一种Ti3C2‑Co(OH)(CO3)0.5纳米复合材料的制备方法与流程

文档序号:14237208阅读:1541来源:国知局
一种Ti3C2‑Co(OH)(CO3)0.5纳米复合材料的制备方法与流程

本发明属于纳米功能材料及电化学储能材料的制备技术领域,特别涉及一种ti3c2-co(oh)(co3)0.5纳米复合材料的制备方法。



背景技术:

新型二维材料mxene是一种类石墨烯结构的过渡金属碳氮化物或碳化物,如ti3c2、ti2c等。ti3c2纳米材料通过hf选择性腐蚀除去max相ti3alc2中的al层元素制得,并可保持原来max结构不变。二维碳化物ti3c2良好的稳定性,较大的比表面积、高的弯曲强度和弹性模量、优异的电学性能和导电性,预示着这种材料可以作为复合材料的理想基体,在电化学、复合材料增强等领域应用前景广阔。

naguib等人采用酸刻蚀的方法,将ti3alc2在室温下完全浸润在氢氟酸中一定的时间后,al原子层被完全剥离出来。

maria等人按ti3c2:导电剂:粘结剂质量比=85%:10%:5%的比例在koh溶液中采用三电极非对称体系对ti3c2的电化学性能进行表征。实验结果表明,ti3c2的体积比容量在koh溶液中可达340f/cm3,且层间距增大。

sun等人将ti3c2作为锂离子电极负极材料,测试结果表明,在1c的倍率下,锂离子电池容量可达123.6mah/g,库伦效率约为47%。然而ti3c2理论比容量较小,导致其电化学性能欠佳,mxene基在超级电容器和锂离子电池等储能领域的应用也有待进一步研究。

碱式碳酸钴co(oh)(co3)0.5是制备纳米co3o4材料的良好前驱体,因此近年来得到了人们的广泛关注。碱式碳酸钴受热易分解,但其分解产物杂质少,所以非常适用于各种钴材料的加工制造,常用作电子材料、磁性材料的添加剂。近年来在碱式碳酸盐晶体结构、热稳定性以及表面性质等方面的研究已取得了长足进展。然而,在其电化学性能方面的研究至今还不成熟。

zhouw.j.等人通过电化学沉积法将活性物质co(oh)2直接沉积在基体上,并将其作为超级电容器的工作电极进行测试,比电容高达1084f/g。

搜索文献,发现至今尚未有人利用co(oh)(co3)0.5来改善ti3c2的电化学性能。本发明以导电性好、结构稳定的二维ti3c2陶瓷粉体为基体,以co(no3)2·6h2o为钴源,co(nh2)2为沉淀剂,pvp作为结构导向剂,通过水热法在80-85℃原位生长成功制备ti3c2@co(oh)(co3)0.5纳米复合材料。并将其组装成三电极体系的超级电容器,ti3c2-co(oh)(co3)0.5表现了良好的电化学性能,且本发明实验过程简单,产物形貌可控,安全环保,为其进一步在锂离子电池和超级电容器等储能领域的应用奠定了基础。



技术实现要素:

为了克服上述现有技术的缺陷,本发明的目的在于提供一种ti3c2-co(oh)(co3)0.5纳米复合材料的制备方法,利用水热法原位生长co(oh)(co3)0.5制备得到形貌多样的ti3c2-co(oh)(co3)0.5纳米复合材料,这种方法实验过程简单、成本低、环保、co(oh)(co3)0.5形貌利于控制,并且增大ti3c2的比表面积,改善了超级电容器电极材料。

为了实现上述目的,本发明采用的技术方案是:

一种ti3c2-co(oh)(co3)0.5纳米复合材料的制备方法,包括下述步骤:

步骤一,制备三元ti3alc2陶瓷粉体;

步骤二,制备二维层状ti3c2纳米材料;

步骤三,一种ti3c2-co(oh)(co3)0.5纳米复合材料的制备;

首先,将145.5-1164mgco(no3)2·6h2o和步骤(2)所得的二维层状ti3c2纳米粉体200mg溶于超纯水中,在磁力搅拌下先后加入100-800mgco(nh2)2和200-1600gpvp持续搅拌0.5-2h得到混合液;其次,将体积分数为75%混合液转移到100ml的水热反应釜聚四氟乙烯内衬中,将组装好的水热反应釜升温至80-85℃保温6-12h;然后,将自然冷却至室温的产物依次用超纯水和无水乙醇分别离心分离清洗3次,每次4000-6000r/min离心3-5min;最后,于真空干燥箱中40℃干燥12-24h后得到所需ti3c2@co(oh)(co3)0.5纳米复合材料。

