加工温度小于等于420℃的碲酸盐接合玻璃的制作方法

文档序号:11527890阅读:339来源:国知局
本发明涉及一种玻璃,特别是用于接合在加工温度≤420℃下制造真空绝缘玻璃的玻璃板的玻璃,本发明还涉及相应的复合玻璃和相应的玻璃浆料。此外,本发明涉及使用根据本发明的玻璃浆料制造的真空绝缘玻璃及其制造方法,以及本发明的玻璃和/或复合玻璃和玻璃浆料的用途。现有技术用于连接由玻璃、陶瓷和金属部件制成的物体的玻璃是具有特别低的软化温度的玻璃。它们也被称为玻璃焊料或接合玻璃。术语“接合”应理解为是指通过适当的工艺(熔接、轧制、焊接等)正确接触或连接的工件。在现有技术中全面地描述了玻璃焊料或接合玻璃。接合玻璃特别用于半导体领域、高温燃料电池或太阳能电池应用中。相比之下,在真空绝缘玻璃板的制造中使用接合玻璃迄今为止很少被描述。真空绝缘玻璃是已知的并且是已经可商购的。在真空绝缘玻璃中,两个单独的板之间的中间空间被抽真空。相比之下,在常规绝缘玻璃中,玻璃板之间的中间空间通常填充有惰性气体。此外,由于没有对流,在真空绝缘玻璃中两个单独的玻璃板之间的中间空间明显更小。单独的板通常通过所谓的间隔件彼此保持一定距离,所述间隔件布置成像分布在玻璃表面上的网格,以防止外部空气压力压缩两个单独的板,并且单独的板通过边缘密封件沿整个圆周彼此连接。通常,通过将间隔件放置在第一单独的玻璃板上并固定它们,然后放置第二单独的玻璃板来制造真空绝缘玻璃板。第二单独的玻璃板在其边缘上包括具有用于随后抽空的抽空插口的钻孔。两个玻璃板沿着它们的边缘连接,例如通过玻璃焊料连接。含碲玻璃不仅用作纤维材料和用于太阳能电池的导电接触浆料,而且用作所谓wdm(波分复用)中的er掺杂光纤放大器中的光学放大器。相比之下,它们在焊料玻璃和接合玻璃的领域中基本上是未知的。特别地,它们没有被描述用于制造真空绝缘玻璃。碲玻璃家族在玻璃形成和低熔融温度方面具有优异的性能,这是其他常规玻璃不能实现的。us5,188,990描述了用于半导体应用的碲-钒酸盐玻璃(所谓的cer-dip封装)。接合伴侣是陶瓷:氧化铝。玻璃组合物基本上由teo2和v2o5以及选自由nb2o5、zro2、zno、bi2o3、cuo、p2o5和ta2o5组成的组的氧化物以及至多10%的锌、镉、钡、钨、钼和钛的氧化物组成。此外,该专利所述的玻璃不包含氧化铝,并且膨胀系数在14-18×10-6/k的范围内。高膨胀系数对于玻璃/玻璃接合的应用是不利的,因为它需要使用较高的填充剂含量。此外,这里使用的填充剂(包括五氧化二铌)是不利的。没有研究玻璃/玻璃接合。guardian的国际专利申请wo2013/043340a1描述了用于制造真空中空玻璃板的高含钒的接合玻璃。主要组分是氧化钒、氧化钡和氧化锌。在该专利中使用的玻璃具有非常高的钒含量(在50-60wt%的范围内),并且不含或含有非常少量的氧化碲。这些玻璃化学上较不耐受并且更易于结晶。f.wang等人在materialsletters67,196-198(2012)中描述的v2o5-b2o3-teo2玻璃与本发明的不同之处在于它们的氧化硼含量。本发明包括无氧化硼的玻璃。此外,该研究证明来自系统的玻璃在一定程度上具有显着的结晶倾向(低于420℃)。us8,551,368b2描述了用于太阳能电池接触浆料中的含碲玻璃。在该专利中所述的浆料包含银作为主要组分,还包含玻璃料和有机基质,由此玻璃料包含氧化碲作为网络形成组分,以及进一步的包含氧化钨和氧化钼。目前所述的玻璃通过其氧化钨(wo3)的含量和不存在五氧化二钒在化学上不同。us2010/0180934a1描述了用于电子元件的具有低软化点的玻璃组合物,其基本上不含铅、铋和锑。