多孔硼碳氮纳米片层和多孔氮化硼纳米片层及其制备方法和作为吸附材料的应用与流程

文档序号:17725737发布日期:2019-05-22 02:29阅读:700来源:国知局
多孔硼碳氮纳米片层和多孔氮化硼纳米片层及其制备方法和作为吸附材料的应用与流程

本发明涉及多孔硼碳氮纳米片层和多孔氮化硼纳米片层及其制备方法和作为吸附材料的应用,属于纳米材料技术领域。



背景技术:

化石燃料燃烧排放的co2引起了一系列的全球性环境问题例如全球气候变暖、冰川融化、海平面上升、海水酸性增加及气候异常等现象,严重威胁着人类的生存与发展,使得人们急于寻求降低大气中co2气体含量的方法。碳的捕集和封存(carboncaptureandstorage,ccs)是科学家们提出的减少二氧化碳排放,防止气候恶化的技术方案之一。传统的捕获co2的方法是利用胺溶液,如发电厂中利用单乙醇胺从尾气中捕获co2。但是胺溶液的再生需要消耗很高的能量并且胺溶液会引起设备腐蚀。因此寻求价格低廉,无污染,无腐蚀并能有效捕获co2的材料是目前的一个研究热点。另一方面,对捕获co2材料的另一个基本要求是co2选择性吸附能力,在大多数情况下,捕获的co2都是混合在其他气体中,例如发电厂排放的废气,co2的含量只有15%左右,其余的是大量的n2和水蒸气,因此需要材料具有很高的选择性吸附co2的能力。再者,捕获与储存二氧化碳材料除了具有高的吸附量和选择性之外,高的热稳定性和化学稳定性也是必不可少的。

六方氮化硼(h-bn)是一种具有石墨结构的层状化合物,又被称为白石墨,因其优异的性能和潜在的应用前景吸引了国内外科学家的广泛关注。氮化硼材料具有许多优异的物理化学特性如:耐高温、抗氧化、膨胀系数低、摩擦系数低、导热率高、化学稳定性高、可加工性能好、具有良好的透波性,可广泛应用在机械、冶金、催化、电子、航空航天等高科技领域。此外,具有高比表面积、高孔隙率的多孔氮化硼作为一类高效的固体吸附材料被广泛应用在储氢、污水处理、吸油和药物缓释等方面。然而,在捕获co2的应用上对于多孔氮化硼的应用较少。nag等人报道bn在0.85bar和195k的条件下能够捕获32%的co2(a.nagetal.,acsnano,2010,4,1539-1544)。通过利用mgb2和nh4cl为前驱体制备的少数层的多孔氮化硼纳米片层材料在298k和0.76bar条件下co2的吸附能力为10cm3g-1,同时co2/n2的吸附选择性为26.3(f.xiaoetal.,chemicalcommunications,2016,52,3911-3914)。marchesini小组报道的多孔bn材料能够捕获co2,在1bar和298k条件下co2吸附量为0.6mmolg-1(s.marchesinietal.,microporousandmesoporousmaterials,2017,243,154-163)。这些研究结果表明h-bn捕获co2能力很低,需要继续优化结构才有望获得更好捕获co2性能的多孔h-bn材料。



技术实现要素:

本发明的目的是:提供一种在低压条件下具有高co2吸附能性,分离性能和循环吸附性能的多孔硼碳氮纳米片层吸附材料和在高压条件下具有较高co2捕获能力的多孔氮化硼纳米片层吸附材料的制备方法。

本发明技术解决方案:

孔硼碳氮纳米片的制备方法,包括以下步骤:

步骤一,将硼源和溶剂混合,加热至40~80℃,硼源完全溶解后得到混合溶液;将碳氮源加入所述混合溶液中,得固液混合物1;所述硼源与碳氮源中b/n的摩尔比为8:1~1:60;

步骤二,将固液混合物1置于密闭反应容器中;先在40~80℃,搅拌1~3小时;再在80~100℃,搅拌5~10h,得固液混合物2;