步骤四,ti3c2-co(oh)(co3)0.5电极的制备;

首先,将泡沫镍裁剪成1*2cm2大小的长方形,依次称取160-200mg的活性物质即步骤三所得ti3c2@co(oh)(co3)0.5纳米粉体,20-30mg的导电乙炔黑,1-10mg的聚偏二氟乙烯,在玛瑙研钵中研磨1-2h;其次,用移液枪吸取300μl的nmp研磨均匀后,浆料平均滴加在裁剪好的泡沫镍上,并将滴加好的泡沫镍在真空干燥箱中60-80℃干燥12-24h;再次,将制好的电极片在压片机下15-20mpa保压1min既得ti3c2@co(oh)(co3)0.5电极。

所述的步骤一制备三元层状ti3alc2陶瓷粉体,具体为:首先,根据摩尔比为ti:al:tic=1.0:1.2:2.0的比例将三种原料混合;其次,将三种原料置于球磨罐内,以氧化铝球作为研磨介质,无水乙醇作为球磨助剂,球磨机转速为900转/分钟,按照质量比为球:料:乙醇=3.0:1.0:1.0的比例,普通球磨1h获得均匀粉末,并在40℃恒温干燥烘箱将其烘干;然后,将干燥好的混料置于刚玉坩埚内,采用真空无压烧结的方法,以8℃/min的升温速率加热至1350℃,保温1h,随炉冷却至室温得到高纯ti3alc2陶瓷粉料。

最后,对ti3alc2陶瓷粉料进行湿法高能球磨3h,每30分钟一次,转速400r/min,钢球和陶瓷粉料的质量比为10:1,将磨细的粉体过筛,即得到粒径小于38μm的三元ti3alc2陶瓷粉体。

所述的步骤二制备二维层状ti3c2纳米材料,具体为:取5g步骤(一)中所得ti3alc2陶瓷粉体缓缓浸没在100ml40wt%氢氟酸溶液中,至不在冒气泡后将其室温下磁力搅拌48h,转速为1200r/min,将腐蚀产物用去离子水离心清洗至上清液ph值约为5-6时,再用无水乙醇离心4次,最后将黑色沉淀于40℃真空干燥24h,即得到二维层状ti3c2纳米粉体。

产物验证:

采用三电极体系,以ti3c2@co(oh)(co3)0.5电极作为工作电极,铂片作为对电极,银氯化银为参比电极,在6m的koh电解液下,使用上海辰华chi660e电化学工作站测试ti3c2@co(oh)(co3)0.5电极的电化学性能,如循环伏安曲线、恒电流充放电、交流阻抗。ti3c2-co(oh)(co3)0.5表现了良好的电化学性能,cv曲线图接近规整的矩形,对称性较好;循环曲线所形成的区域随着扫描速率的增加而增大,但图形的大致形状基本不变,表现出了良好的倍率性能。

本发明的有益效果:

1、本发明首先在浓度为40wt%的hf溶液中选择性腐蚀掉三元ti3alc2陶瓷粉体的al层,形成二维层状ti3c2纳米材料。然后,以二维ti3c2纳米材料为基体,以co(no3)2·6h2o为钴源,co(nh2)2为沉淀剂均匀搅拌后,将混合液通过水热法在80-85℃原位生长成功制备ti3c2@co(oh)(co3)0.5纳米复合材料。并将其组装成三电极体系的超级电容器,以6mkoh溶液作为电解液、ti3c2-co(oh)(co3)0.5作为工作电极、铂电极作为对电极、银/氯化银电极作为参比电极进行循环伏安测试,ti3c2-co(oh)(co3)0.5表现了良好的电化学性能,且本发明实验过程简单,产物形貌可控,安全环保,为其进一步在锂离子电池和超级电容器等储能领域的应用奠定了基础。

2、将制备得到的形貌多样的ti3c2-co(oh)(co3)0.5纳米复合材料作为超级电容器的活性电极,在chi660e电化学工作站上进行测试,展示出了其良好的电化学性能,为ti3c2-co(oh)(co3)0.5在超级电容器、锂离子电池方面的应用奠定了基础。

