的光纤直径控制在3至15微米; 步骤3:将拉锥区域的光纤浸没于硫化钨分散液中; 步骤4:将一定功率的激光从光纤的一端输入,并在另一端用光功率计监测输出光功率变化; 步骤5:通过控制输入拉锥光纤的光功率的大小和通光时间来控制硫化钨沉积在拉锥光纤侧面的多少。
2.根据权利要求1所述的在拉锥光纤侧面高效沉积硫化钨的方法,其特征在于,所述的高挥发性分散剂是乙醇或丙酮。
3.根据权利要求1所述的在拉锥光纤侧面高效沉积硫化钨的方法,其特征在于,所述的拉锥区域的光纤直径的范围是6至10微米。
4.根据权利要求1所述的在拉锥光纤侧面高效沉积硫化钨的方法,其特征在于,所述的输入拉锥光纤的光功率范围是10至100毫瓦。
5.根据权利要求1所述的在拉锥光纤侧面高效沉积硫化钨的方法,其特征在于,所述的通光时间范围是10秒至30分钟。
6.根据权利要求1所述的在拉锥光纤侧面高效沉积硫化钨的方法,其特征在于,所述的步骤4中,若光源输出的光功率较低,加入光放大器放大到足够的光功率后,再输入拉锥光纤。
【文档编号】C01G41/00GK104477997SQ201410810484
【公开日】2015年4月1日 申请日期:2014年12月19日 优先权日:2014年12月19日
【发明者】吴侃, 陈博华, 王昊, 朱邦圻, 陈建平 申请人:上海交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1