一种具有双层“芯-壳”结构的细晶储能介质陶瓷材料及其制备方法与流程

文档序号:15036723发布日期:2018-07-27 20:26阅读:226来源:国知局

本发明涉及一种具有双层“芯-壳”结构的细晶储能介质陶瓷材料及其制备方法,属于电子陶瓷储能电容器材料技术领域。



背景技术:

近年来,由于新技术的发展和新应用要求的提高,高储能、小型化、轻质量、低成本、高可靠性的电容器得到越来越广泛的研究。与普通电池及电化学电池相比,陶瓷储能电容器在比能量密度、比功率密度、循环寿命、充电时间上都有巨大的优势,从而成为各方关注的焦点。陶瓷储能电容器用介质材料主要包括具有常数介电常数的线性电介质、具有自发极化的铁电体、具有零剩余极化的反铁电体以及具有纳米畴的弛豫铁电体。虽然线性电介质通常具有较高的耐压强度和较低的能量损耗,但其较小的极化值(介电常数)使得它们不适合应用于高储能设备。铁电体通常具有较大的饱和极化,中等强度的耐压特性,但是其较大的剩余极化致使其储能密度和储能效率都较低。反铁电体因具有零剩余极化强度以及双电滞回线而具有较高的储能密度,但性能优异的反铁电体大多含有铅,从而对环境污染较大。相比之下,弛豫铁电陶瓷由于其较高的饱和极化强度、较低的剩余极化强度以及较细的电滞回线,被认为是储能陶瓷电容器最有潜质的一类介质材料。不含铅的ba1-xsrxti1-yzryo3铁电陶瓷具有良好的弛豫特性,作为储能材料在较宽的温度和频率范围内表现出较高的电性能。

耐压强度是提高材料储能密度的关键因素,耐压强度受到诸多因素的影响,如第二相(例如mgo,al2o3,zno等)、气孔性、晶粒尺寸、结构以及缺陷等。申请号为201110046717.6的中国专利公开了一种bst基储能介质陶瓷的制备方法,其将bst陶瓷细粉与玻璃料按一定比例混合,经球磨,最终在1050~1280℃保温2~4h的条件下制备出介电常数为380,耐压强度为28.0kv/mm的储能陶瓷材料。但添加大量的玻璃助烧剂会降低陶瓷材料的介电常数,并导致陶瓷晶粒迅速长大。为了提高陶瓷的耐压强度和保持较高的介电常数,申请号为cn201510695891.1的中国专利提供了一种“芯-壳”结构高储能密度电介质陶瓷的制备方法,该法首先通过溶胶-凝胶法制备bst粉末,其次利用正硅酸乙酯水解制备sio2包覆bst粉末,然后利用sps法在真空1000~1050℃烧结制得陶瓷烧结体,再在空气气氛下1100~1150℃处理1~5小时,制得具有“芯-壳”结构的储能电介质陶瓷。但溶胶-凝胶法制备的粉体容易团聚,难以实现均匀包覆,不利于具有“芯-壳”结构的细晶储能介质陶瓷的制备。



技术实现要素:

本发明的目的是提供一种耐压强度高、介电损耗小并且烧结温度低的具有双层“芯-壳”结构的细晶储能介质陶瓷材料及其制备方法。

本发明实现过程如下:

一种具有双层“芯-壳”结构的细晶储能介质陶瓷材料,所述介质陶瓷材料具有双层“芯-壳”结构,构成介质陶瓷材料的“芯”部材料为ba1-xsrxzryti1-yo3(简写为bszt),中间“壳”层为mgo,最外“壳”层为zno-b2o3-sio2(简写为zbso),所述细晶储能介质陶瓷材料的化学组成表达式为:ba1-xsrxzryti1-yo3+amgo+b(zno-b2o3-sio2),其中,0.2≤x≤0.8,0.1≤y≤0.5,a=1.0~6.0mol%,b=1.0~8.0wt%,zno、b2o3和sio2的摩尔比为(3.0~3.3):(0.9~1.1):(2.6~3.0)。所述mol%为mgo占“芯”部材料bszt的摩尔百分比;所述wt%为最外“壳”层zno-b2o3-sio2占ba1-xsrxzryti1-yo3@mgo(ba1-xsrxzryti1-yo3+amgo)的质量百分比。

