具有薄膜涂层的用于日光防护的窗玻璃的制作方法

文档序号:12284075阅读:260来源:国知局

本发明的窗玻璃更特别适用于装修建筑物,即使其不限于此,并且特别地,其还可用于汽车工业,作为侧窗、天窗或后窗,或用作烤箱门。

以已知的方式,通过选择构成该叠层的薄层的化学性质、厚度和次序,有可能显著作用于来自进入楼宇(premises)或乘客舱的太阳辐射的能量量。特别地,此类窗玻璃能够防止在夏天过度加热所述楼宇或乘客舱内部并由此有助于限制其空调所需的能耗。对本发明来说,术语“日光防护窗玻璃”或“防日晒窗玻璃”或“隔热窗玻璃”因此意在指由涂有一层或多层薄层的基板(通常由玻璃制成)组成的窗玻璃,由此与穿过相同基板但未进行隔热的情况相比显著降低穿过所述窗玻璃的太阳辐射(特别是可见和近红外辐射)量。

本发明还涉及在不透明时用作拱肩(allège)面板的此类窗玻璃,以便成为立面面板的一部分并能够与可视窗玻璃结合以使建筑物具有完全光滑和均匀的外表面。

这些分层窗玻璃(以及拱肩面板)受到一定数量的约束:关于窗玻璃,所用的层必须首先充分筛去太阳辐射,即它们必须允许热绝缘,但同时允许相当大的一部分光通过,如通过透光率TL量度的那样。此外,这些热性能必须保持该窗玻璃的光学和审美外观:由此合意的是能够调节基板的透光率水平,同时保持被判定为美观和优选基本无色的颜色,最特别在外部反射中,或甚至在透射中。就反射外观而言,这对拱肩面板同样如此。

根据另一重要方面,这些层还必须足够耐用,如果在一旦安装的窗玻璃中它们在窗玻璃的外表面之一上(相对于“内”表面,例如朝向双层窗玻璃的中间充气腔)的话更是如此。

存在另一种在如今迅猛出现的约束:当该窗玻璃至少部分由玻璃基板组成时,后者常常经受一种或多种热处理,例如如果需要赋予它们弯曲形状(商店橱窗)的话经受弯曲类型的热处理,或者如果需要它们更具耐性并由此在冲击事件中不那么危险的话经受回火或退火类型的热处理。

而在玻璃热处理之后沉积层是复杂和昂贵的,同样已知的是在进行所述热处理之前在玻璃上沉积所述层可能导致所述叠层性质的显著改变,特别是光学和能量性质。

由此寻求获得(这也是本发明的主题)能够承受热处理而不会显著改变窗玻璃整体的光学/热性质并且不会改变/劣化其在回火前观察到的一般外观的薄层叠层。特别地,在此类情况下,将被称为“可弯曲”或“可回火”层。

在专利EP-0 511 901和EP-0 678 483中给出了用于建筑物的日光防护窗玻璃的实例:存在用于筛去日光辐射的功能层,其由任选氮化的镍铬合金、不锈钢或钽制成,并且其放置在两个金属氧化物如SnO2、TiO2或Ta2O5的介电层之间。这些窗玻璃是出色的防日晒窗玻璃,并具有令人满意的机械和化学耐久性,但是并非真正的“可弯曲”或“可回火”,因为包围该功能层的氧化物层在弯曲或回火操作过程中不能防止其氧化,所述氧化伴随着透光率以及该窗玻璃整体的一般外观的改变。

近来已经进行了许多研究以使所述层在低辐射窗玻璃领域可弯曲/可回火,其反而以与防日晒窗玻璃相反的高透光率为目标。已经提出了在银功能层上方使用基于氮化硅的介电层,这种材料相对于高温氧化相对惰性,并证明能够保护在下方的银层,如专利EP-0 718 250中所述。

已经描述了作用于太阳辐射并且假定为可弯曲/可回火的其它叠层,依靠银之外的功能层:专利EP-0 536 607使用TiN或CrN类型的金属氮化物的功能层,具有金属或硅衍生物的保护层,专利EP-0 747 329描述了NiCr类型的镍合金的功能层,与氮化硅层结合。