氧化钒含量为40-65重量%,碲含量为相对较低的20-30重量%。cn101164942a公开了一种由氧化碲和氧化钒制成的无铅碲酸盐玻璃,其中可以存在少量的氧化锌或氧化铝。us2014/008587a1描述了一种导电浆料,其包含相对于氧化物以35-70mol%的量包含碲作为网络形成组分的玻璃料。此外,银相对于氧化物以3-40mol%的量存在,并且也可以存在钨和钼。该专利没有具体提及氧化钒的添加。jp2004356394a描述了一种密封材料,其包含玻璃组分,玻璃组分除了五氧化二钒和二氧化碲之外可含有至多10%的氧化锌和少量的氧化铝。现有技术的真空绝缘玻璃板的制造方法受到某些限制。一个特别的缺点在一定程度上是非常高的接合温度。目前,仅使用高含铅的接合玻璃才能达到小于420℃的接合温度,高含铅的接合玻璃的耐化学性被认为是不足够的,并且由于环境原因阻碍了全球市场的推出。含铋的玻璃在应用中失败,因为这些玻璃对结晶非常敏感,并且在420℃以上开始软化。此外,通过添加填充剂,玻璃的流动性受到强烈的损害,这降低了玻璃的复合材料的润湿性。发明目的本发明的目的是设计一种接合材料,其能够在≤420℃,优选≤400℃的温度下接合用于制造真空绝缘玻璃的玻璃板。此外,接合材料应该不含铅。技术实现要素:本发明的目的通过提供一种玻璃,特别是接合玻璃来实现,该玻璃包括以mol%为单位计的以下组分:v2o55-58mol%,teo240-90mol%,和选自以下的至少一种氧化物:或它们的组合。优选地,所述玻璃包括以mol%为单位计的以下组分:v2o55-37mol%,teo240-70mol%,和选自以下的至少一种氧化物:或他们的组合。此外,玻璃优选包含以mol%为单位的以下组分:v2o55-35mol%,teo240-70mol%,和选自以下的至少一种氧化物或他们的组合。作为真空绝缘玻璃板的焊料的接合玻璃/复合材料的要求简况如下:·接合温度≤420℃·复合玻璃(接合玻璃+填充剂)的热膨胀系数在7.0-8.5×10-6/k范围内·与标准填充剂堇青石(eg0225)、β锂霞石(eukryptite)的相容性:范围为1-25wt%·玻璃开始软化温度>300℃(开始软化温度>300℃是必须的,以确保使用标准介质从玻璃中充分烧尽粘合剂)·粉末形式的玻璃在300-420℃的范围内不结晶·耐水性,在水中的溶解度低·玻璃在浮法玻璃上的良好粘合(在浴侧和空气侧),·玻璃与标准溶剂bdg、dpm的兼容性·暴露于空气时的可加工性·通过快速加热升温和冷却降温的可加工性·无铅,无镉·提供密封、低张力玻璃/玻璃复合材料·通过点胶、数字印刷技术、丝网印刷等进行工业加工是可行的由于低的接合温度,即使热预张紧的玻璃板也可以接合而不失去它们的预张力。相对低的接合温度还允许处理涂覆的浮法玻璃,而不损害玻璃的涂层(低e)。这使得更简单的设计更容易,因为通过使用更薄的板可以节省重量。也可以想到在导电玻璃浆料(太阳能电池应用)领域中的其它应用,如作为汽车玻璃涂料诸如银母线遮盖(silverbasbarhiding)的添加剂。优选地,玻璃组合物包含zno和al2o3的混合物。然而,如果仅存在氧化锌或氧化铝中的一种组分也是有利的:因此,以下玻璃组合物是优选的:v2o56-33mol%,teo242-57mol%,和选自以下的至少一种氧化物:zno38-52mol%,或al2o36-25mol%,或它们的组合。以下玻璃组合物是特别优选的:v2o532.7mol%,teo256.3mol%,和al2o311.0mol%。除v2o5和teo2之外,如果使用1-10mol%的氧化钼和/或氧化钨,也是优选的。玻璃优选具有在260-380℃范围内的玻璃化转变温度(tg)。