双相独立规则分布的双输运通道片状陶瓷膜的制备方法与流程

文档序号:12239741阅读:229来源:国知局
双相独立规则分布的双输运通道片状陶瓷膜的制备方法与流程

本发明涉及无机膜分离技术领域,具体涉及一种双相独立规则分布的双输运通道片状陶瓷膜的制备方法。



背景技术:

无机膜分离技术是一种重要的化工分离技术。利用无机膜的分离功能和催化反应过程耦合,也是反应-分离工程的重要应用领域。离子-电子混合导体陶瓷膜在气体分离和纯化、燃料电池以及反应器方面有非凡的应用前景。特别是两种不同的粉体制备的陶瓷-陶瓷或陶瓷-金属双相膜的开发,提高了膜的电子导电性使无需外部供电的分离和反应过程成为可能。

中国专利CN200710158721.5公开一种不对称双相复合透氧膜的制备方法。该方法将氧离子导体和氧离子-电子混合导体组成的双相复合透氧膜片打磨平整,超声清洗,烘干,保护透氧膜片一面,另一面裸露放到1.0~50%酸性溶液中浸渍,浸渍温度为10~80℃,浸渍10~360小时,形成不对称双相复合透氧膜。但是该方法制备的膜使用的两种材料在膜中是随机分布的。

中国专利CN02124417.0公开一种双相混合导体透氧膜的制备方法,双相膜由氧离子导电相和电子导电相组成,所述氧离子导电相和电子导电相都是钙钛矿,最后形成了具有单一钙钛矿结构的双相混合导体透氧膜。其中氧离子导电相构成其骨架,电子导电相象一根连续的导线贯穿其中。该发明的透氧膜材料具有高透氧能力、高稳定性,可用于从含氧混合气中选择分离氧,还可以用于固体燃料的电极材料。但是该方法制备的膜使用的两种材料在膜中也是随机分布的。

中国专利CN201210076096.0公开一种高透氧率双相致密导体膜材料的制备方法。该方法先将电子导电相双钙钛矿型金属氧化物包覆在离子相萤石型金属氧化物粉体上形成双相粉体颗粒,烧结致密后形成双相相互交织、缠绕并各自形成连续导通的通道透氧膜,并表现出优异的透氧能力,只是制备方法比较繁杂。

中国专利CN201110428338.3公开一种可用于高温CO2气体分离的LSCF/碳酸盐双相膜的制备方法。该方法先将LSCF制备成多孔陶瓷基体,再通过将LSCF多孔陶瓷基体浸渍到熔融的混合碳酸盐盐浴中10~30min,随后将其缓慢取出,冷却后得到LSCF/碳酸盐双相膜。该方法制备的双相膜内两种材料也是独立分布的,但是需要分步制备。

中国专利CN104829231A和CN103601496A涉及萤石-钙钛矿型双相混合导体透氧膜材料及其制备方法。采用萤石型和钙钛矿型两种物相组成为透氧膜材料,将两相粉体按照一定重量百分比混合、研磨,并在一定压力下成型获得坯体,接着焙烧得到双相混合导体透氧膜片。膜具有高透氧量,同时在纯二氧化碳气氛下工作100个小时能够保持稳定透氧量,是一种具有应用潜力的透氧膜。

中国专利CN201510174141.X公开一种耐CO2的高稳定性双相透氧膜材料及其制备方法。采用溶胶-凝胶法制备萤石型Ce0.9Gd0.1O2-δ粉体,固相合成法制备钙钛矿型SrCo0.8Fe0.1Nb0.1O3-δ粉体,按照一定的质量比混合球磨,并在一定的压力下压制成圆片素坯,之后在1200~1250℃烧结8~10h得到双相透氧膜片。本发明制备的双相透氧膜片结构致密,无杂相生成。900℃下,在纯CO2气氛中能长时间稳定运行。

以上双相膜的制备技术无一例外的都是先将两种或多种粉体混合再经成型后烧结而成致密陶瓷膜。这些技术存在或迁移通道长或制备工艺复杂或膜结构不稳定等缺陷,不利于双相无机膜技术的发展。

流延成型方法是一种陶瓷基片的专用成型方法,特别适合成型0.2~3mm厚度的片状陶瓷制品。具有速度快、自动化程度高、效率高、组织结构均匀、产品质量好等诸多优势。湿法纺丝技术是纤维和中空纤维陶瓷的成型方法,不仅具有速度快、效率高的优点,又具有产品结构可调可控的优点。