此外,由专利申请WO 2007/028913获知使用二氧化钛(TiO2)或二氧化锆(ZrO2)作为主要作用于日光辐射的层的叠层结构,该层沉积在氮化硅下层上。

此类产品由此似乎在其反射来自日光辐射的热量的性质方面相对有效,并且可以采用磁增强阴极溅射(磁控管阴极溅射)技术相对简单和经济地沉积。

如申请WO 2007/028913中所述,使用真空技术喷涂靶沉积前述类型的叠层能够沉积厚度控制在纳米级的叠层,由此能够调节该窗玻璃的所需色度,特别是其色度中立性。在该公开中指出,由此沉积的叠层从机械耐温性质方面来看也是令人满意的,特别是在大约600-630℃的热处理条件下(最常见的回火或弯曲工艺的特征)。特别地,已经经历此类热处理的申请WO 2007/028913的窗玻璃不会表现出其性质的任何显著改变,无论是在能量性能水平还是色度方面。

当具有此类叠层且基本上依赖于基于氧化钛的层的厚度时,所获得的具有防晒性质的窗玻璃具有大约75%至60%的透光率(TL)系数和大约25%至40%的光反射(RL)系数。但是,在标准NF EN410(2011)的含义中,穿过该窗玻璃的日光因子为至少大约65%,这在非常强的阳光的外部条件下可以被认为是不足的。

本发明的一个目的由此是提供具有与申请WO 2007/028913中所述相同类型的窗玻璃,即其功能层基于氧化钛,但是改善其隔绝性能,特别是其日光因子小于60%,或甚至小于55%,而同时保持足够的透光率,特别是大于或等于40%,或甚至大于或等于45%,在标准NF EN410(2011)的含义中。

根据本发明的窗玻璃的另一重要特性,它们通常具有在前述含义中非常低的色度,包括在诸如弯曲或回火或甚至涂搪瓷的热处理之后。

同样,一旦至少部分或最通常完全不透明的话,此类窗玻璃有可能用在建筑领域中作为拱肩玻璃。

拱肩玻璃,在该领域中更通常称为拱肩,例如能够隐藏建筑元件如电缆、水管、空调,或者更一般地,该建筑的所有结构元件。

特别地,在并入非常大的玻璃化区域的建筑物中,使用拱肩玻璃有利于观察大玻璃化区域的美学和建筑学的一致性,其可以几乎覆盖该建筑物的整个表面积。

更具体地,对于此类建筑物,考虑到玻璃化表面积的显著尺寸,所用的窗玻璃必须在它们的整个表面积上包含具有能够限制在夏季的空调成本的日光控制性质和优选能够减少冬季建筑物释放能量的损失的内部绝热性质的叠层。存在于该建筑物几乎整个表面积上的所述窗玻璃因此覆盖了必须提供显著的光透射(由此称为可视窗玻璃)的部件和透射必须几乎为零(重叠效应)以隐藏建筑物的结构元件的那些(拱肩玻璃)。为此目的,通常使用不透明的搪瓷层来获得此类遮蔽。

本发明的目的由此是开发包含玻璃类型的基板的窗玻璃,所述基板带有作用于入射的太阳辐射的薄层涂层,其能够解决先前列举的问题。特别地,根据本发明所期望的窗玻璃具有适于建筑物的日光防护的热性质、同样适于此类用途的光学性质,特别是色度和透光率性质,以及承受热处理(所述热处理由回火、弯曲或涂搪瓷组成)而不损坏的能力,即不会出现雾度,甚至在非常高的温度下,即大于或等于650℃的温度。

在其最通常的形式中,本发明涉及日光防护窗玻璃,包含基板,优选玻璃基板,所述基板在其两个面的各个面上覆盖有由介电材料组成的涂层。在本发明的窗玻璃中,所述涂层各自由基于氧化钛的层或并入此类基于氧化钛的层的介电材料叠层组成。根据本发明,在各所述涂层中基于氧化钛的层的物理厚度为10至70纳米。

除了基于氧化钛的层之外,本发明的薄层叠层仅包含由介电材料组成的层,并因此尤其不包含金属性质的层,特别是先前对其红外辐射反射和/或吸收性质所描述的那些类型,特别是由贵金属如Ag、Pt、Pd、Au或Cu组成的那些,也不包含TiN或CrN类型的金属氮化物制成的层,或基于镍的层,如NiCr,或基于Nb或氮化铌的层。

对本发明而言,基于氧化钛的层以优选接近2的比例非常主要地包含元素O和Ti(虽然当然可能与理论值存在差异,但不会脱离本发明的背景,特别是根据沉积所述层或可能掺杂所述层的条件)。特别地,Ti和O一起根据本发明占该层中存在的原子的至少85%,优选占该层中存在的原子的至少90%,或甚至至少95%。

