用于堵塞蜂窝体且具有减小的堵塞深度变化的组合物和方法与流程

文档序号:14000669阅读:206来源:国知局
用于堵塞蜂窝体且具有减小的堵塞深度变化的组合物和方法与流程

本发明专利申请是国际申请号为pct/us2013/057222,国际申请日为2013年8月29日,进入中国国家阶段的申请号为201380051070.3,发明名称为“用于堵塞蜂窝体且具有减小的堵塞深度变化的组合物和方法”的发明专利申请的分案申请。

相关申请的交叉引用

本申请根据35u.s.c.§120要求于2012年8月30日提交的美国专利申请系列号13/599,584的优先权权益,本文以该申请为基础并将其全部内容结合于此。



背景技术:

本发明总体涉及多孔蜂窝体陶瓷,具体来说,涉及改善的可施涂到多孔蜂窝体陶瓷的组合物。

陶瓷壁流式过滤器越来越多地用来从柴油机或者其它内燃机排气流中除去微粒污染物。已知有许多种使用由多孔陶瓷形成的具有孔道的蜂窝体结构制造这类过滤器的方法。最普遍的方法是将密封材料形成的固化堵塞物置于这种结构的交替孔道的端部,阻挡流过孔道的直接流体流,迫使流体流先通过蜂窝体的多孔孔道壁,然后才离开所述过滤器。

堵塞蜂窝体结构的重要方面是堵塞深度和堵塞质量。堵塞质量常常与堵塞物中存在空穴相关。一般地,可通过减少堵塞组合物中的水的量和/或增加堵塞组合物中某些批料组分的粒度,来减少空穴的存在。但是,这种改性可导致堵塞物没有足够的深度,并因此没有足够的机械(或“压出”)强度。

另一方面,对于相同的外部几何形貌,较短的堵塞物提供更小的背压、更高的过滤器体积,由此降低再生的频率和改善燃油经济性。此外,较短的堵塞物提供更厚的材料利用度,由此降低过滤器制造成本。因此,需要提供堵塞物,其尽可能地短但仍然具有所必备的深度来提供足够的机械(或“压出”)强度。

同时解决所有这些问题所面临的挑战涉及堵塞深度变化。堵塞深度变化通常由堵塞组合物在不同的过滤器通道中的流动速率的不同而造成。对流动阻力较大的通道中的堵塞物趋于较短,而对流动阻力较小的通道中的堵塞物趋于较长。这种变化可导致至少一些较短的堵塞物不能提供必需的机械强度。因此,考虑到对较短堵塞物的持续需求,同时存在提供减少的堵塞深度变化的需求,从而将堵塞物不能提供必需的机械强度的发生率降到最低。



技术实现要素:

本发明的一种实施方式涉及用于施涂到具有多个平行通道的蜂窝体的组合物。该组合物包括具有粒度分布的耐火填料。该组合物还包括有机粘合剂、无机粘合剂和液体载体。选择耐火填料、耐火填料的粒度分布、有机粘合剂和粘合剂,从而当施涂该组合物以堵塞蜂窝体的多个通道时,在其间形成的多个堵塞物具有平均堵塞深度和深度极差(depthrange),从而对于具有给定横截面尺寸的通道,深度极差小于平均堵塞深度的30%。

本发明的另一实施方式涉及多孔陶瓷蜂窝体,其包括由多孔陶瓷通道壁连接的多个平行通道。选定的通道包括永久密封到通道壁的堵塞物。该堵塞物包括具有粒度分布的耐火填料以及无机粘合剂。选择耐火填料、耐火填料的粒度分布以及无机粘合剂,从而堵塞物具有平均堵塞深度和深度极差,从而对于具有给定横截面尺寸的通道,深度极差小于平均堵塞深度的30%。

本发明的另一实施方式涉及将堵塞组合物施涂到具有多个平行通道的蜂窝体的方法。所述方法包括将组合物施涂到蜂窝体。该组合物包括具有粒度分布的耐火填料。该组合物还包括有机粘合剂、无机粘合剂和液体载体。选择耐火填料、耐火填料的粒度分布、有机粘合剂以及无机粘合剂,从而当施涂该组合物以堵塞蜂窝体的多个通道时,在其间形成的多个堵塞物具有平均堵塞深度和深度极差,从而对于具有给定横截面尺寸的通道,深度极差小于平均堵塞深度的30%。