目前将流延成型和纺丝成型技术结合制备双相独立规则分布的双输运通道片状陶瓷膜未见报道。



技术实现要素:

本发明的目的是提供一种流延成型和纺丝成型相结合制备双相独立规则分布的双输运通道片状陶瓷膜的方法,解决目前双相陶瓷膜通道长、相互阻塞以及制备工艺复杂的问题。

本发明所述的双相独立规则分布的双输运通道片状陶瓷膜的制备方法,是以离子导电陶瓷粉体和电子导电陶瓷粉体为原料,将两者中导电性低的陶瓷粉体采用流延法成型得到连续相,将两者中导电性高的陶瓷粉体采用纺丝法成型作为分散相,再将分散相均布分散于连续相中,经过相变固化制备成双相膜前体,经烧结获得双相独立规则分布的双输运通道片状陶瓷膜。

其中:

双相独立规则分布的双输运通道片状陶瓷膜中,连续相整体呈圆柱体形或六面体形,在连续相的高度方向上,分散相穿过连续相,并且连续相与分散相的高度相同,连续相的顶部与分散相的顶部位于相同的水平面上,连续相、分散相各自独立规则分布。

本发明中,每一相的截面积由陶瓷粉体的导电性能决定,根据陶瓷粉体的导电性能来设计连续相和分散相的面积比。

圆柱体形连续相优选直径为8~35mm,高度为0.5~2.0mm。

六面体形连续相优选长度为8~32mm,宽度为8~32mm,高度为0.5~2.0mm。

分散相的直径为0.2~0.6mm,高度为0.5~2.0mm。

离子导电陶瓷粉体优选SrCe1-xMxO3、BaCe1-xMxO3、LnWO6、SDC、GDC或YSZ等的质子导电粉体或氧离子导电粉体,其粒度为0.01~10微米。

电子导电陶瓷粉体优选LSCF、Ce0.8(Sm1-xYx)0.2O2、La1-xSrxMnO3、LaCrO3、NiFe2O4、Sr1-xYxTiO3、ZnO、SnO或亚氧化钛等具有电子导电性的氧化物粉体,其粒度为0.01~10微米。

烧结曲线是以5℃/min的升温速度加热到800℃,保温0.5~1小时,然后以2℃/min的升温速度加热到1250~1400℃,保温3~5小时,最后以2℃/min的降温速率降到800℃。

热处理在一定气氛中进行,气氛优选氧化性气氛、惰性气体气氛、还原气体气氛或普通大气气氛。

陶瓷粉体中可以添加本领域技术人员常规选择的有机物粘结剂,如聚醚砜、聚砜或聚乙烯醇缩丁醛等等。

所述的双相独立规则分布的双输运通道片状陶瓷膜中,双相是指膜中含两种组成不同的物料,主要为钙钛矿相和萤石相或钙钛矿相和尖晶石相或钙钛矿相与钙钛矿相。双输运通道是指膜中有各自贯通独立分布的供两种不同物种运动的通道,分别是质子或氧离子迁移通道和电子迁移通道。

本发明依据两种陶瓷粉体的导电性能,以两种物种(离子和电子)的迁移量相当为目标设计双相陶瓷膜中双相的分布。每一相的截面积由材料的导电性能决定,导电性高的粉体面积小些、导电性低的粉体面积大些,以保证两种物种的迁移量相当。面积大的用流延法成型可以看成是双相中的连续相、面积小的用纺丝成型可以看成是双相膜中的分散相。在总面积确定的前提下,分散相的分散点尽可能的多,以保证足量的表面反应点。

具体制备过程如下:

(1)以离子导电陶瓷粉体和电子导电陶瓷粉体为原料,根据材料的导电性能设计两相在膜中的比例和分布。

将经过干燥、研磨和筛分好的两种陶瓷粉体分别加入到粘结剂诸如聚醚砜、聚砜或聚乙烯醇缩丁醛等与NMP或DMF组成的溶液中,配制成粘度适当的铸膜液,将其中导电性高的陶瓷粉体制成的铸膜液经脱气后,通过纺丝装置纺制成纤维,将已经纺制的纤维剪切成颗粒;通过流延成型方法将另一种导电性低的陶瓷粉体流延到圆柱体形或六面体形的流延模具中;再将纤维剪切成的颗粒按设计的膜结构均匀的放置到没有固化的连续相中;最后将流延模具放入纯净水浴中通过相变固化得到两种物料独立规则分布的陶瓷双相膜前体。