附图说明

图1是ti3c2-co(oh)(co3)0.5纳米复合材料的xrd图,其中a、b、c、d四条曲线分别为实施例一、二、三、四的xrd图。

图2是ti3c2-co(oh)(co3)0.5纳米复合材料的sem图,其中a、b、c、d分别为实施例一、二、三、四的sem图。

图3是实施例三ti3c2-co(oh)(co3)0.5纳米复合材料在三电极系统下不同扫描速率的循环伏安曲线图。

具体实施方式

下面结合附图与实施例对本发明做进一步详细说明。

实施例一

本实施例包括以下步骤:

步骤一,三元ti3alc2陶瓷粉体的制备;

按照专利zl201310497696.9的方法制备三元层状ti3alc2陶瓷粉体:首先,根据摩尔比为ti:al:tic=1.0:1.2:2.0的比例将三种原料混合;其次,将三种原料置于球磨罐内,以氧化铝球作为研磨介质,无水乙醇作为球磨助剂,球磨机转速为900转/分钟,按照质量比为球:料:乙醇=3.0:1.0:1.0的比例,普通球磨1h获得均匀粉末,并在40℃恒温干燥烘箱将其烘干;然后,将干燥好的混料置于刚玉坩埚内,采用真空无压烧结的方法,以8℃/min的升温速率加热至1350℃,保温1h,随炉冷却至室温得到高纯ti3alc2陶瓷粉料。

最后,对ti3alc2陶瓷粉料进行湿法高能球磨3h,每30分钟一次,转速400r/min,钢球和陶瓷粉料的质量比为10:1,将磨细的粉体过筛,即得到粒径小于38μm的ti3alc2陶瓷粉体。

步骤二,二维层状ti3c2纳米材料的制备;

按照专利201410812056.7的方法制备二维层状ti3c2纳米材料:取5g步骤(一)中所得ti3alc2陶瓷粉体缓缓浸没在100ml40wt%氢氟酸溶液中,至不在冒气泡后将其室温下磁力搅拌48h,转速为1200r/min,将腐蚀产物用去离子水离心清洗至上清液ph值约为5-6时,再用无水乙醇离心4次。最后将黑色沉淀于40℃真空干燥24h,即得到二维层状ti3c2纳米粉体。

步骤三,一种ti3c2-co(oh)(co3)0.5纳米复合材料的制备;

首先,将1164mgco(no3)2·6h2o和步骤(2)所得的ti3c2纳米粉体200mg溶于超纯水中,在磁力搅拌下先后加入800mgco(nh2)2和1600mgpvp持续搅拌2h得到混合液;其次,将体积分数为75%混合液转移到100ml的水热反应釜聚四氟乙烯内衬中,将组装好的水热反应釜升温至82℃保温8h;然后,将自然冷却至室温的产物依次用超纯水和无水乙醇分别离心分离清洗3次,每次4000-6000r/min离心3-5min;最后,于真空干燥箱中40℃干燥24h后得到所需ti3c2@co(oh)(co3)0.5纳米复合材料。从图1的a曲线可以看出,在2θ=36°,42°,62°分别对应于(111),(200),(220)晶面的ti3c2的特征峰外,还有在2θ=18°,25°,34°对应于pdf标准卡片号为48-0083的co(oh)(co3)0.5的(020)、(111)、(221)晶面的衍射峰。表明通过水热法成功制备了ti3c2@前驱体co(oh)(co3)0.5复合材料。从图2的a图可以看出来,由于反应体系中负载量太多,co(oh)(co3)0.5在ti3c2表面生成了较厚的包裹层,co(oh)(co3)0.5呈纳米片状,且自组装呈花状图像。

步骤四,ti3c2-co(oh)(co3)0.5电极的制备;

首先,将泡沫镍裁剪成1*2cm2大小的长方形,依次称取200mg的活性物质即步骤三所得ti3c2@co(oh)(co3)0.5纳米粉体,20mg的导电乙炔黑,1mg的聚偏二氟乙烯,在玛瑙研钵中研磨1-2h;其次,用移液枪吸取300μl的nmp研磨均匀后,浆料平均滴加在裁剪好的泡沫镍上,并将滴加好的泡沫镍在真空干燥箱中60℃干燥24h;再次,将制好的电极片在压片机下15mpa保压1min既得ti3c2@co(oh)(co3)0.5电极。