此外,还显而易见的是,用至多20wt%,优选至多10wt%的氧化铝(al2o3)颗粒掺杂到玻璃中,对于玻璃基质中含al晶体的进一步晶体增长具有有益效果。同样,用氧化物,诸如cr2o3、fe2o3、ga2o3或zno掺杂或用掺杂有上述氧化物的氧化铝(al2o3)颗粒掺杂具有有益的效果。关于掺杂,显然优选使用氧化铝的刚玉结构。但是,也可以使用氧化铝的其它修饰,例如γ-,δ-,κ-,ρ-al2o3。al2o3的平均粒径(d50)为5-90微米。优选的范围是5-20微米。除了氧化铝和上述其它氧化物之外,也可以考虑使用其他材料,例如莫来石(3al2o3.2sio2)、锌尖晶石(zno.al2o3)或al(oh)3,例如勃姆石、三羟铝石和三水铝石。根据本发明的玻璃还可以包含第二玻璃。尽管上面提到优选使用无铅玻璃,特别是用于真空绝缘玻璃,但是可以想到含铅玻璃也可以作为用于其它应用的第二玻璃。因此,第二玻璃是另一种te-玻璃或v-玻璃或bi-玻璃或zn-玻璃或ba-玻璃或碱-ti-硅酸盐玻璃或铅玻璃或其组合。本发明的另一方面是复合玻璃,其包含除了根据本发明的玻璃之外的填充剂。所述填充剂的量在1-25wt%的范围内,并且其优选具有5-30微米的平均粒径(d50)。粒径优选为10-25微米,最优选为20微米。可以使用两种或更多种粒径分布(粗:d50=15-25微米,和细:d50=1-10微米)的混合物,以获得所述优选范围。填充剂选自磷酸氧锆、二正磷酸二锆(dizirconiumdiorthophosphates)、钨酸锆、钒酸锆、zr2(wo4)(po4)2、磷酸铝、堇青石、锂霞石、热液石英、(hf,zr)(v,p)2o7、nazr(po4)3、碱土金属磷酸锆、如(mg,ca,ba,sr)zr4p5o24,它们单独或组合使用。优选用量在20-25wt%范围内的填充剂。在本文中应当注意,可以通过填充剂的添加量以特定的方式控制热膨胀系数,如图1所示。这在下面使用示例性的玻璃b的实例更详细地说明。此外,本发明的一个主题是通过丝网印刷介质由根据本发明的玻璃或根据本发明的复合玻璃制造的玻璃浆料。优选地,玻璃浆料包含粘合剂。为此目的优选使用聚碳酸亚丙酯。本发明的另一主题是一种用于制造真空绝缘玻璃的方法。在目前所示的方法中,根据本发明的玻璃焊料以浆料的形式使用,但这仅仅是出于示例性原因而示出的。此外,玻璃焊料本身和/或复合材料可用于制造真空绝缘玻璃。该方法的特征在于以下步骤:-将根据权利要求15-16所述的玻璃浆料施加到玻璃基材上;-以130℃的温度干燥在玻璃基材上的浆料10分钟;-将所述玻璃基材加热至300℃的温度30-60分钟;-烧制到325-390℃的接合温度1-5分钟;-冷却至室温;-施加第二玻璃基材;-烧制到325-390℃的接合温度10-15分钟;和-冷却至室温。烧制可涉及各种加热工艺,例如宽带ir或可见光加热、激光加热、感应加热或微波加热。本发明的另一主题是通过上述方法制造的真空绝缘玻璃。根据本发明的玻璃焊料、根据本发明的复合玻璃和根据本发明的玻璃浆料用作接合材料,接合材料用于制造真空绝缘玻璃的玻璃板。此外,如上所述,根据本发明的玻璃和/或根据本发明的复合玻璃可以作为混合物添加到另一碱性流体中,例如,含铋的玻璃料,以便降低熔点。此外,根据本发明的玻璃焊料、根据本发明的复合玻璃和根据本发明的玻璃浆料可以用作太阳能电池应用的接合材料,例如封装基于硅和/或硅-有机系统和薄层的太阳能电池,封装其他用于窗户的电子设备,例如有机led(oled),以及用作汽车玻璃和汽车玻璃涂料的添加剂。也可以想到根据本发明的玻璃焊料、根据本发明的复合玻璃和根据本发明的玻璃浆料用作用于微机电系统(mems)的接合应用的接合材料。