(2)将上述双相膜前体放入程序升温电炉中,经过高温烧结获得致密陶瓷膜。烧结前也可以根据具体物料对双相膜前体进行预先压制。

本发明的有益效果如下:

本发明以陶瓷粉体为原料,利用纺丝和流延联合技术成型具有双相双输运通道独立规则分布的陶瓷膜,用作膜分离器分离气体可以提高气体的透过速率,同时解决了现有技术中双相陶瓷膜制备方法中的几个重要难题:

(1)本发明无需经过两种陶瓷粉体的预先混合,直接由两种陶瓷粉体材料成型为规则分布的陶瓷膜,节省流程,大大提高了生产效率并节约了制备成本,本发明制得的陶瓷膜可用于氢气或氧气的分离和制备工艺中。

(2)现有技术制备的双相陶瓷膜,膜内两种材料的颗粒随机分布,在形成各自通道的同时也可能互相阻塞,延长了物种的移动距离或阻塞了物种的移动,因而降低膜的分离性能和效率。本发明采用纺丝和流延联合技术制备出双相独立分布的致密陶瓷膜,使得物种有各自独立的迁移通道,路径短又不会互相阻塞,大大提高了膜的传质效率。

(3)现有预先将两种粉体混合制备双相陶瓷膜技术中,要求两种粉体的化学兼容性要好即两者之间不能发生化学反应。而本发明对两种粉体的化学兼容性要求不高,即使两种粉体间发生化学反应也是在两相界面处,反应区域有限对整体膜的性能影响不大,同时两者间的反应会增加界面间的融合性能使膜的强度增大。

附图说明

图1是计算机设计的双相独立规则分布的双输运通道片状陶瓷膜结构示意图;

图2是实施例1制备的SCY/LSCF双相独立规则分布的双输运通道片状陶瓷膜的双相膜前体结构示意图;

图3是实施例1制备的SCY/LSCF双相独立规则分布的双输运通道片状陶瓷膜结构示意图;

图中:1、连续相;2、分散相。

具体实施方式

以下结合实施例对本发明做进一步描述。

实施例1

因为La0.6Sr0.4Co0.2Fe0.8O3(LSCF)的电子导电性比SrCe0.9Y0.1O3(SCY)的质子导电性好,所以用SCY作双相膜的连续相,用LSCF作分散相。

将10g的LSCF和20g SCY分别加入到适量的重量分数为20%的聚醚砜/NMP溶液中,分别在快速磨上充分混合获得两种组成的铸膜液,再将两种铸膜液分别放入脱气装置中用真空泵脱气1h。

LSCF铸膜液纺丝、剪切成颗粒,直径为0.4mm,长度为1.5mm。SCY铸膜液流延到直径为20mm、厚度为1.5mm的圆柱体形模具中,同时将剪切好的LSCF颗粒均布分散到SCY中,最后将模具放入纯水中相变固化成型得到SCY/LSCF双相膜前体,其结构如图2。连续相为SCY,分散相为LSCF。

将该双相膜前体置入烘箱中干燥,再在程序控温电炉中以5℃/min的升温速度加热到800℃,保温0.5小时以除去膜中的有机物粘结剂。然后以2℃/min的升温速度加热到1400℃,保温4小时使其充分烧结,最后以2℃/min的降温速率降到800℃,获得SCY/LSCF双相独立规则分布的双输运通道片状陶瓷膜,其结构如图3。

实施例2

将20g SCY和10g NiFe2O4(NFO)分别加入到适量的重量分数为20%的聚醚砜/NMP溶液中,分别在快速磨上充分混合获得两种组成的铸膜液,再将两种铸膜液分别放入脱气装置中用真空泵脱气1h。

NFO铸膜液在纺丝装置上纺丝、剪切成颗粒,直径为0.4mm,长度为1.5mm。SCY铸膜液流延到直径为20mm、厚度为1.5mm的圆柱体形模具中,同时将剪切好的NFO颗粒均布分散到SCY中,最后将模具放入纯水中相变固化成型得到SCY/NFO双相膜前体,其结构如图2。只是连续相为SCY,分散相为NFO。

