一种氮化硅烧结体及其制备方法与流程

文档序号:18415709发布日期:2019-08-13 19:22阅读:276来源:国知局
一种氮化硅烧结体及其制备方法与流程

本发明提供了一种金属颗粒或纤维增强的氮化硅烧结体及其制备方法,属于材料领域。



背景技术:

氮化硅陶瓷具有优异的力学性能以及耐高温、抗热震、耐腐蚀等特性,在许多领域有着广泛的应用,但相对于金属材料其韧性仍然太低,在应用中仍受到限制。钨、铼及其合金材料具有极高的熔点、高伸长率、优异的力学性能以及与氮化硅陶瓷相近的热膨胀系数和弹性模量等特点,成为氮化硅陶瓷理想的第二相增韧材料。将钨和/或铼为主要成分的单质或合金引入到氮化硅烧结体中,通过它们在断裂过程中的塑性变形,可以极大的提高断裂能,阻碍氮化硅烧结体的断裂。

然而,热力学计算以及实验均表明金属钨、铼与氮化硅陶瓷在温度高于1400℃左右后会发生化学反应,而氮化硅陶瓷烧结温度一般在1500℃~1900℃,导致钨、铼或其合金的金属状态无法在烧结过程保留下来,材料无法获得预期性能。反应烧结氮化硅虽然烧结温度低,但残余硅与金属钨或铼发生反应所需温度更低,也无法保留钨、铼或其合金的金属状态。因此,目前尚没有将钨和/或铼为主要成分的单质或合金以离散颗粒或不连续纤维形式引入到氮化硅烧结体中的材料。



技术实现要素:

本发明鉴于上述问题而提出,其目的在于,提供一种含有金属钨、铼或其合金的氮化硅烧结体及其制备方法。该烧结体具有优异的力学性能。

一方面,本发明提供一种氮化硅烧结体,其主要由氮化硅结晶、以及弥散分布于所述氮化硅结晶之间的金属第二相组成,其中,所述金属第二相的主要成分包括以钨和/或铼为主要成分的金属单质和/或合金。

根据上述发明,通过在氮化硅中引入具有非脆性断裂和耐高温特性的金属钨和/或铼的单质和/或合金,使氮化硅烧结体在常温和高温下均具有优异的力学性能。

较佳地,氮化硅结晶和金属第二相总含量不低于氮化硅烧结体总量的75wt%。

较佳地,金属第二相中,钨和铼的总量不低于金属总量的75wt%。

较佳地,所述金属第二相以颗粒和/或非连续纤维的状态存在。

优选地,所述颗粒为球状、棒状或片状。

优选地,所述颗粒和/或纤维的直径在0.1μm~200μm。

较佳地,所述金属第二相的含量占氮化硅烧结体总量的0.5vol%~35vol%。

另一方面,本发明提供一种氮化硅烧结体的制备方法,将氮化硅粉体、烧结助剂、以及用于形成第二相的金属均匀混合得到粉体原料,成型后在氮气气压下烧结制备。

根据上述发明,在氮化硅烧结体烧结过程中施加氮气气压,有效抑制金属钨或/和铼的单质或合金与氮化硅结晶之间的化学反应,使得金属钨或/和铼的单质或合金在烧结过程中能够有效保留下来,提高氮化硅烧结体的力学性能。