此外,也可以想到它们用作传感器的低温接合材料或在厚层应用中的用途,特别是作为用于导电浆料的助烧结剂和作为面釉浆料。以下原料可用于制造接合玻璃:·氧化碲粉末75-80%,d50=3-10微米·五氧化二钒v2o595-99%:无钒酸铵·煅烧氧化铝(技术质量)·氧化锌99.9%(技术质量)·氧化钼(技术质量)·氧化钨(技术质量)将原料在行星式混合器、叶片式混合器等中充分混合,并在电炉中,在650-750℃的空气中在由折射材料制成的陶瓷坩埚中熔融。需要低熔点温度以防止teo2蒸发。需要氧化熔融程序,但没有o2鼓泡。淬火可以在水中或可选地在水冷辊上进行。玻璃呈淡红色、棕黑色。由于玻璃的低粘度,玻璃在辊上的淬火不是轻而易举的。在这种情况下,建议在大约650℃的温度下铸造。为了防止玻璃的随后的再熔合,推荐使用双旋转辊。随后,使用球磨机、喷射式粉碎机等将淬过火的玻璃料研磨至粒度d90≤60微米。可选地通过在研磨过程中或在最终的混合步骤中添加陶瓷填充剂来调节热膨胀系数(tec)。对于玻璃制造,使用三辊研磨机和丝网印刷介质801022或801026将玻璃加工成浆料。优选地,可以使用由聚碳酸亚丙酯(例如qpac40粘合剂,来自empowermaterials,美国)制成的粘合剂处理玻璃。所述粘合剂的优点在于其已经在250-300℃范围内的温度下分解,这确保没有碳残留物保持封闭在接合玻璃中。然后通过点胶机将玻璃施加到玻璃基板上:h=0.3-0.5毫米,b=4-6毫米,并且在130℃下将浆料和浮法玻璃干燥10分钟。理想地,将玻璃焊料涂覆的浮法玻璃板在炉中加热至300℃的温度并在该温度下保持30-60分钟,然后烧制至325-390℃的接合温度,在该温度保持1-5分钟,再次冷却至室温。在第二处理步骤中,第二浮法玻璃板可以放置在预涂覆的浮法玻璃板上,并且可以通过夹具机械地固定。板之间的间隔件提供均匀的焊料高度。在随后的烧制循环中,将复合材料直接加热至325-390℃的接合温度,并在该温度下保持10-15分钟。最后,将复合材料再次冷却至室温。因为粘结剂预先在300℃烧掉,该步骤确保复合材料基本上没有孔。下面基于实施例描述本发明,这些实施例不以任何形式或方式限制本发明。示例性实施方式表1:示出玻璃的化学组分和物理特性组分[mol%]abcdefgteo249.356.354.444.242.660.657.5v2o511.232.727.310.96.730.436.1zno39.538.650.7al2o311.018.36.36.4wo39dsctg[℃]327298302322373272270软化点[℃]380337334394417311302tma-热膨胀系数50_250[10-6/k]1212.812.112.412.950_200[10-6/k]12.312.311.912.112.514.513.5图1示出可变地调节玻璃的膨胀系数(tec)是可行的。在这种情况下的特殊特征是,玻璃容许高填充剂含量而不降低润湿性能。虽然含高铋的玻璃的流动性在填充剂含量为5wt%时已经明显降低,但是目前所述的玻璃很容易地允许获得小于8×10-6/k的膨胀系数,而没有任何润湿性的损失。沸水中的耐化学性:将2g样品,实例b(d50约6微米,d90<50微米)称量到50毫升容量瓶中,将完全去离子水加到标记处,并将其均匀化。随后,将容量瓶在加热浴中暴露于98±0.5℃的温度60分钟。在冷却、重新均匀化、补充至标记和沉降期(20分钟)后,将样品通过0.45微米过滤器过滤。在水中的溶解度[%]=0.4。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1