步骤三,将固液混合物2置于敞开的反应容器中;在80-100℃,蒸发固液混合物2中的水分,得固体物料1;研磨固体物料1至粉状,得到固体物料2;

步骤四,将固体物料2在惰性气体中进行升温至600~800℃,恒温4~6小时,得到多孔硼碳氮纳米片。

多孔氮化硼纳米片的制备方法,其特征在于,包括以下步骤:

步骤一,将硼源和溶剂混合,加热至40~80℃,硼源完全溶解后得到混合溶液;将碳氮源加入所述混合溶液中,得固液混合物1;所述硼源与碳氮源中b/n的摩尔比为8:1~1:60;

步骤二,将固液混合物1置于密闭反应容器中;先在40~80℃℃,搅拌1~3小时;再在80~100℃,搅拌5~10h,得固液混合物2;

步骤三,将固液混合物2置于敞开的反应容器中;在80-100℃,蒸发固液混合物2中的水分,得固体物料1;研磨固体物料1至粉状,得到固体物料2;

步骤四,将固体物料2在惰性气体中进行升温至600~800℃,惰气的流速为30~100mlmin-1,恒温4~6小时,得到多孔硼碳氮纳米片。

步骤五,将多孔硼碳氮纳米片在氨气气体中升温到700~900℃,氨气的流速为30~100mlmin-1,恒温4~6小时后,在惰性气体中冷却至室温,得到多孔氮化硼纳米片。

步骤一中溶剂的用量为使硼源充分溶解即可,优选体积为200-2000ml。

步骤三中所述将固体物料研磨至粉状的是指将固体物料打散即可,对粉状的颗粒度没有限定。

所述的硼源优选为硼酸或氧化硼。

所述的溶剂优选为水、乙醇、甲醇或丙醇中的至少一种。

所述的碳氮源优选为尿素,三聚氰胺,双氰胺或g-c3n4。

所述的惰性气体优选为氮气、氩气或氦气。

所述惰性气体的气体流速优选为30~100mlmin-1

所述升温的速率优选为2~10℃min-1

本发明还提供上述制备方法得到的多孔硼碳氮纳米片,所述多孔硼碳氮纳米片的比表面积为200-2000m2/g。

作为优选的技术方案,以总质量为100%计算,多孔硼碳氮纳米片中氮元素含量为25-35%,硼元素含量为20-30%,氧元素含量为10-22%,氢元素为1.0-2.0%,碳元素含量为8.0-15%。

作为优选的技术方案,所述多孔硼碳氮纳米片的具有0.5-1.5nm的微孔,具有<0.7nm的超微孔;具有0.3-15nm的介孔,总孔容为0.2-2ml/g;其中介孔占总孔容的20-80%。

本发明还提供上述制备方法得到的多孔氮化硼纳米片,所述氮化硼的表面积为400-2500m2/g。

作为优选的技术方案,以总质量为100%计算,多孔氮化硼纳米片氮元素含量为38-43%,硼元素含量为35-40%,氧元素含量为5.0-10%,氢元素为0.8-1.5%,碳元素含量为0.5-1.0%。

作为优选的技术方案,多孔氮化硼纳米片具有0.3-15nm的介孔,具有0.5-1.5nm的微孔,总孔容为0.2-2.4ml/g,其中介孔占总孔容的20-90%。

本发明还提供上述多孔硼碳氮纳米片或多孔氮化硼纳米片在固体吸附材料中的应用。

所述多孔硼碳氮纳米片的吸附焓优选为32-38kj/mol;所述多孔氮化硼纳米片的吸附焓优选为26-30kj/mol。

优选所述固体吸附材料用于吸附co2气体。

作为优选的技术方案,以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,多孔氮化硼纳米片在1bar下的co2/n2的选择性为16-22,多孔硼碳氮纳米片在1bar下的co2/n2的选择性高达71-88;co2/ch4选择性利用15/85的混合气体计算,多孔氮化硼纳米片在1bar下的co2/ch4的选择性为18-26,多孔硼碳氮纳米片1bar下的co2/ch4的选择性为8-14;在298k和40bar条件下,多孔硼碳氮纳米片的co2吸附为15.0-17.5mmolg-1,多孔氮化硼纳米片的co2吸附为18.0-22.0mmolg-1