较佳地,氮化硅粉体的粒径可为0.3μm~20μm,烧结助剂的粒径可为0.1μm~20μm。

较佳地,将得到的粉体原料经10~80mpa干压和120~300mpa冷等静压成型或直接120~300mpa冷等静压成型。

较佳地,所述氮气气压为0.5~20mpa。

较佳地,所述烧结是在1500~1900℃烧结1~5h。

本发明提供的氮化硅烧结体具有良好的抗弯强度、断裂韧性、抗热震性,可应用于机械、冶金、航空等领域。

附图说明

图1是实施例1制备的样品中含钨颗粒的sem-eds成分分析。

图2是实施例1制备的样品的x射线光电子能谱分析。

图3是实施例1制备的样品中含钨颗粒的透射电子观察以及电子衍射分析。

具体实施方式

以下结合附图和下述实施方式进一步说明本发明,应理解,附图和下述实施方式仅用于说明本发明,而非限制本发明。

在此公开一种氮化硅烧结体,其主要由氮化硅晶粒和金属组成。优选地,二者总含量不低于烧结体总量的75wt%。

金属的主要成分包括以钨和/或铼为主要成分的金属单质和/或合金。优选地,钨和铼的总含量超过金属单质和/或合金总量的75wt%。

在可选的实施方式中,金属选自钨单一金属、钨掺钾合金、钨掺二氧化钍合金、钨铼合金、钨掺铪碳合金、钨掺钼合金中的一种或多种。

金属作为第二相,可占烧结体总量的0.5vol%~35vol%。在该范围内,可以起到较好的增强增韧作用。

金属弥散分布于氮化硅结晶中。金属可主要以弥散颗粒和/或非连续纤维形式存在。所述颗粒可为球状、棒状、片状等。

金属颗粒和/或纤维的直径可在0.1μm~200μm。金属颗粒和/或纤维的长度可在0.1μm~5000μm。例如,金属以棒状、片状或非连续纤维状存在,其直径在0.5μm~100μm,长度在0.5μm~800μm,优选金属以非连续纤维状存在,直径在0.5μm~80μm,长度在0.5μm~600μm。

氮化硅晶粒和金属第二相之间无明显过渡层,界面清晰。

在此公开通过热力学方法抑制金属钨、铼和/或其合金与氮化硅之间的反应,制备含有金属钨、铼和/或其合金的氮化硅烧结体。具体而言,主要通过在氮化硅烧结体烧结过程中施加氮气气压,有效抑制金属钨或/和铼的单质或合金与氮化硅结晶之间的化学反应,使得金属钨或/和铼的单质或合金在烧结过程中能够有效保留下来,提高氮化硅烧结体的力学性能。

一实施方式中,将作为原料的氮化硅粉体、烧结助剂、以及用于形成第二相的金属均匀混合得到粉体原料,成型后在氮气气压下烧结制备。

如上所述,金属的成分包括以钨和/或铼为主要成分的单一金属和/或合金,例如选自钨单一金属、钨掺钾合金、钨掺二氧化钍合金、钨铼合金、钨掺铪碳合金、钨掺钼合金中的一种或多种。

金属在所有原料中的含量可在0.5vol%~35vol%。

金属可以球状、棒状、片状或其它形状的弥散颗粒或纤维状添加。金属颗粒和/或纤维的直径可在0.1μm~200μm,长度可在0.1μm~1000μm。例如,金属以棒状、片状或纤维状添加,其直径在0.5μm~100μm,长度在0.5μm~800μm,优选金属以纤维状添加,直径在0.5μm~50μm,长度在0.5μm~600μm。

氮化硅粉体的粒径可为0.3μm~20μm。烧结助剂的粒径可为0.1μm~20μm。

所述烧结助剂的质量可占烧结体总量的3~15wt%。烧结助剂可为氧化物和/或氮化物,例如可选自al2o3、mgo、sio2、y2o3、yb2o3、lu2o3、sm2o3、la2o3、aln、mgsin2中的一种或多种。

原料的混合可采用干式或湿式混合工艺。一个示例中,采用湿式混合工艺,球磨混合均匀后经过干燥、过筛得到粉体原料。球磨混合的溶剂可为无水乙醇等。将浆料在40~90℃(优选40~80℃)干燥1~8小时(优选2~8小时),过筛,得到粉体原料。过筛例如是过40~80目筛。

将粉体原料成型得到坯体。一个示例中,5~60mpa干压后再于120~300mpa下冷等静压以成型。另一示例中,直接在120~300mpa下冷等静压成型。

将坯体在氮气气压中烧结,得到烧结体。通过在烧结过程施加氮气气压,实现对金属钨、铼及其合金与氮化硅陶瓷之间反应的有效抑制,使钨、铼及其合金能以金属状态保留在氮化硅烧结体中。

氮气气压可为0.5~20mpa。若氮气气压过低,则不能有效抑制钨或铼与氮化硅结晶之间的反应;若氮气气压过高,则成本提高。烧结温度可为1500℃~1900℃。在采用较高的烧结温度时,需采用较高的氮气气压。在采用较低的烧结温度时,采用较低或较高的氮气气压均可以。烧结时间可为1~5小时。在一优选的实施方式中,氮气气压为2~20mpa,烧结温度为1600℃~1850℃,烧结时间为1.5~3小时。

所得的烧结体中,金属含量可为0.5vol%~35vol%,优选为1vol%~35vol%。

所得烧结体中,金属不与氮化硅反应而仍以金属状态(单质和/或合金)存在,金属与氮化硅结晶之间无明显过渡层,界面清晰。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1:

直径1μm金属钨粉体3g、氧化铝粉体3g、氧化钇粉体9g、氮化硅粉体85g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球;

行星式球磨机球磨4h,烘箱80℃干燥4h,过筛60目得到粉体原料;

粉体经过10mpa干压、200mpa冷等静压成型;

样品在5mpa氮气气压下1750℃保温2h完成烧结。

所得样品抛光后进行sem-eds微区成分分析、x射线衍射进行化学状态分析,制备超薄片进行tem界面以及电子衍射分析。

实施例2:

直径10μm金属钨短切纤维15g、氧化镁粉体6g、氧化镱粉体5g、氧化硅粉体2g,氮化硅粉体72g置于氮化硅球磨罐中,添加120g无水乙醇、200g氮化硅研磨球;

行星式球磨机球磨8h,烘箱60℃干燥6h,过筛40目得到粉体原料;

粉体经过直接250mpa冷等静压成型;

样品在0.5mpa氮气气压下1520℃保温5h完成烧结。

所得样品抛光后进行sem-eds微区成分分析、x射线衍射进行化学状态分析,制备超薄片进行tem界面以及电子衍射分析。

实施例3:

直径1μm,长度5μm长棒状金属钨铼合金(w-3re)粉体50g、氧化铝粉体3g、氧化钇粉体9g、氮化硅粉体38g置于氮化硅球磨罐中,添加100g无水乙醇、200g氮化硅研磨球;

行星式球磨机球磨4h,烘箱80℃干燥4h,过筛80目得到粉体原料;

粉体经过10mpa干压、200mpa冷等静压成型;

样品在10mpa氮气气压下1760℃保温2h完成烧结。

所得样品抛光后进行sem-eds微区成分分析、x射线衍射进行化学状态分析,制备超薄片进行tem界面以及电子衍射分析。

实施例4:

平均粒径60μm金属钨铼合金(w-10re)片状颗粒粉体20g、氧化铝粉体5g、氧化钇粉体3g、氮化硅粉体72g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球;

行星式球磨机球磨4h,烘箱80℃干燥8h,过筛60目得到粉体原料;

粉体经过20mpa干压、200mpa冷等静压成型;

样品在20mpa氮气气压下1820℃保温2h完成烧结。

所得样品抛光后进行sem-eds微区成分分析、x射线衍射进行化学状态分析,制备超薄片进行tem界面以及电子衍射分析。

实施例5:

平均粒径100μm金属钨掺铪碳合金(w-hf-c)粉体60g、氧化镁粉体5g、氧化钇粉体5g、氮化硅粉体30g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球;

行星式球磨机球磨4h,烘箱80℃干燥4h,过筛60目得到粉体原料;

粉体经过10mpa干压、200mpa冷等静压成型;

样品在2mpa氮气气压下1650℃保温2h完成烧结。

所得样品抛光后进行sem-eds微区成分分析、x射线衍射进行化学状态分析,制备超薄片进行tem界面以及电子衍射分析。

实施例6

平均粒径0.5μm金属钨掺二氧化钍合金(w-2tho2)粉体30g、氧化铝粉体3g、氧化钇粉体9g、氮化硅粉体58g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球;

行星式球磨机球磨4h,烘箱80℃干燥4h,过筛60目得到粉体原料;

粉体经过10mpa干压、200mpa冷等静压成型;

样品在5mpa氮气气压下1750℃保温2h完成烧结。

所得样品抛光后进行sem-eds微区成分分析、x射线衍射进行化学状态分析,制备超薄片进行tem界面以及电子衍射分析。

从图1中对实施例1所得样品中含钨颗粒的sem-eds成分分析可知,钨颗粒主要以单质形式存在。图2的实施例1所得样品的x射线光电子能谱表明,钨的4f能级电子能量为31.4kev和33.6kev,符合单质钨中钨-钨金属键电子能量。图3中的(a)的透射电子电子衍射花样符合钨单质的晶型进一步说明钨未发生反应。图3中的(b)的高倍透射电子衍射表明金属钨与氮化硅烧结体之间无明显过渡层,界面清晰。综上所述,通过该工艺可以抑制钨与氮化硅之间的反应,使钨保持金属状态。实施例2~6也表现出了类似的结果,金属钨或铼均保持原状态,无金属硅化物生成。

由热力学知识以及以往研究容易知道,氮化硅与金属钨或铼在真空或氩气气氛中高于1400℃后会有较明显的反应,而本实施案例未发现二者之间的反应。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1