最后采用三电极体系,以ti3c2@co(oh)(co3)0.5电极作为工作电极,铂片作为对电极,银氯化银为参比电极,在6m的koh电解液下,使用上海辰华chi660e电化学工作站测试ti3c2@co(oh)(co3)0.5电极的电化学性能,如循环伏安曲线、恒电流充放电、交流阻抗。

实施例二

本实施例包括以下步骤:

步骤一,三元ti3alc2陶瓷粉体的制备;

按照专利zl201310497696.9的方法制备三元层状ti3alc2陶瓷粉体:首先,根据摩尔比为ti:al:tic=1.0:1.2:2.0的比例将三种原料混合;其次,将三种原料置于球磨罐内,以氧化铝球作为研磨介质,无水乙醇作为球磨助剂,球磨机转速为900转/分钟,按照质量比为球:料:乙醇=3.0:1.0:1.0的比例,普通球磨1h获得均匀粉末,并在40℃恒温干燥烘箱将其烘干;然后,将干燥好的混料置于刚玉坩埚内,采用真空无压烧结的方法,以8℃/min的升温速率加热至1350℃,保温1h,随炉冷却至室温得到高纯ti3alc2陶瓷粉料。

最后,对ti3alc2陶瓷粉料进行湿法高能球磨3h,每30分钟一次,转速400r/min,钢球和陶瓷粉料的质量比为10:1,将磨细的粉体过筛,即得到粒径小于38μm的ti3alc2陶瓷粉体。

步骤二,二维层状ti3c2纳米材料的制备;

按照专利201410812056.7的方法制备二维层状ti3c2纳米材料:取5g步骤(一)中所得ti3alc2陶瓷粉体缓缓浸没在100ml40wt%氢氟酸溶液中,至不在冒气泡后将其室温下磁力搅拌48h,转速为1200r/min,将腐蚀产物用去离子水离心清洗至上清液ph值约为5-6时,再用无水乙醇离心4次。最后将黑色沉淀于40℃真空干燥24h,即得到二维层状ti3c2纳米粉体。

步骤三,一种ti3c2-co(oh)(co3)0.5纳米复合材料的制备;

首先,将727.6mgco(no3)2·6h2o和步骤(2)所得的ti3c2纳米粉体200mg溶于超纯水中,在磁力搅拌下先后加入500mgco(nh2)2和1000mgpvp持续搅拌2h得到混合液;其次,将体积分数为75%混合液转移到100ml的水热反应釜聚四氟乙烯内衬中,将组装好的水热反应釜升温至82℃保温8h;然后,将自然冷却至室温的产物依次用超纯水和无水乙醇分别离心分离清洗3次,每次4000-6000r/min离心3-5min;最后,于真空干燥箱中40℃干燥24h后得到所需ti3c2@co(oh)(co3)0.5纳米复合材料。从图1的b曲线可以看出,在2θ=36°,42°,62°分别对应于(111),(200),(220)晶面的ti3c2的特征峰外,还有在2θ=18°,25°,34°对应于pdf标准卡片号为48-0083的co(oh)(co3)0.5的(020)、(111)、(221)晶面的衍射峰。表明通过水热法成功制备了ti3c2@前驱体co(oh)(co3)0.5复合材料。从图2的b图可以看出来,由于反应体系中负载量仍然太多,co(oh)(co3)0.5在ti3c2表面生成了较厚的包裹层,co(oh)(co3)0.5呈纳米线状。

步骤四,ti3c2-co(oh)(co3)0.5电极的制备;

首先,将泡沫镍裁剪成1*2cm2大小的长方形,依次称取200mg的活性物质即步骤三所得ti3c2@co(oh)(co3)0.5纳米粉体,2mg的导电乙炔黑,1mg的聚偏二氟乙烯,在玛瑙研钵中研磨1-2h;其次,用移液枪吸取300μl的nmp研磨均匀后,浆料平均滴加在裁剪好的泡沫镍上,并将滴加好的泡沫镍在真空干燥箱中60℃干燥24h;再次,将制好的电极片在压片机下15mpa保压1min既得ti3c2@co(oh)(co3)0.5电极。