上述细晶储能介质陶瓷材料的制备方法:首先通过化学沉淀法制备ba1-xsrxzryti1-yo3单分散微纳米粉体材料,然后通过沉淀法制备ba1-xsrxzryti1-yo3@mgo,再通过溶胶-沉淀法制备ba1-xsrxzryti1-yo3@mgo@zno-b2o3-sio2单分散微纳米粉体,最后烧结制备出细晶储能介质陶瓷材料。

具体地说,上述细晶储能介质陶瓷材料的制备方法包括以下步骤:

(1)将ticl4溶液滴加到6~10mol/l的naoh溶液中,并充分搅拌;

(2)按照化学计量比分别加入含有锶、锆、钡离子的水溶液,并且不断搅拌;

(3)将上述溶液在85~95℃继续搅拌3~5h,然后经洗涤和干燥,得到ba1-xsrxzryti1-yo3微纳米粉体;

(4)将上述ba1-xsrxzryti1-yo3微纳米粉体在去离子水中超声分散,得到ba1-xsrxzryti1-yo3悬浮液,然后加入氨水溶液调节ph9~11;

(5)将mg(ac)2溶液按化学计量比滴加到上述ba1-xsrxzryti1-yo3悬浮液中,充分搅拌,将mg(oh)2均匀包覆在ba1-xsrxzryti1-yo3颗粒表面;

(6)将所得悬浮液抽滤,烘干,所得粉体于600~850℃在空气气氛中煅烧0.5~2h,得到ba1-xsrxzryti1-yo3@mgo微纳米粉体材料;

(7)将步骤(6)得到的ba1-xsrxzryti1-yo3@mgo微纳米粉体材料在去离子水中超声分散,得到分散性良好的ba1-xsrxzryti1-yo3@mgo悬浮液,加入氨水溶液调节ph7~8;

(8)将按照化学计量比配置好的zno-b2o3-sio2前驱液滴加到步骤(7)得到的悬浊液中,充分搅拌,将zno-b2o3-sio2前驱体包覆在ba1-xsrxzryti1-yo3@mgo颗粒表面;

(9)将所得悬浮液抽滤,然后在100~200℃干燥得到ba1-xsrxzryti1-yo3@mgo@zno-b2o3-sio2微纳米粉体材料;

(10)将步骤(9)得到的粉体材料经造粒、成型,烧结制备得到细晶储能介质陶瓷材料。具体地说,陶瓷电容器介质粉体经1100~1300℃保温2~6h烧结制成陶瓷材料。

上述步骤(3)得到的ba1-xsrxzryti1-yo3微纳米粉体为单分散微纳米粉体,粉体粒径为50~500nm,进一步,mgo和zno-b2o3-sio2复合氧化物依次均匀包覆于单分散的ba1-xsrxzryti1-yo3颗粒表面,氧化物包覆层厚度分别控制在3~10nm和10~30nm范围内,得到的ba1-xsrxzryti1-yo3@mgo@zno-b2o3-sio2陶瓷晶粒约为100~550nm,最终陶瓷材料的放电储能密度达到0.71j/cm3

上述步骤(8)中,zno-b2o3-sio2前驱液使用硼酸三正丁酯、正硅酸乙酯和硝酸锌溶液。

本发明选择具有很好介电弛豫特性的bszt作为“芯”部材料,并包覆mgo提高了耐压强度,降低了介电损耗;并在最外层包覆zbso玻璃助烧剂,降低了陶瓷的烧结温度,获得了具有双层“芯-壳”结构的细晶陶瓷材料,提高了材料的储能密度。