在以下的详细描述中给出了本发明的其他特征和优点,其中的部分特征和优点对本领域的技术人员而言是容易理解的,或通过实施文字描述和其权利要求书以及附图中所述实施方式而被认识。

应理解,上面的一般性描述和下面的详细描述都仅仅是示例性的,用来提供理解权利要求书的性质和特点的总体评述或框架。

所附附图提供了对本发明的进一步理解,附图被结合在本说明书中并构成说明书的一部分。附图说明了本发明的一个或多个实施方式,并与说明书一起用来解释各种实施方式的原理和操作。

附图简要说明

图1是根据比较性堵塞组合物施涂到蜂窝体结构的堵塞物的平均堵塞深度和堵塞深度极差图;以及

图2是根据示例性堵塞组合物施涂到蜂窝体结构的堵塞物的平均堵塞深度和堵塞深度极差图。

详细描述

下面详细描述本发明的各种实施方式;若有附图,则参考附图描述。

如本文所使用,术语“平均堵塞深度”指在给定区域(例如蜂窝体的一个或更多个端面)中所有堵塞物的总深度(或总长度)除以该区域中的堵塞物的数目。

如本文所使用,术语“深度极差”指在给定区域(例如蜂窝体的一个或更多个端面)中最深(最长)的堵塞物和该区域中最浅(最短)的堵塞物之间的深度差异。

如本文所使用,术语“具有给定横截面尺寸的通道”指蜂窝体的通道,其具有大致相同的横截面大小。例如,对于具有如美国专利号6,696,132所述的具有act孔几何形貌的蜂窝体而言,具有给定横截面尺寸的通道可指具有较大水力直径的所有进口孔通道(如在该专利图3中的14所示),或者具有较小水力直径的所有出口孔通道(如在该专利图3中的16所示)。

如本文所使用,术语“压出强度”指将给定堵塞物压出给定通道所需的压力(单位是巴(bar),除非另有说明)。可通过从顶部(即,距离零件端面最近的一侧)或者底部(即,距离零件端面最远的一侧)压出堵塞物,来测定堵塞物的压出强度。不管在哪种情况,使用负载单元将销钉压入堵塞物,其中销钉的横截面积优选地约为被堵塞孔道横截面积的70%。当从顶部挤压时,记录将工具压入堵塞物0.2英寸时所需的力。当从底部挤压时,记录推动堵塞物并将它从端面取出时所需的力。当从顶部挤压时,工具包括三个销钉,一个销钉用于挤压堵塞物,另外两个销钉用于对齐。当从底部挤压时,孔壁提供导向,只需要挤压销钉。

本文所用术语d10指的是这样一种粒度,其中分布中90%的颗粒具有比其更大的粒度,而分布中10%的颗粒具有比其更小的粒度。

本文所用术语d90指的是这样一种粒度,其中分布中90%的颗粒具有比其更小的粒度,而分布中10%的颗粒具有比其更大的粒度。

本文所用术语d50指的是这样一种粒度,其中分布中50%的颗粒具有比其更小的粒度,而分布中50%的颗粒具有比其更大的粒度。

如本文所使用,术语“d因子”(df)=(d50-d10)/d50。

如本文所使用,术语“d宽度”(d宽度)=(d90-d10)/d50。

本发明的实施方式包括用于施涂到具有多个平行通道的蜂窝体的组合物,例如用于堵塞具有多个平行通道的蜂窝体的一个或多个通道的组合物。该组合物包括具有粒度分布的耐火填料,有机粘合剂,无机粘合剂,和液体载体。选择耐火填料,耐火填料的粒度分布,有机粘合剂,和无机粘合剂,从而当施涂该组合物以堵塞蜂窝体的多个通道时,在其间形成的多个堵塞物具有平均堵塞深度和深度极差,从而对于具有给定横截面尺寸的通道,深度极差小于平均堵塞深度的30%,例如小于平均堵塞深度的25%,还例如小于平均堵塞深度的20%,包括平均堵塞深度的10%-30%,还包括平均堵塞深度的15%-25%。

在一些示例实施方式中,平均堵塞深度小于7毫米,例如小于6毫米,还例如小于5毫米,包括4-7毫米,还包括4-6毫米,且还包括4-5毫米。在这种实施方式中,堵塞物的深度极差小于2.1毫米,例如小于1.8毫米,还例如小于1.5毫米,且还例如小于1.2毫米,甚至还例如小于1.0毫米,包括0.5-2.1毫米,还包括0.5-1.5毫米,且还包括0.5毫米-1.0毫米。

