一种新型的线性电阻材料及其制备方法与流程

文档序号:11720093阅读:372来源:国知局
一种新型的线性电阻材料及其制备方法与流程

本发明涉及一系列电阻率较高、高温度稳定性的新型线性电阻陶瓷材料。可用于信号处理、电子线路、脉冲功率等领域。



背景技术:

电阻器是一种广泛应用于电子—电力系统中的电子元件,至今有着长久的应用和发展史。随着电子—电力系统高速发展,电阻器从最初在电路中作为简单限流元件,发展到现今有着数十种功能的电子元件。其中脉冲功率电阻器是电阻器家族中的一类电阻,它主要功能是能在瞬时、短时间内吸收超大功率能量,保护电子电路通信系统不被损坏。现有的脉冲功率电阻器按照制备材料分类,可分为金属合金式、粘土-al2o3-碳系和zno陶瓷系脉冲功率电阻器。

为了满足现代电力输电系统需求,需要进一步设计和制备新型的电子功能材料,这类材料需具有以下特点:(1)功率容量大且体积小,能经受瞬时高压强电流冲击并同时满足小型化发展的需求;(2)电阻特性可调,可通过掺杂调节出不同的阻值和各种电阻特性,以满足各种场合的不同应用需求;(3)电阻稳定性好,使用寿命长,制造成本低。

金属脉冲功率电阻器是最早被研制使用于电子—电力系统,这类电阻器是采用陶瓷绝缘外壳的串联金属栅型合金电阻,现在已能研制出无感金属功率电阻器,并且能精确控制电阻器阻值。国内现有部分大型电网的中性点接触电阻依旧采用金属电阻,但这类电阻器有着不可克服的缺点即电阻率低,如常用制备功率电阻器的铁铬合金,该金属的电阻率在10-15ω·cm左右,单位体积功率容量小。随着电网不断扩大,要满足此类电阻具有较大额定电阻值和功率容量的要求,需制作出体积庞大的金属电阻,从而耗费大量金属,增加制备成本,这不符合当今电力系统小型化、低成本的发展要求。在现有电力系统中还用到另一种脉冲功率电阻器,即采用粘土-al2o3-碳混合烧结而成,是以粘土-al2o3为基体材料,通过添加碳含量来调节电阻器参数,同时需要在惰性气氛下进行烧结。这种脉冲功率电阻器功率的容量约为250j/cm3,相比金属合金电阻器成本更低,在相同功率容量要求下,碳系电阻器体积更小。但是它存在以下缺点:碳易于在高温环境时氧化,电阻器阻值将会发生较大改变,单位体积功率容量低和材料的阻温系数较高。zno半导体陶瓷电阻率比金属材料的电阻率高几个数量级,在制备相同阻值功率电阻时,以zno为基体的电阻体积明显小于金属电阻体积,同时zno体密度为5.6g/cm3,低于制备功率电阻器合金密度,因此重量减小。



技术实现要素:

针对现有技术存在的问题,本发明的目的是提供一系列电阻率较高、高温度稳定性的新型线性电阻陶瓷材料及其制备方法,可用于信号处理、电子线路、脉冲功率等领域。

一方面,本发明提供一种掺杂batio3系陶瓷材料,其特征在于,所述陶瓷材料的组成通式为:

ba(1-x)axti(1-y)byo3+zc,

其中z表示在1mol的ba(1-x)axti(1-y)byo3中掺杂zmol的c,

0≤x<1;0<y≤0.5;0<z≤0.5,

a为la、sr、y、pb、ca、na、k中的至少一种,

b为mn、w、nb、ni、ta、mo中的至少一种,

c为sns、pbs、ag2s、ag2o、al2o3中的至少一种。

本发明的陶瓷材料的电阻率变动于10~104ω·cm,电阻率在温度-50~150℃范围内变化不大于10%。

当外加电压超过一定阈值时,所述陶瓷材料变为线性电阻,此阈值电场强度变化范围为1~10000v/cm。

较佳地,通过改变a、b和/或c的种类和/或含量使得abo3钙钛矿晶格中的ti离子变价来调节所述陶瓷材料的导电特性。

本发明提供了一种全新的具有abo3钙钛矿晶体结构的掺杂batio3系电阻陶瓷材料,,通过在陶瓷基体中掺杂不同元素使得abo3钙钛矿晶格中的ti离子变价来获得材料的各种导电特性,其电阻率变动为10~104ω·cm,电阻率在温度-50~150℃范围内变化不大于10%,并可随配方变化具有加电压后变线性电阻的独特电阻特性,是一个很有价值的线性电阻陶瓷材料系统。