优选所述多孔硼碳氮纳米片在低压条件(相对压力0-1bar)下用于吸附co2气体。

优选所述多孔硼碳氮纳米片在273和298k的co2吸附量分别5.20-6.00和3.50-4.50mmolco2g-1

优选所述多孔氮化硼纳米片在高压条件(相对压力1-40bar)下用于吸附co2气体。

优选所述多孔氮化硼纳米片在273和298k的co2吸附量分别1.50-3.50和1.00-2.00mmolco2g-1

本发明与现有技术相比具有如下优点:本发明制备了多孔硼碳氮(bcn)纳米片和多孔氮化硼(bn)纳米片,多孔硼碳氮纳米片具有较大的比表面积,丰富的超微孔结构和较多的化学缺陷,具有高的低压co2吸附能性,分离性能和循环吸附性能;多孔氮化硼纳米片具有大的比表面积和高的孔体积具有高的高压co2吸附性能。同时两者都制备过程简便、原料价格低廉、过程重复性好,可实现宏量制备,易于放大生产,具有高的热稳定性,适合捕获co2阶段完成之后材料的运输和储存。

附图说明

图1为实施例1产物的氦离子扫描电镜照片(him),图中(a)bcn,(b)bn;

图2为实施例1产物的x射线衍射(xrd)图;

图3为实施例1产物的高分辨透射电镜照片(hrtem):(a)bcn,(b)bn;

图4为实施例2产物的热重(tg)曲线;

图5为实施例3产物的x-射线光电子能谱(xps)谱图;

图6为实施例4产物的(a)比表面积和(b)孔分布数据;

图7为实施例5产物co2吸附性能,图中,(a)273k下co2的吸附能力,(b)298k下co2的吸附能力(c)吸附焓;

图8为实施例5产物吸附性能图,图中,(a)bn样品298k下co2,ch4和n2的吸附量,(b)bcn样品298k下co2,ch4和n2的吸附量,(c)bn和bcn样品co2/n2选择性吸附分离性能(iast计算),(d)bn和bcn样品co2/ch4选择性吸附分离性能(iast计算);

图9为实施例5的bcn产物室温下循环吸附能力;

图10为实施例5产物在298k条件下的高压co2吸附能力

具体实施方式

下面通过实施例对本发明做一详细的说明,但是本发明的权利要求范围并不受这些实施例的限制。同时,实施例只是给出了达到此目的的部分条件,并不意味着必须满足这些条件才可以实现此目的。

通过下列仪器和方法对本发明实施例1-8的最终产物进行检测:

采用orionnanofab(zeiss)扫描电镜表征分析,得到最终产物的行貌特征为带状结构;

采用empyreandiffractometer(panalytical)x射线衍射仪表征分析,得到最终产物的物相结构,样品对应与六方氮化硼的(002),(100)和(110)晶面;

采用jem-2100高分辨透射电镜表征分析,得到最终产物的结构信息,样品(002)晶面间距为0.35-0.37nm,大于六方氮化硼的(002)晶面间距(0.34nm),说明结构中存在错层-bn结构;

采用thermoescalab250xix-射线光电子能谱表征分析,得到最终产物的组成;

通过下述方法检测本发明实施例1-8的最终产物的热稳定性:

利用热重分析仪在空气气氛下进行热重测试,10℃/min升温速率从室温测试温度到1100℃,考察样品失重;

通过下述方法检测本发明实施例1-8的最终产物的比表面积:

利用氮气作为探针分子在77k温度下进行吸附-脱附实验,利用bet比表面积测试法得到比表面积;

通过下述方法检测本发明实施例1-8的最终产物的孔分布:

利用非定域密度函数理论(nldft)方法计算孔径分布;

通过下述方法检测本发明实施例1-8最终产物的循环吸附能力:

利用热重分析仪通过使用模拟烟道气(15%co2和85%n2)和氩气对)样品进行循环吸附-脱附实验。在40℃条件下样品吸附模拟烟道气2小时,随后切换成氩气并10℃/min升温至200℃并保持2小时来进行脱附,循环9次吸附-脱附实验,在吸附-脱附循环实验中,每一次的吸附和脱附发生的很快,同时在吸附量上没有明显的损失;

通过下述方法检测本发明实施例1-8最终产物的co2选择吸附能力

利用理想溶液吸附理论(iast)计算co2/n2,co2/ch4的选择吸附能力;

通过下述方法检测本发明实施例1-8最终产物的高压co2吸附能力

在室温条件下,在相对压力0-40bar压力条件下,对co2进行吸附-脱附实验,在高压条件下co2吸附量为产物的高压co2吸附能力。

多孔硼碳氮纳米片的比表面积为200-2000m2/g,优选为500-1000m2/g;孔径构成为微孔为主,具有丰富的超微孔(<0.7nm),含有介孔,孔径范围在0.3-15nm,微孔优选0.5-1.5nm,介孔优选为4-12nm;孔容为0.2-2ml/g,其中介孔占总孔容的20-80%;以总质量为100%计算,氮元素含量优选为25-35%,硼元素含量优选为20-30%,氧元素含量为10-22%,氢元素为1.0-2.0%,碳元素含量为8.0-15%;具有较多的化学缺陷。

氮化硼(bn)表面积为400-2500m2/g,优选为800-1500m2/g;孔径构成为微孔为主,含有介孔,孔径范围在0.3-15nm,微孔优选0.5-1.5nm,介孔优选为4-12nm;孔容为0.2-2.4ml/g,其中介孔占总孔容的20-90%;以样品总质量为100%计算,氮元素含量优选为38-43%,硼元素含量优选为35-40%,氧元素含量为5.0-10%,氢元素为0.8-1.5%,碳元素含量为0.5-1.0%。

实施例1

多孔硼碳氮(bcn)纳米片的制备:称量3.0914g的硼酸加入圆底烧瓶中,加入300ml蒸馏水,将圆底烧瓶置于60℃油浴锅中加热至恒温,硼酸完全溶解后,称量3.1541g三聚氰胺加入圆底烧瓶中,其中硼酸:三聚氰胺摩尔比为2:1,将圆底烧瓶瓶口加上胶塞,60℃搅拌3小时后,将油浴锅升温90℃,搅拌8h,随后将瓶口胶塞取下,90℃搅拌干燥。将干燥后的固体取出研钵研磨成细粉状。将研磨后的固体粉末加入到石英舟中,放入管式炉中,在氩气气氛下以2℃/min升温至800℃,保持6个小时,在氩气条件下降到室温,得到样品为bcn材料。

将bcn材料在氨气气氛下以2℃/min升温至800,保持6个小时,在氩气条件下降到室温,得到样品为多孔氮化硼(bn)纳米片。

图1为bcn和bn样品的him照片,照片中显示样品为具有微米尺寸的带状结构,两种气氛处理对形貌几乎无影响。

图2为bcn和bn样品的x射线衍射结果,bn样品的xrd谱中可以看到三个衍射峰,分别位于23.5°,42.7°和76.9°,对比六方氮化硼的标准pdf卡片,发现正好对应与六方氮化硼的(002),(100)和(110)晶面,从而可以确定改变不同前驱体的比例不会影响样品的晶形,说明该方法可以得到h-bn。基于(002)位置的衍射峰得到d002为0.372nm,大于体相h-bn结构(0.34nm),这说明制备得到的bn样品中存在t-bn(turbostraticbn)。得到的bcn样品,位于23.5°的衍射峰强度大幅度降低,这可能是由于碳物种存在引起的。在bcn样品的xrd中所有衍射峰峰宽变大,强度下降,表明bcn样品中存在很多无序结构和缺陷。