根据本发明的特别和优选的实施方案——其当然在适当情况下可以彼此组合:

- 所述介电材料选自氮化物、氧化物或氧氮化物。

- 除基于氧化钛的层之外,该介电材料选自氧化锌、氧化硅、氧化锡、锌锡氧化物、硅和/或铝氮化物、以及硅和/或铝氧氮化物。

- 至少一个所述涂层,可能两个涂层,由从玻璃表面起按照下列层的顺序的叠层组成:

- 底层或一组底层,所述底层由介电材料组成,

- 基于氧化钛的层,其物理厚度为10至70纳米。

优选地,此类叠层还包含覆盖层或一组覆盖层,所述覆盖层由介电材料组成。

此类叠层优选具有下列特性:

- 该底层的整体光学厚度为30至90纳米,更优选40至70纳米。

- 该覆盖层的整体光学厚度为7至30纳米,更优选10至20纳米。

- 在玻璃表面与基于氧化钛的层之间,该窗玻璃包含两个底层,包括一个基于氧化硅的层,其物理厚度优选为10至20纳米,以及一个基于氮化硅的层,其物理厚度优选为15至25纳米。

- 在玻璃表面与基于氧化钛的层之间,该窗玻璃包含基于氮化硅的单个底层,其物理厚度优选为15至35纳米。

- 该窗玻璃在基于氧化钛的层上方包含连续的基于氧化硅的覆盖层,优选具有5至10纳米的物理厚度,和基于氧化钛的覆盖层,优选具有1至3纳米的厚度。

- 至少一个所述涂层,或甚至两个涂层,由单个基于氧化钛的层组成,优选通过热解沉积。

- 该窗玻璃在该基板的第一面上包含通过CVD,特别是通过热解沉积的第一涂层,和在该基板的第二面上包含通过真空沉积技术,特别是阴极溅射技术沉积的第二涂层。特别地,根据该实施方案,通过热解沉积的涂层是基于氧化钛的层,通过真空沉积技术沉积的涂层是由从玻璃表面起连续的下列层所组成的叠层:

- 底层或一组底层,所述底层由介电材料组成,

- 基于氧化钛的层,其物理厚度为10至70纳米。

优选地,此类叠层还包含覆盖层或一组覆盖层,所述覆盖层由介电材料组成。

当然,如前所述的此类叠层的优选实施方案适用于该实施方式。

- 根据另一实施方式,该窗玻璃在其各个面上包含通过真空技术沉积的涂层,所述涂层由从玻璃表面起连续的下列层所组成:

- 底层或一组底层,所述底层由介电材料组成,

- 基于氧化钛的层,其物理厚度为10至70纳米。

优选地,此类叠层还包含覆盖层或一组覆盖层,所述覆盖层由介电材料组成。根据另一替代方案,至少一个通过真空技术沉积的涂层,或甚至两个涂层,可以由单个基于氧化钛的层组成。

当然,如前所述的此类叠层的优选实施方案适用于该实施方式。

- 至少一个基于氧化钛的层还包含元素X,所述元素X选自硅、锆、铌和钽,所述层中的整体X/Ti原子比为0.01至0.25,Ti和X,代表至少Si和Ti,占除氧之外的原子的至少90%,优选至少95%,或甚至至少97%,或甚至所有除氧之外的原子。根据此类实施方案,X非常优选为Si。

根据其中X为硅的此类实施方案:

