一种污水处理用烧结多孔陶瓷片及其制备方法与流程

文档序号:14274818阅读:271来源:国知局

本发明属于污水处理技术领域,特别涉及一种污水处理用烧结多孔陶瓷片及其制备方法。



背景技术:

生活污水是当前水污染尤其是城市水体污染的主要来源,但由于生活污水中有机质含量较少,其cod<1000mg/l,属于低浓度有机废水,不适宜于直接用于厌氧发酵处理,目前对生活污水的处理多采用化学沉淀和好氧法结合进行,此方法不仅处理成本高而且污水含有的有机质还不能进行充分利用。多孔陶瓷是快速发展起来的一种新型材料,其不仅强度大、耐酸碱,而且其大比表面积和多孔特性广泛应用于物质过滤、分离和有害物质去除。近年来,随着学科的交叉发展,多孔陶瓷已在污水净化方面开始应用,如利用多孔陶瓷制作微滤膜处理印染废水和制作生物反应装置对水质进行净化处理,但这种应用形式一般都是利用多孔陶瓷的多孔特性作为微生物寄生的填料以便快速形成活性污泥,这种处理形式在反应装置启动初期会有很好的处理效果,但随着微生物在多孔陶瓷上的聚集繁衍以及有机质的沉积作用,多孔陶瓷空隙被逐步堵塞,其对水质的净化效果会逐步下降,使水处理装置失去应有的意义

公开号为cn102242456a的中国专利申请公开了一种利用多孔陶瓷吸附污水中有机质制取沼气的方法及装置,其部分解决的了上述问题,但其并没有公开具体的多孔陶瓷材料的组分和制备,并且其多孔陶瓷的目的仍然是作为吸附载体,而不是多孔陶瓷本身进行污水处理。



技术实现要素:

为解决上述问题,本发明提供一种污水处理用烧结多孔陶瓷片及其制备方法。

为实现上述目的之一,本发明采用的技术方案为:

一种污水处理用烧结多孔陶瓷片,所述多孔陶瓷片的厚度为3-8mm,为平片状结构,外周形状与其应用的场所相适配,并且外周还设有分散布置的卡槽结构,所述多孔陶瓷总的孔隙度为10-20vol%,其中孔径为10-100μm的占50-70%,0.1-10μm的占30-50%;所述烧结多孔陶瓷片由下列组分的原料通过混料、压制、烧结制备:碳化硅40-44份,氮化硅12-14份,氧化铝15-17份,硅藻土22-26份,石墨5-7份,树脂3-5份,钢渣6-8份,粉煤灰4-6份,钴金属8-10份,其中碳化硅、氮化硅、氧化铝、钢渣的粒度为80-250目,硅藻土和粉煤灰的粒度为200-400目,钴金属的粒度为-200目。

进一步,所述多孔陶瓷片的厚度为4-6mm,为平片状结构,外周形状与其应用的场所相适配,并且外周还设有分散布置的卡槽结构,所述多孔陶瓷总的孔隙度为12-16vol%,其中孔径为10-100μm的占50-60%,0.1-10μm的占40-50%;所述烧结多孔陶瓷片由下列组分的原料通过混料、压制、烧结制备:碳化硅41-43份,氮化硅12.5-13.5份,氧化铝15.5-16.5份,硅藻土23-25份,石墨5.5-6.5份,树脂3.5-4.5份,钢渣6.5-7.5份,粉煤灰4.5-5.5份,钴金属8.5-9.5份,其中碳化硅、氮化硅、氧化铝、钢渣的粒度为80-250目,硅藻土和粉煤灰的粒度为200-400目,钴金属的粒度为-200目。

进一步,所述多孔陶瓷片的厚度为5mm,为平片状结构,外周形状与其应用的场所相适配,并且外周还设有分散布置的卡槽结构,所述多孔陶瓷总的孔隙度为12-16vol%,其中孔径为10-100μm的占50-60%,0.1-10μm的占40-50%;所述烧结多孔陶瓷片由下列组分的原料通过混料、压制、烧结制备:碳化硅42份,氮化硅13份,氧化铝16份,硅藻土24份,石墨6份,树脂4份,钢渣7份,粉煤灰5份,钴金属9份,其中碳化硅、氮化硅、氧化铝、钢渣的粒度为80-250目,硅藻土和粉煤灰的粒度为200-400目,钴金属的粒度为-200目。

为实现上述目的之二,本发明采用的技术方案为:

一种污水处理用烧结多孔陶瓷片的制备方法为,将上述原料按比例配料,然后在混料机内混合8-12小时,然后用模具压制成片状皮料,所述压制的压力为100-200mpa,然后用烧结炉烧结,烧结的工艺为,室温到300℃,升温速度为3-5℃/min,然后在300℃保温,保温期间利用机械泵对炉内气氛进行抽取,至真空度为10-100pa,停止抽真空;继续升温,升温速度为10-12℃/min,直至升温至1800-1900℃,保温180-210min,然后随炉冷却,获得烧结多孔陶瓷片。

进一步,混料机内混合10小时,然后用模具压制成片状皮料,所述压制的压力为150mpa,然后用烧结炉烧结,烧结的工艺为,室温到300℃,升温速度为4℃/min,然后在300℃保温,保温期间利用机械泵对炉内气氛进行抽取,至真空度为50pa,停止抽真空;继续升温,升温速度为11℃/min,直至升温至1850℃,保温195min,然后随炉冷却,获得烧结多孔陶瓷片。