本文所述的实施方式可使得堵塞物能满足如上所述的平均堵塞深度和深度极差,其中通道中所有多个堵塞物的压出强度为至少10巴,例如至少15巴,还例如至少20巴,且还例如至少25巴。这种堵塞物的压出强度为至少50巴,例如至少60巴,还例如至少70巴,且还例如至少80巴。

耐火填料可包括至少一种无机粉末。例如,无机粉末可包括陶瓷,即预反应的或陶瓷化的耐火粉末。在其他实施方式中,粉末可为耐火玻璃粉末或玻璃陶瓷粉末。此外,在其他实施方式中,无机粉末批料混合物可包括两种或更多种上述耐火粉末的任意组合。示例性耐火粉末可包括堇青石、多铝红柱石、钛酸铝、碳化硅、氮化硅、铝酸钙、β-锂霞石和β-锂辉石。

耐火填料的粒度分布可落在预先决定的特殊范围之内。就这方面而言,申请人惊讶地发现将耐火填料的粒度分布保持在规定的范围,加上规定的有机粘合剂和无机粘合剂的组合,可得到能减小堵塞深度变化的堵塞组合物。具体来说,申请人发现将耐火填料的粒度分布保持在规定的范围,加上规定的有机粘合剂和无机粘合剂的组合,可用所得组合物堵塞蜂窝体的通道,组合物因为脱水收缩而流入通道受到限制。随着该组合物进一步渗入通道,流动的速度减慢,并最终停止。这允许在流动较慢的通道中的堵塞组合物赶上初始时流动较快的通道中的堵塞组合物。因此,这种现象减小了堵塞物的深度变化。

因此,在一些示例实施方式中,耐火填料包括至少一种无机粉末,其中值粒度(d50)为至少15微米,例如中值粒度(d50)为15-50微米,还例如中值粒度(d50)为30-40微米,且甚至还例如中值粒度(d50)为30-35微米。

在一些示例实施方式中,无机粉末的d10为至少4微米,例如至少6微米,还例如至少8微米,还例如至少10微米,包括4-16微米,还包括8-14微米,且还包括10-12微米。

在一些示例实施方式中,无机粉末的d90为至少55微米,例如至少65微米,还例如至少75微米,还例如至少85微米,包括55-120微米,还包括75-110微米,且还包括85-100微米。

在一些示例实施方式中,无机粉末的中值粒度(d50)为15-50微米,还例如中值粒度(d50)为20-45微米,甚至还例如中值粒度(d50)为25-40微米,甚至还例如中值粒度(d50)为30-35微米,其d10为4-16微米,还包括8-14微米,还包括10-12微米,以及d90为55-120微米,还包括75-110微米,且还包括85-100微米。

例如,在一组示例实施方式中,耐火填料包括钛酸铝粉末,其中值粒度(d50)为至少15微米,例如中值粒度(d50)为15-50微米,还例如中值粒度(d50)为20-45微米,甚至还例如中值粒度(d50)为25-40微米,甚至还例如中值粒度(d50)为30-35微米。在一组示例实施方式中,耐火填料包括堇青石粉末,其中值粒度(d50)为至少10微米,例如中值粒度(d50)为15-50微米,还例如中值粒度(d50)为15-40微米,甚至还例如中值粒度(d50)为20-30微米。在一组示例实施方式中,耐火填料包括多铝红柱石粉末,其中值粒度(d50)为至少15微米,例如中值粒度(d50)为15-50微米,还例如中值粒度(d50)为25-40微米,甚至还例如中值粒度(d50)为30-35微米。

该组合物还包括粘合剂组分,其包括无机粘合剂。在一些实施方式中,无机粘合剂是凝胶化无机粘合剂,例如凝胶化胶体氧化硅。无机粘合剂的其它实施方式可包括非凝胶化胶体氧化硅,粉末氧化硅,或者低温玻璃。根据实施方式,包括凝胶化无机粘合剂可最小化或甚至防止无机粘合剂颗粒迁移进入上面施涂有该组合物的蜂窝体的微裂纹中。因此,如本文所使用,术语“凝胶化无机粘合剂”指固体无机颗粒的胶体分散体,其中固体无机颗粒与连续的流体相形成互连的网络或基质,得到粘性的半刚性材料。此外,应理解可存在相对的凝胶强度或程度。为此目的,胶体分散体可包括固体颗粒,其粒度直径小于100nm,例如小于50nm,还例如小于25nm,且还例如小于15nm,如本文所使用的凝胶化无机粘合剂包括分散的无机颗粒的互连网络,其足以防止至少一部分的无机粘合剂颗粒迁移进入蜂窝体结构的微裂纹,该蜂窝体结构上施涂有包括凝胶化无机粘合剂的组合物。