本发明的有益效果:

(1)本发明得到了颗粒大小为50~500nm、分散性良好的bszt微纳米粉体材料,以及具有双层“芯-壳”结构的bszt@mgo@zbso微纳米粉体材料;

(2)按本发明制得微观结构和性能优异的细晶储能介质陶瓷材料,其室温介电常数可以控制在2300~5800之间,储能密度达到0.71j/cm3,耐压强度较高24.1kv/mm;

(3)本发明得到的陶瓷晶粒尺寸约100~550nm,粒度均匀,可靠性强,适合于生产大容量、超薄层的细晶多层陶瓷储能电容器电池。

附图说明

图1为实施例#1-3粉体的tem图((a)bszt@mgo@zbso粉体颗粒整体图;(b)bszt@mgo@zbso颗粒局部放大图;(c)单个bszt@mgo@zbso颗粒图)及其颗粒的eds线扫描((d)沿(c)中直线ab颗粒的eds线扫描分析图);

图2为实施例#1-1到#1-5陶瓷样品的hr-sem图;

图3为实施例#1-1和#1-3陶瓷样品的hr-sem及其陶瓷晶粒的eds线扫描图;

图4为实施例#1-1到#1-5陶瓷样品在不同频率下的介电常数随温度变化的特性曲线图;

图5为实施例#1-1到#1-5陶瓷样品居里-外斯曲线图;

图6为实施例#1-1到#1-5陶瓷样品电滞回线图。

具体实施方式

实施例1

bszt@mgo@zbso微纳米粉体及其陶瓷材料的组成为:ba1-xsrxzryti1-yo3中x=0.2和y=0.1,mgo含量为2.0mol%,zno-b2o3-sio2(zno、b2o3和sio2的比例为3.1:1.0:2.8)含量分别为0.0wt%、2.0wt%、4.0wt%、6.0wt%和8.0wt%(对应样品的序号依次记为#1-1、#1-2、#1-3、#1-4和#1-5)。采用本发明制备bszt@mgo@zbso微纳米粉体及其细晶介质陶瓷材料的具体步骤如下:

(1)在水浴温度为30℃的条件下,将一定量的ticl4溶液缓慢滴加到6mol/l的naoh溶液中,并充分搅拌0.5h;按照化学计量比分别缓慢加入含有锶、锆、钡的水溶液(均为可溶性硝酸盐),并且不断搅拌,反应时间为0.5h;然后升温到90℃,继续搅拌4h,最后经洗涤、干燥,得到bszt微纳米粉体;

(2)称取1.000g上述制备的bszt微纳米粉体,在300ml去离子水中超声分散30min,得到bszt悬浊液,用氨水将其ph调节至9~11;

(3)逐滴将7.68ml0.013mol/lmg(ac)2溶液加入上述步骤(2)所制的悬浊液中,搅拌1h,在bszt颗粒表面生成mg(oh)2沉淀。陈化12h后抽滤,洗涤多次,然后在70°c烘干,最后在700°c煅烧2h制得bszt@mgo微纳米粉体;

(4)称取1.000gbszt@mgo微纳米粉体于烧杯中,添加50ml去离子水超声分散30min,得到bszt@mgo悬浊液;

(5)按照zno-b2o3-sio2含量分别为0.0wt%、2.0wt%、4.0wt%、6.0wt%和8.0wt%称取硼酸三正丁酯和正硅酸乙酯于烧杯中(zno、b2o3和sio2的比例为3.1:1.0:2.8),加入适量冰乙酸和乙醇,搅拌,然后称取一定量zn(no3)2·6h2o加入10ml去离子水溶解,加入上述硼酸三正丁酯和正硅酸乙酯的混合溶液中,并调节混合液的ph至2~3,搅拌30min,得到zno-b2o3-sio2前驱液;