图3为bn和bcn样品的高分辨透射照片,bn样品层数堆叠最多为6层。其中(002)晶面间距为0.35-0.37nm,大于六方氮化硼的(002)晶面间距(0.34nm),说明结构中存在错层-bn结构。对于bcn样品,高分辨透射电镜照片与活性碳相似,样品有很多的孔状结构有序的分散,呈现出多孔,即多缺陷结构。

多孔bn样品在273和298k的co2吸附量分别2.92mmol和1.66mmolco2g-1,多孔bcn样品在298和273k的co2吸附量分别3.91和5.38mmolco2g-1,bn的吸附焓为28kj/mol,bcn的吸附焓为35kj/mol。

以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,bn样品在1bar下的co2/n2的选择性为20,bcn样品在1bar下的co2/n2的选择性高达82;并且co2/ch4选择性利用15/85的混合气体计算,bn样品在1bar下的co2/ch4的选择性为24,bcn样品在1bar下的co2/ch4的选择性高达12。在298k和40bar条件下,bcn的co2吸附为15.0mmolg-1,bn的co2吸附为18.2mmolg-1

实施例2

多孔硼碳氮(bcn)纳米片的制备:称量3.0899g的硼酸加入圆底烧瓶中,加入300ml蒸馏水,将圆底烧瓶置于60℃油浴锅中加热至恒温,硼酸完全溶解后,称量6.3047g三聚氰胺加入圆底烧瓶中,其中硼酸:三聚氰胺的摩尔比为1:1,将圆底烧瓶瓶口加上胶塞,60℃搅拌2小时后,将油浴锅升温100℃,搅拌7h,随后将瓶口胶塞取下,100℃搅拌干燥。将干燥后的固体取出研钵研磨成细粉状。将研磨后的固体粉末加入到石英舟中,放入管式炉中,在氩气气氛下以10℃/min升温至800℃,保持4个小时,在氩气条件下降到室温,得到样品为多孔硼碳氮(bcn)纳米片。

将多孔硼碳氮(bcn)纳米片在氨气气氛下以10℃/min升温至800℃,保持4个小时,在氩气条件下降到室温,得到样品为多孔氮化硼(bn)纳米片。

图4为bn和bcn样品进行了热稳定性的测试分析,在空气气氛下进行热重测试,测试温度到1100℃。bn样品在空气气氛中到900℃都表现出很好的稳定性,在更高的温度下bn样品被氧化,导致重量增加,1000℃被完全氧化。bcn样品中存在一定的碳物种,同时对比bn样品存在大量的缺陷位,会在一定程度上降低样品的热稳定性。bcn样品的失重可能由于碳物种和表面吸附的水等其他不稳定的物质随温度的变化脱出表面造成的,bcn完全氧化温度在980℃说明bcn本身的也具有较好的稳定性。

多孔bn样品在273和298k的co2吸附量分别3.10和1.84mmolco2g-1,多孔bcn样品在298和273k的co2吸附量分别4.11和5.59mmolco2g-1,bn的吸附焓为30kj/mol,bcn的吸附焓为37kj/mol。以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,bn样品在1bar下的co2/n2的选择性为22,bcn样品在1bar下的co2/n2的选择性高达86;并且co2/ch4选择性利用15/85的混合气体计算,bn样品在1bar下的co2/ch4的选择性为25,bcn样品在1bar下的co2/ch4的选择性高达13。在298k和40bar条件下,bcn的co2吸附为17.1mmolg-1,bn的co2吸附为20.2mmolg-1