另一方面,本发明提供上述掺杂batio3系陶瓷材料的制备方法,其特征在于,包括以下步骤:

按ba(1-x)axti(1-y)byo3的化学计量比称量ba、a、ti、b元素的氧化物和/或碳酸盐,充分混合后在700~1000℃保温1~4小时合成,得到合成料;

在合成料中按ba(1-x)axti(1-y)byo3+zc的化学计量比加入c,充分混合后造粒、成型得到素坯;

将素坯在保护性气氛中于1100℃以上烧结2小时以上,得到所述陶瓷材料。

本发明可通过传统氧化物合成及烧结工艺来制得所述陶瓷材料,工艺简单,易于工业化应用。

较佳地,所述陶瓷在烧结中含有0~10mol%液相物质。

较佳地,所述液相物质为氧化铋和/或氧化铅。

附图说明

图1为本发明中实施例2得到的陶瓷的xrd图;

图2为本发明中实施例1得到的陶瓷的微秒脉冲电压电流图;

图3为本发明中实施例3得到的陶瓷的电阻温度曲线;

图4为本发明中实施例2得到的陶瓷的电阻-电压图。

具体实施方式

以下结合附图和下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。

本发明为一系列batio3系的陶瓷材料(高耐压陶瓷材料),属于abo3型钙钛矿结构。该系列材料的组成通式为:

ba(1-x)axti(1-y)byo3,+zc{在[1mol的ba(1-x)axti(1-y)byo3]中掺杂zmol的c};

其中0≤x<1,优选地0≤x≤0.5。0<y≤0.5,优选地0≤y≤0.1。如果y>0.5,则会导致材料致密度很低。0<z≤0.5,优选地0≤z≤0.2。如果z>0.5,则会导致材料很难烧结成功。a为la、sr、y、pb、ca、na、k元素中的一种或多种,b为mn、w、nb、ni、ta、mo元素的一种或多种,c为sns、pbs、ag2s、ag2o、al2o3中的一种或多种。

该陶瓷系列中的一些配方ba(1-x)axti(1-y)byo3,+zc,0≤x<0.3,0<y≤0.1,0<z≤0.15,有综合的优良性能:其电阻率变动于10~104ω·cm,电阻率在温度-50~150℃范围内变化不大于10%。

该陶瓷系列中的一些配方ba(1-x)axti(1-y)byo3,+zc,0≤x<0.2,0<y≤0.08,0<z≤0.1,有独特的电阻性能:当外加电压超过一定阈值时,材料变为线性电阻,此阈值电场强度变化范围为1~10000v/cm。

本发明中,可以通过在陶瓷基体中掺杂不同元素(a、b、c)和/或使掺杂元素的含量(即x、y、z的取值)不同使得abo3钙钛矿晶格中的ti离子变价来获得材料的各种导电特性例如电阻率等,例如使其电阻率变动于10~104ω·cm,电阻率在温度-50~150℃范围内变化不大于10%。

本发明通过采用新的组成配方烧结制得了新型的具有abo3钙钛矿晶体结构的掺杂batio3系电阻陶瓷材料。陶瓷在烧结中可含有0~10mol%(优选0.01~8mol%)液相物质如氧化铋、氧化铅等,这样可以在烧结中起到液相烧结的作用,促进材料致密。

本发明的陶瓷材料的制备方法可为传统氧化物合成及烧结工艺。以下,作为示例,具体说明其制备方法。

首先,进行配料。具体而言,按ba(1-x)axti(1-y)byo3,+zc的化学计量比精确称量ba、a、ti、b元素的氧化物和/或碳酸盐(例如nb2o5、baco3、tio2、pbo、bi2o3、y2o3、la2o3、mno2、wo3等)、以及c。所采用的原料可为cp或ar级。

