具有改善的烧结活性和高边缘强度的α/β‑赛隆的制作方法

文档序号:11631793阅读:201来源:国知局
本发明涉及基于α/β-赛隆的材料。本发明尤其涉及基于α/β-赛隆的材料,其具有改进的烧结活性和由该材料制成的烧结成型体的高边缘强度。由现有技术已知由α/β-赛隆构成的烧结成型体,特别是用作切削工具,例如刀片的烧结成型体。α-赛隆和β-赛隆的混合物能够制备烧结成型体,由于粒状的α-赛隆,该成型体一方面具有高硬度。然而,另一方面,由于针状的β-赛隆,该烧结成型体也具有好的韧性。对于作为切削工具的用途而言,除了足够的硬度和韧性之外,还要求该材料也是耐热的,因为在切削尤其是灰口铸铁或镍基合金(超合金)时和在此特别在连续切削中,可能在局部发生切削工具的非常强烈的加热。然而,许多氧化烧结助剂,它们在材料烧结之后基本上存在于玻璃相中,仅具有相对小的耐热性和小的导热性。因此,发生局部快速过热,和玻璃相软化。此外,由于温度影响,可能会发生其它组分的氧化,这可能导致切削工具的过早失效,例如由于从切削边缘开始的剥落、突然增加的磨损或其它组分(si3n4、赛隆或tin)的氧化。如果该切削工具用于断续切削中,则温度比连续切削中低。刀片不与工件持续接触,因此可以反复稍微冷却。然而,在断续切削时,断裂韧性和边缘稳定性应相对较高,因为机械应力远大于连续切削时。最终密度大于理论最终密度的99%的α/β-赛隆目前在高于1750℃的温度和同时升高的氮气分压下烧结,或者用大量氧化添加剂无压致密化。在升高的氮气分压下的烧结需要封闭的炉体系和,与无压烧结的赛隆相比,更多的能量和气体(氮气)。由于这些原因,例如在低于1750℃的温度下在氮气流下的无压致密化原则上比气压烧结更经济。然而,由于氧化添加剂的种类和数量决定了赛隆陶瓷的高温性能,因此在高温应用中,例如在切削灰口铸铁时,与气压烧结的赛隆相比,在无压致密化的赛隆的情况中观察到增加的磨损。因此,本发明的目的在于,提供在高温下也耐磨损并且仍然可经济地制造的赛隆陶瓷。此外,意在提供制造该赛隆陶瓷的方法。所述目的通过适当的添加剂体系得以实现,该体系一方面确保了无压烧结情况下足够的致密化,另一方面确保不会极大提高该体系中的氧含量。由此,可将无压烧结的赛隆的磨损性能提高到气压烧结的水平,或者可进一步改善气压烧结赛隆的性质。令人惊讶地已证实,所述目的可以借助添加元素的钛的氧化物,特别是二氧化钛(tio2)作为烧结助剂得以实现。在氮气气氛下烧结时,二氧化钛基本上完全,即至少95%,转化成tin。事实上,所述目的的解决方案可以被认为是令人惊讶的,因为根据petzow&herrmann(高性能非氧化物陶瓷ii,47-167(2002)),赛隆陶瓷在烧结条件下的烧结添加剂应该是稳定的氧化物,其不导致si3n4分解形成添加剂氮化物和sio2。在这方面,明确举出tio2为负面实例,参见,例如,第81页。特别优选以0.1-3重量%的量来添加元素钛的氧化物。特别优选使用tio2作为烧结添加剂。除了所提及的烧结添加剂而外,在用于由具有晶界相(其包含至少一种原位形成的硬质材料)的α/β-赛隆制造烧结成型体的根据本发明的方法中还使用至少包含以下化合物的起始材料:α-si3n4、aln和任选的al2o3以及至少一种另外的选自下述的烧结添加剂:元素稀土(不包含钷的镧系)、钇、钪、锂、铍的含氧和/或含氮的化合物;元素锆和/或铪的含氮化合物;以及元素镁、钙、锶的化合物。优选的是元素镱、铒、镝、钇、钪,铈的氧化物;元素镁、钙的氧化物、氢氧化物和/或碳酸盐以及元素锆和铪的氮化物。特别优选的是元素镱、铈、钇的氧化物和/或元素镁和钙的碳酸盐。如果基本上以氮化铝(aln)的形式,优选以大于4:1,优选大于10:1,特别优选大于50:1的重量比aln:al2o3添加赛隆所需的铝,则tio2作为烧结添加剂的用途令人惊奇地是可行的。实验已表明,如果aln/al2o3的比例小于4:1,则α-赛隆不足够稳定。此外,晶界相中的氧含量增加,这不利影响烧结成型体的高温特性。通过添加tio2和aln,使系统中的共晶点向较低温度移动。形成共晶熔融相。该熔融相此外能够减少明确的添加剂含量,并在无压烧结的情况下也仍然实现足够的致密化。用tio2作为烧结添加剂制备的陶瓷零件(bauteile)比用常规烧结添加剂(例如更大量的aln、caco3或稀土的氧化物)致密化的零件显示出较少的变形和更好的致密化。