在将无机粘合剂引入粉末组合物之前,可对凝胶化无机粘合剂进行预凝胶。或者,在其他实施方式中,可在将无机粘合剂与本文所述的组合物的一种或更多种其它组分结合之后,对其进行凝胶。例如,在本发明的实施方式中,所述组合物的无机粘合剂组分可首先包括非凝胶化胶体氧化硅,其随后在结合进入粉末批料组合物之后进行凝胶。为此目的,胶体中的分散相无机颗粒可受到胶体中存在的表面化学的巨大影响,这样在实施方式中可通过改变胶体内的表面化学来实施胶体的凝胶化。

因此,随后可通过将一种或更多种凝胶剂添加到组合物来对非凝胶化胶体氧化硅进行凝胶化。在实施方式中,可通过增加组合物的离子浓度,来对胶体氧化硅进行凝胶化。在其他实施方式中,可通过改变组合物的ph,来对胶体氧化硅进行凝胶化。其它实施方式可包括同时增加组合物的离子浓度和改变组合物的ph。应理解,可使用任何有效量的凝胶剂来提供如本文所述的凝胶化无机粘合剂。

可用于增加本文所述的组合物的离子浓度的凝胶剂,即增加离子的凝胶剂,包括一种或更多种水溶性盐。为此目的,适用作凝胶剂的示例性水溶性盐包括镁盐例如氯化镁或醋酸镁,钙盐例如氯化钙,或甚至钠盐例如氯化钠。此外,在本文所述的实施方式中,所用的盐包括2+阳离子,例如mg和ca,其在较低盐浓度时可特别有效地凝胶化无机粘合剂组分。

如上所述,还可通过改变组合物的ph来对无机粘合剂例如胶体氧化硅进行凝胶化。为此目的,可使用ph调节凝胶剂来增加或降低本文所述的组合物的ph,其包括酸、碱或者酸和碱的组合。示例性ph调节凝胶剂是酸凝胶剂,其包括,但不限于盐酸、硫酸和硝酸。还在另一示例实施方式中,酸性凝胶剂可包括有机酸,例如柠檬酸和乙酸。示例性ph调节凝胶剂包括碱凝胶剂,其包括,但不限于氢氧化铵、氢氧化钠和三乙醇胺(下文称为"tea")。

根据实施方式,通过添加盐或盐溶液增加该组合物的离子浓度可导致不均匀的凝胶化,因为在整体组合物中,特别是在引入增加离子的凝胶剂的区域或其附近的区域的盐浓度不均匀。根据这些实施方式,可通过组合一种或更多种增加离子的凝胶剂和一种或更多种ph调节凝胶剂,来取得更均匀和受控的凝胶化。例如,可首先在第一ph范围内增加该组合物的离子浓度,其具有较长的凝胶时间。然后,可将组合物的ph调节到第二ph范围,其呈现较短的凝胶时间。因此,因为有些胶体氧化硅溶液随ph呈现最短的凝胶时间,ph的局部偏差不会导致任何实质性地非均匀凝胶化。

在本文所述的实施方式中,增加离子的凝胶剂和ph调节凝胶剂的一种示例组合包括使用tea同时作为胶体氧化硅中的碱和盐,其在较高的ph下具有较高的稳定性。示例性胶体氧化硅可包括as,sk,pw50,和pz50(可购自w.r.格莱斯公司(w.r.grace&company)),且可通过添加盐增加离子浓度和/或改变ph来进行凝胶化。根据该实施方式,可首先将tea添加到胶体氧化硅,得到较稳定的胶体氧化硅溶液。然后,可通过添加酸如柠檬酸来降低溶液的ph,然后进行充分混合和形成凝胶。