实施例3

多孔硼碳氮(bcn)纳米片的制备:称量3.0673g的硼酸加入圆底烧瓶中,加入300ml蒸馏水,将圆底烧瓶置于60℃油浴锅中加热至恒温,硼酸完全溶解后,称量6.3221g三聚氰胺加入圆底烧瓶中,其中硼酸:三聚氰胺的摩尔比为1:1,将圆底烧瓶瓶口加上胶塞,60℃搅拌3小时后,将油浴锅升温至90℃,搅拌8h,随后将瓶口胶塞取下,100℃搅拌干燥。将干燥后的固体取出研钵研磨成细粉状。将研磨后的固体粉末加入到石英舟中,放入管式炉中,在氩气气氛下以5℃/min升温至700℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔硼碳氮(bcn)纳米片。

将多孔硼碳氮(bcn)纳米片在氨气气氛下以5℃/min升温至900℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔氮化硼(bn)纳米片。

图5为bcn和bn样品的xps谱,图(a)为是样品的全谱,表明化合物中只有b,c,n和o四种元素,bcn样品中c1s谱图中284.6ev归属为c-c键,另外两个组分结合能位于285.4和286.5ev分别归属为b-c-n2和c-n3键,结合能高于287.0ev归属为不同种类的c-o键。b1s谱图中有三个峰,为190.3,191.0和192.1ev分别归属为c-b-n,bn3和o-b-n2结构。n1s谱图中拟为三个峰(398,398.8和399.6ev)为别归属为n-b3,n-c,n-h或n-o结构。从xps分析中可以看到c-n,b-c-n,c-c和c-b-n键的存在说明c掺杂到bn骨架中形成bcn结构同时证实了表面缺陷的存在。而在bn样品中n1s和b1s的峰比bcn样品窄,同时c-n,b-c-n,o-b-c,和o-c键的组分大大减少。

多孔bn样品在273和298k的co2吸附量分别3.21和1.91mmolco2g-1,多孔bcn样品在298和273k的co2吸附量分别4.31和5.89mmolco2g-1,bn的吸附焓为29kj/mol,bcn的吸附焓为38kj/mol。以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,bn样品在1bar下的co2/n2的选择性为22,bcn样品在1bar下的co2/n2的选择性高达87;并且co2/ch4选择性利用15/85的混合气体计算,bn样品在1bar下的co2/ch4的选择性为26,bcn样品在1bar下的co2/ch4的选择性高达14。在298k和40bar条件下,bcn的co2吸附为17.5mmolg-1,bn的co2吸附为21.0mmolg-1

实施例4

多孔硼碳氮(bcn)纳米片的制备:称量3.0914g的硼酸加入圆底烧瓶中,加入300ml蒸馏水,将圆底烧瓶置于60℃油浴锅中加热至恒温,硼酸完全溶解后,称量23.2081g三聚氰胺加入圆底烧瓶中,其中硼酸:三聚氰胺的摩尔比为1:4,将圆底烧瓶瓶口加上胶塞,60℃搅拌1小时后,将油浴锅升温至80℃,搅拌10h,随后将瓶口胶塞取下,80℃搅拌干燥。将干燥后的固体取出研钵研磨成细粉状。将研磨后的固体粉末加入到石英舟中,放入管式炉中,在氩气气氛下以10℃/min升温至800℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔硼碳氮(bcn)纳米片。

将多孔硼碳氮(bcn)纳米片在氨气气氛下以10℃/min升温至800℃,保持4个小时,在氩气条件下降到室温,得到样品为多孔氮化硼(bn)纳米片。

图6为bcn和bn样品的比表面积和孔分布曲线,吸附-脱附曲线显示在低压范围内吸附量显著上升,表明材料的微孔特征。在相对压力大于0.4bar时脱附曲线有明显的迟滞,说明样品具有介孔结构。按照brunauer的分类,该等温曲线为iv型等温曲线。bn样品的比表面积大于bcn样品,主要由于氨化过程中碳物种的除去增加了比表面积。利用特别针对碳材料开发的骤冷固体密度函数理论(qsdft)计算得到多孔材料的孔分布。与bn样品相比,bcn样品的总孔体积和微孔孔体积是降低的,由于碳物种的存在占据着一定的空间,但是bcn样品的超微孔结构明显比bn样品丰富,可能是bcn样品内部结构堆积形成大量的超微孔。对于bn样品,氨化过程除去大量的碳物种从而损失了许多超微孔结构,增加了总的孔体积。