接着,将ba、a、ti、b元素的氧化物和/或碳酸盐充分混合,例如球磨混合。另外,在混合这些原料时,还可以加入0~10mol%氧化铋和/或氧化铅(相对于ba(1-x)axti(1-y)byo3),其在后续烧结时呈液相。球磨混合时,可用无水乙醇做介质,行星球磨3小时以上(例如3~6小时)。球磨后出料干燥,得到第一粉料。

将第一粉料装在刚玉坩埚中,在700~1000℃保温1~4小时合成,得到合成料。

合成料可进一步粉碎、过筛(例如过40目筛),得到粉碎后的合成料。向粉碎后的合成料中混入上述称量的c原料,充分混合,例如球磨混合。球磨混合时,可用无水乙醇做介质,用行星球磨机球磨4~6小时。球磨后出料干燥,得到第二粉料。

将第二粉料加粘结剂造粒、成型,得到素坯。在一个示例中,第二粉料加粘结剂(例如聚乙烯醇pva等),手工造粒,用2t/cm2的压力压制成直径20mm的圆片。

将素坯在惰性气氛(例如氮气等)下烧结。烧结温度可为1100℃以上,优选为1100~1200℃。烧结时间可为2小时以上,优选为2~4小时。

与金属材料和氧化锌等陶瓷材料相比,本发明的掺杂batio3系电阻陶瓷材料与金属相比具有较高的电阻率(10~104ω·cm)和较高的温度稳定性(电阻率在温度-50~150℃范围内变化不大于10%),并且随配方变化可具有加电压后变线性电阻的独特电阻特性(当外加电压超过一定阈值后材料变为线性电阻,此阈值电场强度变化范围为1~10000v/cm),能够满足其在信号处理、电子线路、脉冲功率等不同领域的各种应用。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。本发明中,电阻率测定方法为:常用的四探针测电阻率法。

实施例1:

按通式ba(1-x)axti(1-y)byo3,+zc,x=0.005,y=0.04,z=0.08,a为0.005molca,b为0.04molnb,c为0.08molsns,采用cp或ar级的化学试剂nb2o5、baco3、tio2、sns、caco3为原料,充分干燥后,按上式化学计量称量。

用无水乙醇做介质,将称量好的baco3、tio2和a、b原料球磨混合3小时。干燥,过筛,粉料在刚玉坩埚中,在850℃/2小时合成。然后粉碎过筛,混入预先称量好的c,球磨3小时,干燥,加粘结剂,干压成型,排塑后,采用通氮气烧结,烧结温度为1150℃,烧结时间为3小时。经测试可知,其电阻率为1300ω·cm左右(见图2)。

实施例2:

按通式ba(1-x)axti(1-y)byo3,+zc取x=0.002,y=0.07,z=0.05,a为0.002molla,b为0.07molmn,c为0.05molpbs,0.05mol%的pbo作为液相烧结物质,采用cp或ar级的化学试剂la2o3、baco3、tio2、pbo、mno2、pbs为原料,充分干燥后,按上式化学计量称量。

用无水乙醇做介质,将称量好的baco3、tio2、pbo和a、b原料球磨混合4小时。干燥,过筛,粉料在刚玉坩埚中,在900℃/2小时合成。然后粉碎过筛,混入预先称量好的c,球磨6小时,干燥,加粘结剂,干压成型,排塑后,采用通氮气烧结。经测试可知,材料呈现钙钛矿结构和铅金属混合的现象(见图1),并且当电场强度大于150v/cm时材料才体现出线性电阻的特征(见图4)。

实施例3:

按通式ba(1-x)axti(1-y)byo3,+zc,x=0.05,y=0.08,z=0.1,a为0.05molsr,b为0.08molw,c为0.1molpbs,采用cp或ar级的化学试剂srco3、baco3、tio2、pbs、wo3为原料,充分干燥后,按上式化学计量称量。

用无水乙醇做介质,将称量好的baco3、tio2和a、b原料球磨混合3小时。干燥,过筛,粉料在刚玉坩埚中,在850℃/2小时合成。然后粉碎过筛,混入预先称量好的c,球磨3小时,干燥,加粘结剂,干压成型,排塑后,采用通氮气烧结,烧结温度为1200℃,烧结时间为4小时。经测试可知,电阻率在温度-50~80℃范围内变化不大于10%(见图3)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1