- 根据第一实施方式,所述Si/Ti比在基于氧化钛的层的整个厚度内是均匀的。

- 根据另一实施方案,不同于前一个,基于氧化钛的层包含连续的层,其中Si/Ti比为0至0.20。

- 该层中的整体Si/Ti原子比为0.05至0.20,更优选为0.05至0.15。

- 根据一个替代或补充实施方案,所述涂层中至少一个基于氧化钛的层,或所有基于氧化钛的层,基本上由钛和氧组成。

- 所述基于氧化钛的层特别包含小于1摩尔%的除钛和氧之外的元素。

- 各涂层中基于氧化钛的层的厚度为20至60纳米,优选30至55纳米。

- 在该窗玻璃的各个面上的光反射大于30%。

- 该窗玻璃的日光因子小于60%,优选该日光因子小于55%。

- 该窗玻璃的透光率为45%至60%。

- 该窗玻璃已经经受弯曲、回火和/或退火类型的热处理。

根据本发明,该叠层的介电材料制成的覆盖层或底层,特别是基于硅的那些,特别是基于氧化硅、氮化硅或氧氮化硅的那些,还可以含有与硅相比次要的金属,例如铝,例如相对于硅最多10摩尔%。这特别可用于促进通过反应性磁控管阴极溅射来沉积该层,其中通过“掺杂”铝令硅靶更导电。对本发明而言,因此对于由介电材料制成的覆盖层或底层更通常期望基本由所述材料组成,但是不排除存在其它元素,特别是其它阳离子,但是以非常微小的量,特别是为了促进通过所用方法(最特别为磁控管阴极溅射)沉积该层。

除非另行说明,本申请中描述的所有厚度均为实际厚度。对本发明而言,术语“光学厚度”通常意在指其实际(物理)厚度乘以其折射率的乘积。由此,50纳米Si3N4的光学厚度,其折射率为大约2.0,对应于所述材料的25纳米(物理厚度)的沉积。

本发明的一个主题是“单片”玻璃窗(即由单一基板组成)或双层玻璃窗或甚至三层玻璃窗类型的绝热多层玻璃窗,其组件(片材)的至少一个是本发明的窗玻璃。

本发明更特别聚焦的窗玻璃具有大约40%至60%、特别是45%至60%的TL,以及在TL值附近——在5%之内——的通过日光因子量度的能量传输。它们还优选具有相对中性的着色,在外部反射中具有可能蓝色或绿色的颜色(在不带有层的基板一侧上),特别是在(L*, a*, b*)国际比色法系统中具有负的a*和b*值(在任何可能的热处理之前和之后)。由此,获得建筑行业中所需的在反射中富有吸引力但并非非常强烈的颜色。

对本说明书而言,根据标准NF EN410(2011版)中报道的数据来测量本发明的光学和能量参数。

本发明的一个主题还是用漆或搪瓷类型的涂层至少部分不透明化的层状基板,用于制造拱肩面板,其中该不透明涂层可以与已经涂覆有该叠层的基板面直接接触。因此该叠层对该可视窗玻璃和对该拱肩面板可以完全相同。已经带有薄层叠层并且在其上能够根据常规技术沉积搪瓷组合物而不会在该叠层中出现光学缺陷并具有非常有限的光学变化,特别是不会出现雾度的基板面根据本发明尤其被视为“可搪瓷化”。这也意味着该叠层具有令人满意的耐久性,与该搪瓷接触的叠层在烘烤时或一旦装配窗玻璃后随时间推移而不具有任何不合意的劣化。

尽管本申请更特别预期的应用是用于建筑物(包括住宅建筑物)的窗玻璃,显然可以设想其它应用,特别是用于车辆窗户(除其中需要非常高的透光率的挡风玻璃外),如侧窗、天窗或后窗,或者烤箱门。

借助下面的非限制性实施例描述本发明的优点,所述实施例是本发明的实施例和对比例。

所有基板由Saint-Gobain Glass France公司销售的6毫米厚的Planilux类型透明玻璃制成。

所有层通过热解或通过公知的磁控管阴极溅射技术沉积。

更具体地:

- 基于氧化钛的层通过热解沉积(在离开浮法浴的热玻璃表面上喷涂有机金属钛前体)或使用钛-基金属靶沉积(该靶在氧化性气氛中喷涂),

- 氮化硅层使用包含8重量%的铝的金属硅靶沉积,在含有氮的反应性气氛(40% Ar和60% N2)中喷涂。该氮化硅层因此还含有少量的铝,

- 氧化硅层使用具有与前述靶相同组成的金属硅靶沉积,但是根据本领域中公知的技术,这次在氧化性反应气氛中喷涂。

实施例1(现有技术):

在根据申请WO 2007/028913的教导获得的该实施例中,由氮化硅的底层、钛氧化物TiOx层和SiO2的覆盖层组成的叠层如前所述通过磁控管阴极溅射技术沉积在该玻璃基板的一个面上。

具有其叠层的窗玻璃示意性地由以下次序表示:

玻璃 / SiNx (23纳米)/TiOx(30纳米)/SiO2 (7纳米)。

实施例2(对比):

在该对比例中,具有与实施例1所述相同性质的叠层沉积在相同的基板上,唯一的差别在于调节设备以使得TiOx层为两倍厚(60纳米)。

具有其叠层的窗玻璃示意性地由以下次序表示:

玻璃 / SiNx (23纳米)/TiOx(60纳米)/SiO2 (7纳米)。

实施例3(对比):

在该对比例中,具有与实施例1所述相同性质的叠层沉积在相同的基板上,唯一的差别在于沉积的TiOx层甚至更厚,以达到等于70纳米的厚度。

具有其叠层的窗玻璃示意性地由以下次序表示:

玻璃 / SiNx (23纳米)/TiOx(70纳米)/SiO2 (7纳米)。

实施例4(本发明)

在本发明的该实施例中,通过真空阴极溅射技术在具有相同类型的玻璃基板上沉积类似于实施例1所述的叠层。另一面此时具有氧化钛的热解涂层,所述氧化钛的热解涂层根据本领域中的标准技术预先沉积在离开浮法浴的热玻璃带上。

在其各个面上具有这两种涂层的窗玻璃示意性地由以下次序表示:

TiO2热解(30纳米)/玻璃 / SiNx (23纳米)/TiOx(30纳米)/SiO2 (7纳米)。

参照实施例1,根据实施例2和3,超厚度的TiO2沉积在该叠层中以便改进该窗玻璃的防晒性能。或者,根据本发明的实施例4,将相同的附加量的TiO2加入到实施例1的窗玻璃中,但是在该窗玻璃的另一面上而非在叠层中。

根据标准NF EN410(2011)按照以下标准测量由此如实施例1至4所述获得的各种窗玻璃的光学性质和色度:

- 透光率TL:根据光源D65以%形式的透光率,

- 光反射玻璃侧:(RLv)以%形式,

- a*(Rv), b*(Rv):根据L*,a*,b*比色系统在外部反射中的比色坐标,

- 光反射层侧:(RLc)以%形式,

- a*(Rc), b*(Rc):根据L*,a*,b*比色系统在外部反射中的比色坐标,

- 日光因子SF(%),以%形式,其量度进入该楼宇的总能量对入射太阳能的比。

表1中报道的结果显示了三个实施例的窗玻璃的光和能量性能。

实施例1至3的比较并显示,在玻璃基板的单个面上存在的叠层中氧化钛层厚度的提高不会对该窗玻璃的绝热性质带来任何改进,如表1中报道的日光因子值所显示的那样。

相反,沉积符合实施例2的层厚度的氧化钛层但这次在该玻璃基板的另一面上(本发明的实施例4),这一次在该窗玻璃的能量隔绝性质方面带来了显著的改进,同时保持透光率大于50%。

随后对上述叠层施以与在先申请WO 2007/028913中所述相同的热处理,包括在620℃下加热10分钟,接着空气回火。

以下列方式定义色度变化ΔE*:

ΔE* =(ΔL*² + Δa*2 + Δb*2)1/2,ΔL*、Δa*和Δb*是热处理之前和之后L*、a*和b*的测量值的差值。

热处理之前和之后的ΔE*为大约或接近1%,并且所有窗玻璃保持其防晒性质不变,如通过SF因子测量的那样。从审美的角度来看,它们还被完美地校准,最特别在外部反射中,其中a*和b*接近于零或略微为负值,提供了对具有高外部反射的窗玻璃而言可接受的非常中性或略微蓝-绿的颜色。所有测得的值在热处理的影响下变化非常微弱:该TL和SF值保持在大约1%以内,比色数据变化极小,在外部反射中不存在由一种色调向另一种色调的摇摆。在三种窗玻璃上没有观察到微裂纹或气孔类型的光学缺陷。

实施例5至10(本发明)

在这些实施例中,通过真空阴极溅射技术在玻璃基板Planilux®的各个面上沉积单一氧化钛层作为涂层。对各实施例,沉积不同的厚度,如下表2中所报道的那样。

具有两层氧化钛的窗玻璃示意性地由以下次序表示:

TiOx(x1纳米)/玻璃 / TiOx(x2纳米)。

如前所述测量获得的不同窗玻璃的光和能量特性,并报道在下表2中:

表2。

表2中报道的结果表明,通过应用本发明,日光因子可以达到低得多的值,并且与根据现有技术配置(前述实施例1)观察到的最佳性能相比特别可以降低13%(绝对值),这对所需应用来说是完全重要的。因此,在任何情况下,对本发明的窗玻璃所注意到的能量性能大于根据申请WO 2007/028913的教导所获得的能量性能,该透光率保持在对特别用于建筑行业或用作侧窗而言可接受的水平。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1