多孔bn样品在273和298k的co2吸附量分别1.99和1.31mmolco2g-1,多孔bcn样品在298和273k的co2吸附量分别3.59和5.29mmolco2g-1,bn的吸附焓为27kj/mol,bcn的吸附焓为34kj/mol。以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,bn样品在1bar下的co2/n2的选择性为16,bcn样品在1bar下的co2/n2的选择性高达72;并且co2/ch4选择性利用15/85的混合气体计算,bn样品在1bar下的co2/ch4的选择性为19,bcn样品在1bar下的co2/ch4的选择性高达9。在298k和40bar条件下,bcn的co2吸附为16.9mmolg-1,bn的co2吸附为18.5mmolg-1

实施例5

多孔硼碳氮(bcn)纳米片的制备:称量3.0914g的硼酸加入圆底烧瓶中,加入300ml蒸馏水,将圆底烧瓶置于60℃油浴锅中加热至恒温,硼酸完全溶解后,称量12.6147g三聚氰胺加入圆底烧瓶中,其中硼酸:三聚氰胺摩尔比为1:2,将圆底烧瓶瓶口加上胶塞,60℃搅拌3小时后,将油浴锅升温至90℃,搅拌8h,随后将瓶口胶塞取下,90℃搅拌干燥。将干燥后的固体取出研钵研磨成细粉状。将研磨后的固体粉末加入到石英舟中,放入管式炉中,在氩气气氛下以2℃/min升温至800℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔硼碳氮(bcn)纳米片。

将多孔硼碳氮(bcn)纳米片在氨气气氛下以2℃/min升温至800℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔氮化硼(bn)纳米片。

图7多孔bn样品在273和298k的co2吸附量分别2.14和1.27mmolco2g-1,多孔bcn样品在273和298k的co2吸附量分别3.85和5.36mmolco2g-1,bn的吸附焓为27kj/mol,bcn的吸附焓为33kj/mol。

图8中以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,bn样品在1bar下的co2/n2的选择性为18,bcn样品在1bar下的co2/n2的选择性高达74;并且co2/ch4选择性利用15/85的混合气体计算,bn样品在1bar下的co2/ch4的选择性为20,bcn样品在1bar下的co2/ch4的选择性高达10。

图9为bcn样品在室温条件下循环吸附-脱附co2实验结果,循环进行9次吸附-脱附,发现样品的吸附能力几乎没有下降,说明样品具有很好的循环吸附能力。

图10为bcn和bn样品的高压吸附co2曲线,低压区域bcn的co2吸附量高于bn材料,当压力增加时,bn的吸附量超过bcn样品,在298k和40bar条件下,bcn的co2吸附为16.7mmolg-1,bn的co2吸附为19.0mmolg-1

实施例6

多孔硼碳氮(bcn)纳米片的制备:称量1.7402g的氧化硼加入圆底烧瓶中,加入200ml蒸馏水,将圆底烧瓶置于60℃油浴锅中加热至恒温,氧化硼完全溶解后,称量12.6147g三聚氰胺加入圆底烧瓶中,其中氧化硼:三聚氰胺摩尔比为1:2,将圆底烧瓶瓶口加上胶塞,60℃搅拌3小时后,将油浴锅升温至90℃,搅拌8h,随后将瓶口胶塞取下,90℃搅拌干燥。将干燥后的固体取出研钵研磨成细粉状。将研磨后的固体粉末加入到石英舟中,放入管式炉中,在氩气气氛下以10℃/min升温至800℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔硼碳氮(bcn)纳米片。

将多孔硼碳氮(bcn)纳米片在氨气气氛下以10℃/min升温至800℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔氮化硼(bn)纳米片。