最后采用三电极体系,以ti3c2@co(oh)(co3)0.5电极作为工作电极,铂片作为对电极,银/氯化银为参比电极,在6m的koh电解液下,使用上海辰华chi660e电化学工作站测试ti3c2@co(oh)(co3)0.5电极的电化学性能,如循环伏安曲线、恒电流充放电、交流阻抗。

实施例三

本实施例包括以下步骤:

步骤一,三元ti3alc2陶瓷粉体的制备;

按照专利zl201310497696.9的方法制备三元层状ti3alc2陶瓷粉体:首先,根据摩尔比为ti:al:tic=1.0:1.2:2.0的比例将三种原料混合;其次,将三种原料置于球磨罐内,以氧化铝球作为研磨介质,无水乙醇作为球磨助剂,球磨机转速为900转/分钟,按照质量比为球:料:乙醇=3.0:1.0:1.0的比例,普通球磨1h获得均匀粉末,并在40℃恒温干燥烘箱将其烘干;然后,将干燥好的混料置于刚玉坩埚内,采用真空无压烧结的方法,以8℃/min的升温速率加热至1350℃,保温1h,随炉冷却至室温得到高纯ti3alc2陶瓷粉料。

最后,对ti3alc2陶瓷粉料进行湿法高能球磨3h,每30分钟一次,转速400r/min,钢球和陶瓷粉料的质量比为10:1,将磨细的粉体过筛,即得到粒径小于38μm的ti3alc2陶瓷粉体。

步骤二,二维层状ti3c2纳米材料的制备;

按照专利201410812056.7的方法制备二维层状ti3c2纳米材料:取5g步骤(一)中所得ti3alc2陶瓷粉体缓缓浸没在100ml40wt%氢氟酸溶液中,至不在冒气泡后将其室温下磁力搅拌48h,转速为1200r/min,将腐蚀产物用去离子水离心清洗至上清液ph值约为5-6时,再用无水乙醇离心4次。最后将黑色沉淀于40℃真空干燥24h,即得到二维层状ti3c2纳米粉体。

步骤三,一种ti3c2-co(oh)(co3)0.5纳米复合材料的制备;

首先,将291.0mgco(no3)2·6h2o和步骤(2)所得的ti3c2纳米粉体200mg溶于超纯水中,在磁力搅拌下先后加入200mgco(nh2)2和400mgpvp持续搅拌2h得到混合液;其次,将体积分数为75%混合液转移到100ml的水热反应釜聚四氟乙烯内衬中,将组装好的水热反应釜升温至82℃保温8h;然后,将自然冷却至室温的产物依次用超纯水和无水乙醇分别离心分离清洗3次,每次4000-6000r/min离心3-5min;最后,于真空干燥箱中40℃干燥24h后得到所需ti3c2@co(oh)(co3)0.5纳米复合材料。从图1的c曲线可以看出,在2θ=36°,42°,62°分别对应于(111),(200),(220)晶面的ti3c2的特征峰外,还有在2θ=18°,25°,34°对应于pdf标准卡片号为48-0083的co(oh)(co3)0.5的(020)、(111)、(221)晶面的衍射峰。表明通过水热法成功制备了ti3c2@前驱体co(oh)(co3)0.5复合材料。从图2的c图可以清晰的看到ti3c2的风琴状结构,co(oh)(co3)0.5形貌由纳米线变成蜂巢状最终变成纳米颗粒分布在ti3c2片层表面和层间。从图3可得ti3c2-co(oh)(co3)0.5表现了良好的电化学性能,cv曲线图接近规整的矩形,对称性较好;循环曲线所形成的区域随着扫描速率的增加而增大,但图形的大致形状基本不变,表现出了良好的倍率性能。

步骤四,ti3c2-co(oh)(co3)0.5电极的制备;

首先,将泡沫镍裁剪成1*2cm2大小的长方形,依次称取200mg的活性物质即步骤三所得ti3c2@co(oh)(co3)0.5纳米粉体,2mg的导电乙炔黑,1mg的聚偏二氟乙烯,在玛瑙研钵中研磨1-2h;其次,用移液枪吸取300μl的nmp研磨均匀后,浆料平均滴加在裁剪好的泡沫镍上,并将滴加好的泡沫镍在真空干燥箱中60℃干燥24h;再次,将制好的电极片在压片机下15mpa保压1min既得ti3c2@co(oh)(co3)0.5电极。