α-si3n4原料在致密化工艺(烧结)期间溶解在上述熔融相中。在超过溶解度极限时,形成细长的β-赛隆针和通过稀土稳定化的球状α-赛隆晶粒。在这个过程中,所添加的aln的al3+离子代替si4+离子被引入到si3n4晶格中。在β-赛隆的情况下,由于电中性的原因,对于每个引入的al3+而言,一个n3-离子必须被一个o2-离子替代。在α-赛隆的情况下,除了al3+离子而外,将大的阳离子(大都为see3+离子)引入到晶格中,以稳定α-赛隆改性。这里,电荷平衡同样通过引入o2-离子来进行。通过将n3-置换成o2-,提高了熔体中n3-离子的浓度,并降低了o2-离子的浓度。由于含氮晶界相提高了粘度和软化温度,因此这导致烧结成型体的耐热性提高。烧结期间,氧化的钛烧结添加剂至少部分地,优选多于95%,转化成氮化的硬质材料,由此该烧结成型体含有原位形成的硬质材料。如果例如添加tio2作为烧结添加剂,则在烧结成型体中形成硬质材料tin,借助x射线衍射不再能检测到tio2。在烧结成型体中,没有引入到赛隆晶体结构中和/或转化成硬质材料的剩余的烧结助剂以无定形和/或部分结晶的晶界相的形式存在。工业陶瓷,特别是在磨损应用的情况下(如在切削材料的情况中)的另一个重要特性是抗剥落的边缘强度rea。边缘强度主要按照dincen/ts843-9:2010-11-01的方法a来测定。与dincen/ts843-9:2010-11-01的不同在于,一方面使用了精度为所显示的力的2.5%的试验机,另一方面,样品没有用夹持装置保持在不变的位置,而是自由运动地来试验,直至边缘止挡。为了确定边缘强度,使用几何形状为snmx120716t02020的可转位刀片。用于确定边缘强度的压痕在可转位刀片的表面,所谓的切削面上进行。该可转位刀片的周边不经过硬处理,即,在所谓的烧制状态(fired-zustand)下。在确定剥落力之后,在光学显微镜下测量该可转位刀片的周边到所使用的具有洛克威尔几何形状的金刚石的压痕的最短距离。边缘强度越高,在相同切削深度和相同进刀的条件下可以选择的切削速度越高。这对于断续切削尤其如此,因为这里切削陶瓷在边缘稳定性方面反复负荷。因此,根据本发明的一个特别优选的扩展方案,该烧结成型体具有至少600n/mm的边缘强度。优选地,根据本发明的烧结成型体的边缘强度在650-2000n/mm的范围内,特别优选在900-1300n/mm的范围内。根据本发明的烧结成型体可以由以下起始物质来制备:70至96重量%的si3n4,3至15重量%的至少一种稀土氧化物或y2o3,1至15重量%的铝化合物,包括aln和任选的al2o3,以及0.1至3重量%的钛氧化物,优选tio2。其他添加剂也是可能的,例如硬质材料如tin、sic等,或其它氧化添加剂如mgo、caco3、li2o等。然而,起始物质的总和始终为100重量%。本发明的一个特别优选的实施方式具有由78至95重量%的si3n4,2至8重量%的aln,0至1.2重量%的al2o3,2.5至6.5重量%的y2o3或3.3至12重量%的yb2o3构成起始物质或由0.08至0.22重量%的caco3和0.25至2.0重量%的tio2两者构成的相应的混合物,其中起始物质的总和为100重量%。如上所述,由起始材料成形的生坯可以无压烧结或气压烧结。如果将该生坯无压烧结,则本发明的优点在于,可以通过添加元素钛的氧化物来提高烧结活性,并因此提高烧结成型体的最终密度,而不必增加所添加的烧结添加剂的绝对量。由此,可将无压烧结的变体的性能提高到气压烧结变体的性能水平,但成本低得多。如果气压烧结该生坯,则本发明的优点在于,可以改善在高的应用温度下的陶瓷的磨损性能,特别是耐氧化性。这种改善是可能的,因为需要较少量的烧结添加剂用于该陶瓷的致密化,这又导致易氧化的晶界相的量减少。所描述的烧结成型体特别优选作为切削工具,特别是作为刀片,作为磨损部件,例如作为焊接辊、焊接定心销,用于轴承的部件(滚柱轴承或滚珠轴承),排气系统中的部件(排气阀)、阀门或废气涡轮增压器来使用。在下文中,借助与常规组成的烧结成型体相比较的实施例来更详细地解释本发明。将起始材料,参见表1,混合并制成成型体生坯。在流动的氮气下,将成型体在1725℃下无压烧结约2小时。