多孔bn样品在273和298k的co2吸附量分别1.55和1.09mmolco2g-1,多孔bcn样品在298和273k的co2吸附量分别3.51和5.20mmolco2g-1,bn的吸附焓为26kj/mol,bcn的吸附焓为32kj/mol。以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,bn样品在1bar下的co2/n2的选择性为16,bcn样品在1bar下的co2/n2的选择性高达71;并且co2/ch4选择性利用15/85的混合气体计算,bn样品在1bar下的co2/ch4的选择性为18,bcn样品在1bar下的co2/ch4的选择性高达8。在298k和40bar条件下,bcn的co2吸附为15.2mmolg-1,bn的co2吸附为18.6mmolg-1

实施例7

多孔硼碳氮(bcn)纳米片的制备:称量1.7802g的氧化硼加入圆底烧瓶中,加入2000ml蒸馏水,将圆底烧瓶置于60℃油浴锅中加热至恒温,氧化硼完全溶解后,称量90.0921g尿素加入圆底烧瓶中,其中氧化硼:尿素摩尔比为1:60,将圆底烧瓶瓶口加上胶塞,60℃搅拌3小时后,将油浴锅升温至90℃,搅拌8h,随后将瓶口胶塞取下,90℃搅拌干燥。将干燥后的固体取出研钵研磨成细粉状。将研磨后的固体粉末加入到石英舟中,放入管式炉中,在氩气气氛下以2℃/min升温至800℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔硼碳氮(bcn)纳米片。

将多孔硼碳氮(bcn)纳米片在氨气气氛下以2℃/min升温至800℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔氮化硼(bn)纳米片。

多孔bn样品在273和298k的co2吸附量分别2.67和1.49mmolco2g-1,多孔bcn样品在298和273k的co2吸附量分别4.03和5.60mmolco2g-1,bn的吸附焓为27kj/mol,bcn的吸附焓为36kj/mol。以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,bn样品在1bar下的co2/n2的选择性为19,bcn样品在1bar下的co2/n2的选择性高达76;并且co2/ch4选择性利用15/85的混合气体计算,bn样品在1bar下的co2/ch4的选择性为23,bcn样品在1bar下的co2/ch4的选择性高达11。在298k和40bar条件下,bcn的co2吸附为16.3mmolg-1,bn的co2吸附为20.4mmolg-1

实施例8

硼碳氮(bcn)的制备:称量1.7102g的氧化硼加入圆底烧瓶中,加入150ml蒸馏水和150ml甲醇,将圆底烧瓶置于60℃油浴锅中加热至恒温,氧化硼完全溶解后,称量0.2628g双氰胺加入圆底烧瓶中,其中氧化硼与双氰胺的摩尔比为8:1,将圆底烧瓶瓶口加上胶塞,60℃搅拌3小时后,将油浴锅升温至90℃,搅拌8h,随后将瓶口胶塞取下,90℃搅拌干燥。将干燥后的固体取出研钵研磨成细粉状。将研磨后的固体粉末加入到石英舟中,放入管式炉中,在氩气气氛下以5℃/min升温至700℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔硼碳氮(bcn)纳米片。

将bcn材料在氨气气氛下以5℃/min升温至900℃,保持6个小时,在氩气条件下降到室温,得到样品为多孔氮化硼(bn)纳米片。

多孔bn样品在273和298k的co2吸附量分别2.94和1.87mmolco2g-1,多孔bcn样品在298和273k的co2吸附量分别4.33和5.68mmolco2g-1,bn的吸附焓为28kj/mol,bcn的吸附焓为37kj/mol。以体积比为15/85的co2/n2计算co2相对于氮气的选择性,在混合气体为1bar下,bn样品在1bar下的co2/n2的选择性为21,bcn样品在1bar下的co2/n2的选择性高达78;并且co2/ch4选择性利用15/85的混合气体计算,bn样品在1bar下的co2/ch4的选择性为25,bcn样品在1bar下的co2/ch4的选择性高达13。在298k和40bar条件下,bcn的co2吸附为16.9mmolg-1,bn的co2吸附为21.1mmolg-1

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1