最后采用三电极体系,以ti3c2@co(oh)(co3)0.5电极作为工作电极,铂片作为对电极,银氯化银为参比电极,在6m的koh电解液下,使用上海辰华chi660e电化学工作站测试ti3c2@co(oh)(co3)0.5电极的电化学性能,如循环伏安曲线、恒电流充放电、交流阻抗。

实施例四

本实施例包括以下步骤:

步骤一,三元ti3alc2陶瓷粉体的制备;

按照专利zl201310497696.9的方法制备三元层状ti3alc2陶瓷粉体:首先,根据摩尔比为ti:al:tic=1.0:1.2:2.0的比例将三种原料混合;其次,将三种原料置于球磨罐内,以氧化铝球作为研磨介质,无水乙醇作为球磨助剂,球磨机转速为900转/分钟,按照质量比为球:料:乙醇=3.0:1.0:1.0的比例,普通球磨1h获得均匀粉末,并在40℃恒温干燥烘箱将其烘干;然后,将干燥好的混料置于刚玉坩埚内,采用真空无压烧结的方法,以8℃/min的升温速率加热至1350℃,保温1h,随炉冷却至室温得到高纯ti3alc2陶瓷粉料。

最后,对ti3alc2陶瓷粉料进行湿法高能球磨3h,每30分钟一次,转速400r/min,钢球和陶瓷粉料的质量比为10:1,将磨细的粉体过筛,即得到粒径小于38μm的ti3alc2陶瓷粉体。

步骤二,二维层状ti3c2纳米材料的制备;

按照专利201410812056.7的方法制备二维层状ti3c2纳米材料:取5g步骤(一)中所得ti3alc2陶瓷粉体缓缓浸没在100ml40wt%氢氟酸溶液中,至不在冒气泡后将其室温下磁力搅拌48h,转速为1200r/min,将腐蚀产物用去离子水离心清洗至上清液ph值约为5-6时,再用无水乙醇离心4次。最后将黑色沉淀于40℃真空干燥24h,即得到二维层状ti3c2纳米粉体。

步骤三,一种ti3c2-co(oh)(co3)0.5纳米复合材料的制备;

首先,将145.5mgco(no3)2·6h2o和步骤(2)所得的ti3c2纳米粉体200mg溶于超纯水中,在磁力搅拌下先后加入100mgco(nh2)2和200mgpvp持续搅拌2h得到混合液;其次,将体积分数为75%混合液转移到100ml的水热反应釜聚四氟乙烯内衬中,将组装好的水热反应釜升温至82℃保温8h;然后,将自然冷却至室温的产物依次用超纯水和无水乙醇分别离心分离清洗3次,每次4000-6000r/min离心3-5min;最后,于真空干燥箱中40℃干燥24h后得到所需ti3c2@co(oh)(co3)0.5纳米复合材料。从图1的d曲线可以看出,在2θ=36°,42°,62°分别对应于(111),(200),(220)晶面的ti3c2的特征峰外,还有在2θ=18°,25°,34°对应于pdf标准卡片号为48-0083的co(oh)(co3)0.5的(020)、(111)、(221)晶面的衍射峰。表明通过水热法成功制备了ti3c2@前驱体co(oh)(co3)0.5复合材料。从图2的d图可以看出来,co(oh)(co3)0.5均匀地分布在ti3c2层间并且量较多,没有发生团聚。

步骤四,ti3c2-co(oh)(co3)0.5电极的制备;

首先,将泡沫镍裁剪成1*2cm2大小的长方形,依次称取200mg的活性物质即步骤三所得ti3c2@co(oh)(co3)0.5纳米粉体,2mg的导电乙炔黑,1mg的聚偏二氟乙烯,在玛瑙研钵中研磨1-2h;其次,用移液枪吸取300μl的nmp研磨均匀后,浆料平均滴加在裁剪好的泡沫镍上,并将滴加好的泡沫镍在真空干燥箱中60℃干燥24h;再次,将制好的电极片在压片机下15mpa保压1min既得ti3c2@co(oh)(co3)0.5电极。

最后采用三电极体系,以ti3c2@co(oh)(co3)0.5电极作为工作电极,铂片作为对电极,银氯化银为参比电极,在6m的koh电解液下,使用上海辰华chi660e电化学工作站测试ti3c2@co(oh)(co3)0.5电极的电化学性能,如循环伏安曲线、恒电流充放电、交流阻抗。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1