本文所述的示例组合物还包括有机粘合剂。添加有机粘合剂组分可进一步帮助组合物在烧制之前的粘结性和塑性。改善的粘结性和塑性可例如改善组合物成形的能力。当利用该组合物来形成表皮涂层或者当堵塞蜂窝结构体的选定部分(例如端部)时,这可是有利的。示例有机粘合剂包括纤维素材料。示例纤维素材料包括纤维素醚粘合剂例如甲基纤维素、羟丙基甲基纤维素、甲基纤维素衍生物,和/或它们的任何组合。特别优选的例子包括甲基纤维素和羟丙基甲基纤维素。优选地,有机粘合剂可以下述量作为追加量存在于该组合物中:无机粉末批料组合物的0.1重量%-5.0重量%,或甚至以下述范围的量:无机粉末批料组合物的0.5重量%-2.0重量%。

一种为本文所述的组合物提供可流动或膏状一致性的示例液体载体是水,但也可使用其它液体载体。为此,所述液体载体组分的含量可以变化,以使得陶瓷批料混合物获得最优化的加工性质,以及促进与该混合物中其它组分的相容性。根据一些实施方式,液体载体含量作为追加量以下述范围的量存在:无机粉末批料组合物的15%-60重量%,或甚至根据一些实施方式,可为下述范围:无机粉末批料混合物的20%-50重量%。最小化组合物中的液体组分,还可导致减少组合物在干燥过程中的干燥收缩率。

本文所述的示例组合物可任选地包括一种或更多种加工助剂,例如增塑剂、润滑剂、表面活性剂、烧结助剂、流变改性剂、触变剂、分散剂和/或成孔剂。用于制备堵塞组合物的一种示例性的增塑剂是甘油。一种示例性的润滑剂可以是烃油或者妥尔油。示例性市售润滑剂包括可购自皮特格力温飞化学(petergrevenfett-chemie)的ligags和可购自伊诺夫(innovene)的烃油。一种市售触变剂是benaqua1000,购自雷诺克斯公司(rheox,inc.)。还可任选地使用成孔剂来在所得陶瓷组合物中形成所需的孔隙率。示例性而非限制性的成孔剂可以包括石墨、淀粉、聚乙烯珠粒和/或面粉。可使用的示例分散剂包括(购自伊力莫尼斯(elementis))和(购自空气产品和化工公司(airproductsandchemicals,inc.)。

还在本文所述的组合物的其它实施方式中,胶体氧化硅的凝胶化可得到组合物,其具有可受益于进一步改性的流变学性质。例如,该组合物对于预期应用可能太稠,或者可能固体含量较低而导致在干燥时形成针孔或收缩。虽然这种流变学在一些应用中是理想的和优选的,但添加如上所述的流变学改性剂可进一步用于控制组合物的流变学。为此目的,在一些实施方式中,一种示例流变学改性剂是聚乙烯醇(pvoh)。可溶于冷水和热水的聚乙烯醇都可使用。包括聚乙烯醇的组合物在较高固体含量时可具有较低的粘度,而仍然防止胶体颗粒迁移进入上面施涂了该组合物的蜂窝体的微裂纹中。当使用时,在添加凝胶剂之前,可首先将聚乙烯醇与胶体氧化硅和任选的陶瓷化耐火粉末混合。包括聚乙烯醇流变学改性剂的组合物使得能形成凝胶但不在整个组合物中形成完全的三维凝胶连接,得到较易于流动的凝胶化状态。

为了制备本文所述的示例组合物,可将如上所述的无机粉末批料混合物与有机粘合剂混合在一起,然后加入液体载体和无机粘合剂组分。如上所述,可在引入组合物之前和之后对无机粘合剂进行凝胶化。如果在添加到组合物之前对无机粘合剂进行凝胶化,可将一种或更多种凝胶剂添加到无机粘合剂,例如胶体氧化硅。或者,如果在添加到粉末组合物之后对无机粘合剂进行凝胶化,可将一种或更多种凝胶剂直接添加到该组合物。还可在添加液体之前和之后,将任选的加工助剂引入该组合物。但是,如上所述,如有需要,可首先将流变学改性剂(如聚乙烯醇)与无机粘合剂和任选的耐火粉末混合。一旦结合了所需组分,可充分混合该组合物,来为组合物提供可流动的膏状稠度。在一示例实施方式中,可使用littleford混合机或者turbula混合机来进行如上所述的混合。