表1起始材料实施例a(对比实施例)实施例b(根据本发明的)实施例c(根据本发明的)si3n4(重量%)84–9382–9275–88al2o3(重量%)0–1.20–1.20–1.2aln(重量%)3–83–83–8er2o3(重量%)--------0–1.2--------y2o3(重量%)4.5–6.5--------0–1.2yb2o3(重量%)--------8.5–12.58.5–12.5caco3(重量%)0.08–0.220.08–0.220.08–0.22tio2(重量%)--------0.25–20.25–2理论密度的%96.36–97.1399.18–99.9799.34–99.98维卡硬度hv10(gpa)5.516.616.7烧结成型体的烧制表面的α-赛隆比例(体积%)777586烧结成型体内部中的α-赛隆比例(体积%)645554断裂韧性(palmquist)klc(gpa*m0.5)不能评价,因为残留孔隙率高,不可识别裂纹6.66.5边缘强度rea(n/mm)不能评估,因为零件孔过多并且变形1054.97946.33根据本发明的实施例和对比实施例的区别仅在于组成或所使用的材料。根据本发明的实施例具有tio2成分;相应调整其他组分的量。工艺参数,如成形和烧结条件,在实施例中在其它方面相同。在所有情况中均产生具有晶界相的α/β-赛隆烧结成型体,其在x射线衍射图中除了非晶成分而外还具有结晶成分。根据本发明的实施例的烧结成型体此外还包含原位形成的tin晶粒。在性质方面显示出,根据本发明的实施例具有比对比实施例高约3%的相对密度。在对于维卡硬度hv10和断裂韧性获得的优异结果中也表明了这种高的相对密度。因此,对于根据本发明的烧结成型体而言,维卡硬度hv10为至少10gpa,优选至少15gpa。因此,对于根据本发明的烧结成型体而言,根据palmquist的断裂韧性为至少5mpa*m0.5,优选至少6mpa*m0.5。对于对比实施例a不能确定断裂韧性和边缘强度,因为由于残留孔隙率高,不能明确识别裂纹进展。不能评估边缘强度的实验,因为刀片孔过多并且此外变形。在材料的烧结状态下,烧结体的赛隆相在内部中由10-90体积%,优选20-70体积%,特别优选30-60体积%的α-赛隆的比例,和90-10体积%,优选80-30体积%,特别优选70-40体积%β-赛隆的β-赛隆比例构成。根据x射线衍射图像(根据gazzara和messier,j.am.coream.soc.bull.56(1977))确定α-赛隆和β-赛隆的比例。众所周知地,烧结成型体内部中的材料的组成可以通过工艺参数来改变,例如通过粉末混合物的组成、炉中的烧结条件、坩埚材料、气体类型、温度和烧结时间。在烧结成型体中,在烧结体表面和烧结体内部之间可存在梯度,以至于所谓的烧制表面含有最高100%的α-赛隆。烧结状态下的所述烧结成型体的表面优选具有,基于整个赛隆相计,50-100体积%,优选55-95体积%,特别优选60-90体积%的α-赛隆的比例,和0-50体积%,优选5-45体积%,特别优选10-40体积%的β-赛隆的比例。烧结状态下的所述烧结成型体的表面优选具有比该烧结体内部中的基于整个赛隆相计的α-赛隆的比例高5-65体积%,优选10-55体积%,特别优选15-50体积%的α-赛隆的比例,基于整个赛隆相计。如果烧结体的表面比内部冷却得快,或者该表面由于与周围气氛的反应在其化学组成方面被改变,则可以在一定的条件下产生烧结成型体中的梯度。富α-赛隆的表面产生具有坚韧的芯的硬质外层。因此,除了原位形成的硬质材料之外,还可以进一步增加该烧结成型体在表面上的硬度,而不会减小平面加工和倒角的烧结坯料的高的边缘强度。根据本发明的材料可以涂覆有已知的减少磨损的层,例如,al2o3、tin、tic或ti(c,n),这提高了耐磨损性。图1示出了气压烧结的对比实施例a和根据本发明的如上所述般无压烧结的实施方式b和c的磨损实验的结果。在断续切削灰口铸铁(gjl150)的情况中,对磨损标记的宽度(以毫米为单位)相对于切削长度(以米为单位)做图。该磨损试验在1000m/min的切削速度,0.50毫米/转的进刀和2mm的切削深度下进行。在相同的切削长度下表明,本发明的无压烧结实施方式b和c具有与对比实施例a可比较的或甚至更好的磨损值。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1