本发明的碳化硅、氮化硅和氧化铝为形成多孔陶瓷的骨架,提供基体强度和硬度,在混合过程中,硅藻土、石墨、树脂、钢渣和粉煤灰包覆上述骨架颗粒的外围,钴金属作为粘接剂在随后的烧结过程中连接上述颗粒,其中的树脂在随后的烧结过程中烧蚀挥发被抽真空抽走,形成烧结多孔陶瓷的整体主体结构的孔隙,而硅藻土、石墨、钢渣和粉煤灰烧结后富集在主体骨架的颗粒上而形成在主体骨架上的具有微小孔隙的多孔包覆颗粒结构。从而使得本发明在使用过程中,主体结构的孔隙可起到物理吸附、过滤的效果,而微小孔隙可以起到絮凝、化学、电化学分解、解离污染物的效果,从而使得本发明的陶瓷片处理污水的能力大大提升。

与现有技术相比,本发明的技术方案具有以下优点:

1.本发明的烧结多孔陶瓷片针对本发明的截管的结构而设计,多孔孔径分布合理,采用的处理材料结合物理过滤、吸附和化学絮凝、分解相结合,经过上游端烧结多孔陶瓷片后,对于一般污水使得常规污染物的处理率达到75%以上,当水质污染不太严重时,单独使用时,可使水体净化率达到90%以上;且污水通过性好,不易堵塞。

2.本发明的烧结多孔陶瓷片应用广泛,既可以单独做污水处理设施使用,也可以联合其他处理手段联合使用。

具体实施方式

下面将参照更详细地描述本公开的示例性实施方式。虽然显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。

实施例1

一种污水处理用烧结多孔陶瓷片,所述多孔陶瓷片的厚度为3mm,为平片状结构,外周形状与其应用的场所相适配,并且外周还设有分散布置的卡槽结构,所述多孔陶瓷总的孔隙度为20vol%,其中孔径为10-100μm的占50%,0.1-10μm的占50%;所述烧结多孔陶瓷片由下列组分的原料通过混料、压制、烧结制备:碳化硅40份,氮化硅14份,氧化铝15份,硅藻土26份,石墨5份,树脂5份,钢渣6份,粉煤灰6份,钴金属8份,其中碳化硅、氮化硅、氧化铝、钢渣的粒度为80-250目,硅藻土和粉煤灰的粒度为200-400目,钴金属的粒度为-200目。

所述烧结多孔陶瓷片的制备方法为,将上述原料按比例配料,然后在混料机内混合8小时,然后用模具压制成片状皮料,所述压制的压力为200mpa,然后用烧结炉烧结,烧结的工艺为,室温到300℃,升温速度为3℃/min,然后在300℃保温,保温期间利用机械泵对炉内气氛进行抽取,至真空度为100pa,停止抽真空;继续升温,升温速度为10℃/min,直至升温至1900℃,保温180min,然后随炉冷却,获得烧结多孔陶瓷片。

实施例2

一种污水处理用烧结多孔陶瓷片,所述多孔陶瓷片的厚度为8mm,为平片状结构,外周形状与其应用的场所相适配,并且外周还设有分散布置的卡槽结构,所述多孔陶瓷总的孔隙度为10vol%,其中孔径为10-100μm的占70%,0.1-10μm的占30%;所述烧结多孔陶瓷片由下列组分的原料通过混料、压制、烧结制备:碳化硅44份,氮化硅12份,氧化铝17份,硅藻土22份,石墨7份,树脂3份,钢渣8份,粉煤灰4份,钴金属10份,其中碳化硅、氮化硅、氧化铝、钢渣的粒度为80-250目,硅藻土和粉煤灰的粒度为200-400目,钴金属的粒度为-200目。

所述烧结多孔陶瓷片的制备方法为,将上述原料按比例配料,然后在混料机内混合12小时,然后用模具压制成片状皮料,所述压制的压力为100mpa,然后用烧结炉烧结,烧结的工艺为,室温到300℃,升温速度为5℃/min,然后在300℃保温,保温期间利用机械泵对炉内气氛进行抽取,至真空度为10pa,停止抽真空;继续升温,升温速度为12℃/min,直至升温至1800℃,保温210min,然后随炉冷却,获得烧结多孔陶瓷片。

实施例3

一种污水处理用烧结多孔陶瓷片,所述多孔陶瓷片的厚度为5mm,为平片状结构,外周形状与其应用的场所相适配,并且外周还设有分散布置的卡槽结构,所述多孔陶瓷总的孔隙度为12-16vol%,其中孔径为10-100μm的占50-60%,0.1-10μm的占40-50%;所述烧结多孔陶瓷片由下列组分的原料通过混料、压制、烧结制备:碳化硅42份,氮化硅13份,氧化铝16份,硅藻土24份,石墨6份,树脂4份,钢渣7份,粉煤灰5份,钴金属9份,其中碳化硅、氮化硅、氧化铝、钢渣的粒度为80-250目,硅藻土和粉煤灰的粒度为200-400目,钴金属的粒度为-200目。

所述烧结多孔陶瓷片的制备方法为,将上述原料按比例配料,然后在混料机内混合10小时,然后用模具压制成片状皮料,所述压制的压力为150mpa,然后用烧结炉烧结,烧结的工艺为,室温到300℃,升温速度为4℃/min,然后在300℃保温,保温期间利用机械泵对炉内气氛进行抽取,至真空度为50pa,停止抽真空;继续升温,升温速度为11℃/min,直至升温至1850℃,保温195min,然后随炉冷却,获得烧结多孔陶瓷片。

试验验证

表1污水处理试验

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1