一旦形成,可将本文所述的组合物施涂到蜂窝体或结构,其限定由孔通道壁围成的多个孔通道。在示例实施方式中,基材的各孔壁的壁厚可为例如,约0.002-约0.010英寸(约51-约254微米)。孔密度可为例如,约100-约900孔/平方英寸(cpsi)。在一些示例实施方式中,多孔蜂窝体结构可由许多平行孔道组成,形成蜂窝体结构,所述孔道的截面为大致的正方形。或者,蜂窝结构中也可以使用其他的截面构形,包括矩形,圆形,椭圆形,三角形,八边形,六边形,或它们的组合。如本文所使用,术语“蜂窝”指由孔壁形成的纵向延伸的孔的连接结构,其中具有基本上重复的图案。

蜂窝体可由适用于形成蜂窝体的任意常规材料来形成。例如,在一个实施方式中,所述蜂窝体可以由增塑的形成陶瓷的组合物形成。示例性的形成陶瓷的组合物可以包含那些通常已知的用来形成以下物质的那些:堇青石、钛酸铝、碳化硅、氧化铝、氧化锆、锆石、镁、稳定化的氧化锆、氧化锆稳定的氧化铝、钇稳定的氧化锆、钙稳定的氧化锆、氧化铝、镁稳定的氧化铝、钙稳定的氧化铝、氧化钛、二氧化硅、氧化镁、氧化铌(niobia)、氧化铈(ceria)、氧化钒(vanadia)、氮化物、碳化物,或其任意组合。

所述蜂窝体可以根据任何适合用来形成蜂窝体整体型主体的常规方法形成。例如,在一个实施方式中,采用任何已知的陶瓷成形的常规方法,对增塑的形成陶瓷的批料组合物进行成形,制成生坯,所述常规方法包括例如:挤出,注塑,粉浆浇铸,离心浇铸,加压浇铸,干压制等。通常,陶瓷前体批料组合物包括能形成例如如上所述的一种或更多种陶瓷组合物的形成陶瓷的无机批料组分、液体载体、粘合剂和一种或更多种任选的加工助剂,所述加工助剂包括例如表面活性剂、烧结助剂、增塑剂、润滑剂和/或成孔剂。在一个示例性的实施方式中,挤出可以使用液压油缸挤出压机,或两段排气单钻挤出机,或在出料端连接模头组件的双螺杆混合机进行。后一情况中,可以根据材料和其他工艺条件选择适当的螺杆元件,以形成足够的压力,迫使批料物质通过模头。一旦形成,可在能将形成陶瓷的批料组合物转化成陶瓷组合物的条件下烧制生坯体。用于烧制蜂窝生坯体的优化烧制条件,至少部分地取决于用于形成蜂窝生坯体的特定的形成陶瓷的批料组合物。

在示例实施方式中,本文所述的组合物可用作用于堵塞蜂窝体的选定通道以形成壁流过滤器的堵塞材料。例如,在具有由多孔孔通道壁围成的多个孔通道的蜂窝体中,多个孔通道的至少一部分可包括堵塞物,其中所述堵塞物由本文所述的组合物形成。在一些实施方式中,多个孔通道的第一部分可包括在下游出口端部或附近密封到各通道壁的堵塞物,以形成进口孔通道。多个孔通道的第二部分也可包括在上游进口端部或附近密封到各通道壁的堵塞物,以形成出口孔通道。还设想了只有一端堵塞的构造以及部分堵塞的构造(有些未堵塞的通道)。

在其他实施方式中,所述组合物适用于形成蜂窝体或结构的周界区域上的施涂后表面涂层或者表皮。还在其他实施方式中,所述组合物可施涂作为片段接合剂,用于将两个或更多个蜂窝体或者蜂窝体的片段结合在一起。

一旦将该组合物以本文所述的方式施涂到蜂窝体结构,可任选地干燥和/或烧制该组合物。任选的干燥步骤可包括首先在一定温度下将该组合物加热足以至少基本上除去在组合物中存在的任何液体载体的时间。如本文所使用,至少基本上除去任何液体载体包括在烧制之前,除去该组合物中存在的至少95%,至少98%,至少99%,或甚至至少99.9%的液体载体。示例性和非限制性的适用于去除液体载体的干燥条件包括在至少50℃.,至少60℃.,至少70℃.,至少80℃.,至少90℃.,至少100℃.,至少110℃.,至少120℃.,至少130℃.,至少140℃.,或者甚至至少150℃的温度下加热该组合物。在一种实施方式中,能至少基本上去除液体载体的条件包括在60℃.-120℃.的温度范围内加热该组合物。此外,可通过任何常规方法来提供加热,包括例如热空气干燥、rf和/或微波干燥。