将该双相膜前体置入烘箱中干燥,再在程序控温电炉中以5℃/min的升温速度加热到800℃,保温0.5小时以除去膜中的有机物粘结剂。然后以2℃/min的升温速度加热到1400℃,保温4小时使其充分烧结,最后以2℃/min的降温速率降到800℃,获得SCY/NFO双相独立规则分布的双输运通道片状陶瓷膜,其结构如图3。

实施例3

将20g SCY与10g亚氧化钛分别加入到适量的重量分数为20%的聚醚砜/NMP溶液中,分别在快速磨上充分混合获得两种组成的铸膜液,再将两种铸膜液分别放入脱气装置中用真空泵脱气1h。

亚氧化钛铸膜液在纺丝装置上纺丝、剪切成颗粒,直径为0.4mm,长度为1.5mm。SCY铸膜液流延到直径为20mm、厚度为1.5mm的圆柱体形模具中,同时将剪切好的亚氧化钛颗粒均布分散到SCY中,最后将模具放入纯水中相变固化成型得到SCY/亚氧化钛双相膜前体,其结构如图2。只是连续相为SCY,分散相为亚氧化钛。

将该双相膜前体置入烘箱中干燥,再在程序控温电炉中以5℃/min的升温速度加热到800℃,保温0.5小时以除去膜中的有机物粘结剂。然后以2℃/min的升温速度加热到1400℃,保温4小时使其充分烧结,最后以2℃/min的降温速率降到800℃,获得SCY/亚氧化钛双相独立规则分布的双输运通道片状陶瓷膜,其结构如图3。

实施例4

将20g SDC与10g La0.7Sr0.3MnO3(LSM)分别加入到适量的重量分数为20%的聚醚砜/NMP溶液中,分别在快速磨上充分混合获得两种组成的铸膜液,再将两种铸膜液放入脱气装置中用真空泵脱气1h。

LSM铸膜液在纺丝装置上纺丝、剪切成颗粒,直径为0.4mm,长度为1.5mm。SDC铸膜液流延到直径为20mm、厚度为1.5mm的圆柱体形模具中,同时将剪切好的LSM颗粒均布分散到SDC中,最后将模具放入纯水中相变固化成型得到SDC/LSM双相膜前体,其结构如图2。只是连续相为SDC相,分散相为LSM相。

将该双相膜前体置入烘箱中干燥,再在程序控温电炉中以5℃/min的升温速度加热到800℃,保温0.5小时以除去膜中的有机物粘结剂。然后以2℃/min的升温速度加热到1250℃,保温4小时使其充分烧结,最后以2℃/min的降温速率降到800℃,获得SDC/LSM双相独立规则分布的双输运通道片状陶瓷膜,其结构如图3。

实施例5

将20g YSZ与10g LSM分别加入到适量的重量分数为20%的聚醚砜/NMP溶液中,分别在快速磨上充分混合获得两种组成的铸膜液,再将两种铸膜液放入脱气装置中用真空泵脱气1h。

LSM铸膜液在纺丝装置上纺丝、剪切成颗粒,直径为0.4mm,长度为1.5mm。YSZ铸膜液流延到直径为20mm、厚度为1.5mm的圆柱体形模具中,同时将剪切好的LSM颗粒均布分散到YSZ中,最后将模具放入纯水中相变固化成型得到YSZ/LSM双相膜前体,其结构如图2。只是连续相为YSZ相,分散相为LSM相。

将该双相膜前体置入烘箱中干燥,再在程序控温电炉中以5℃/min的升温速度加热到800℃,保温0.5小时以除去膜中的有机物粘结剂。然后以2℃/min的升温速度加热到1300℃,保温4小时使其充分烧结,最后以2℃/min的降温速率降到800℃,获得YSZ/LSM双相独立规则分布的双输运通道片状陶瓷膜,其结构如图3。

图1-3所示,其连续相1整体呈圆柱体形或六面体形,在连续相1的高度方向上,分散相2穿过连续相1,并且连续相1与分散相2的高度相同,连续相1的顶部与分散相2的顶部位于相同的水平面上,连续相1、分散相2各自独立规则分布。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1