任选的烧制步骤可包括适用于将该组合物转化成主晶相陶瓷组合物的条件,包括将已施涂组合物的蜂窝体加热到大于800℃.,900℃.,和甚至大于1000℃的最高温度。在加热时,可使用约120℃/小时的升温速率,然后在最高温度下保持约3小时,然后以约240℃/小时的速率冷却。

本文所述的组合物可包括在下述温度下固化的那些:小于200℃,例如小于100℃,还例如小于50℃,包括可用于采用“冷固化”堵塞物的堵塞过程中的组合物。在冷固化堵塞中,只需要干燥堵塞混合物,来形成堵塞物和蜂窝体的通道壁之间的密封。当采用冷固化堵塞过程时,把被堵塞的蜂窝体加热到35-110℃的温度范围可用于加速干燥。在一些冷固化堵塞过程中,期望最终堵塞固结,包括去除残留的临时粘合剂副产物和强化密封件,可在后续的加工步骤进程中(例如在结晶或灌装(canning)进程中)或者在首次使用中(例如,在排气系统中)进行。

例如,其中可采用冷固化堵塞的示例组合物包括含有耐火填料和凝胶化无机粘合剂的那些组合物,所述耐火填料包括至少一种无机粉末,例如钛酸铝和堇青石中的至少一种,该无机粉末的中值粒度(d50)为15-50微米,例如30-40微米,所述凝胶化无机粘合剂是例如凝胶化胶体氧化硅。可在配批料之前(例如作为与凝胶化无机粘合剂的预混合物)或者在配批料之时,添加至少一种凝胶剂,例如盐酸、硫酸、硝酸、柠檬酸、乙酸、氢氧化铵、氢氧化钠和三乙醇胺(下文称为"tea")中的至少一种,从而凝胶化无机粘合剂。这种组合物可提供在下述温度下在多孔陶瓷蜂窝体中固化的堵塞物(并由此永久密封到通道壁):小于200℃,例如小于100℃,还例如小于50℃,包括约25℃。这种堵塞物各自的压出强度可为至少10巴。

下面通过实施例进一步阐明本发明及所附权利要求书的范围。

实施例:

制备了根据本文所述的实施方式的堵塞组合物(e1)以及比较性堵塞组合物(c1)并施涂到蜂窝体的出口通道,所用蜂窝体与用来制造康宁钛酸铝(at)过滤器的蜂窝体相同,该过滤器包括300孔/平方英寸,12密耳厚的壁,和非对称孔技术(act),其中蜂窝体的直径约为6.4英寸且轴向长度约为5.5英寸。施涂之后,干燥该堵塞物,并在约1000℃下烧制约3小时。堵塞组合物的组分见下文的表1。

图1显示了来自c1的施涂到蜂窝体的堵塞物的平均堵塞深度和深度极差,图2显示了来自e1的施涂到蜂窝体的堵塞物的平均堵塞深度和深度极差。从图1和图2可知,施涂自e1的堵塞物的平均堵塞深度(5.811毫米)比施涂自c1的堵塞物的平均堵塞深度(7.600毫米)更小。此外,施涂自e1的堵塞物的深度极差(1.07毫米)小于施涂自c1的堵塞物的深度极差(2.46毫米)。因此,施涂自e1的堵塞物的深度极差是平均堵塞深度的18.4%,而施涂自c1的堵塞物的深度极差是它们的平均堵塞深度的32.4%。

除非另有明确说明,本文所述的任何方法不应理解为要求它的步骤以具体的顺序进行。因此,当方法权利要求没有实际上要求遵循它的步骤顺序时,或者在权利要求或说明书中没有以其它方式明确说明步骤受限于具体顺序时,绝对无意指任何特定的顺序。

对本领域的技术人员而言,显而易见的是可以在不背离权利要求书所述的本发明的精神或范围的情况下作出各种修改和变动。因为本领域的技术人员可以想到所述实施方式的融合了本发明精神和实质的各种改良组合、子项组合和变化,应认为本发明包括所附权利要求书范围内的全部内容及其等同内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1