(6)将步骤(5)所得zno-b2o3-sio2前驱液加入到上述步骤(4)所得bszt@mgo悬浊液中,在搅拌的条件下,用氨水调节ph至7~8,继续搅拌30min,静置24h,用去离子水多次洗涤,置于烘箱80°c烘干,然后升温至150°c保温2h,得到bszt@mgo@zbso微纳米粉体;

(7)先将上述步骤(6)所制得的bszt@mgo@zbso微纳米粉体进行造粒,然后于6mpa压力下压制成直径8mm和厚度1.5mm的坯体圆片,最后在1140°c条件下烧结2h制得bszt@mgo@zbso陶瓷样品。

图1为粉体#1-3的tem图及其颗粒的eds线扫描图,图2给出了#1-1到#1-5陶瓷样品的hr-sem图,图3为#1-1和#1-3陶瓷样品的hr-sem及其陶瓷晶粒的eds线扫描图,图4为#1-1到#1-5陶瓷样品不同频率下的介电常数随温度变化的特性曲线图;图5为#1-1到#1-5陶瓷样品的居里-外斯曲线图;图6为#1-1到#1-5陶瓷样品电滞回线图;其主要介电性能和储能性质参数分别见表1-1和表1-2。

实施例2

制备ba1-xsrxzryti1-yo3@mgo@zno-b2o3-sio2(bszt@mgo@zbso)微纳米粉体及其陶瓷材料,其中,ba1-xsrxzryti1-yo3中x=0.2,y=0.1,zno-b2o3-sio2含量为4.0wt%,mgo含量分别为1.0mol%、2.0mol%、4.0mol%和6.0mol%(样品的序号依次记为#2-1、#2-2、#2-3和#2-4)。采用本发明制备bszt@mgo@zbso微纳米粉体及其细晶储能介质陶瓷材料的具体步骤如下:

(1)在水浴温度为30℃条件下,将一定量的ticl4溶液缓慢滴加到6mol/l的naoh溶液中,并充分搅拌0.5h;按照化学计量比分别缓慢加入含有锶、锆、钡的水溶液,并且不断搅拌。反应温度为30℃,反应时间为0.5h;将上述溶液在水浴温度为90℃时继续搅拌4h,再经洗涤、干燥,得到bszt微纳米粉体;

(2)称取1.000gbszt微纳米粉体,在300ml去离子水中超声分散30min,得到bszt悬浊液,将其ph调节至9~11;

(3)按mgo含量分别为1.0mol%、2.0mol%、4.0mol%和6.0mol%的比例,逐滴将3.84ml、7.68ml、15.36ml和23.04ml浓度为0.013mol/l的mg(ac)2溶液加入上述步骤(2)所制悬浊液中,然后搅拌1h,在bszt表面生成mg(oh)2沉淀。陈化12h,抽滤,并多次洗涤,再于70°c在烘箱中烘干,然后700°c煅烧2h,制得bszt@mgo微纳米粉体;

(4)分别称取不同mgo含量的bszt@mgo微纳米粉体1.000g于烧杯中,分别添加50ml去离子水超声分散30min,得到bszt@mgo悬浊液;

(5)按照zno-b2o3-sio2的含量为4.0wt%称取硼酸三正丁酯和正硅酸乙酯于烧杯中(zno、b2o3和sio2的比例为3.0:1.0:2.7),加入适量冰乙酸和乙醇,搅拌,然后称取一定量zn(no3)2·6h2o加入10ml去离子水溶解,加入上述硼酸三正丁酯和正硅酸乙酯的混合溶液中,并调节混合液的ph至2~3,搅拌30min,得到zno-b2o3-sio2前驱液;

(6)将步骤(5)所得zno-b2o3-sio2前驱液加入到上述步骤(4)所得bszt@mgo悬浊液中,在搅拌的条件下,用氨水调节ph至7~8,继续搅拌30min,然后静置24h,再用去离子水多次洗涤后,置于烘箱80°c烘干,最后升温至150°c保温2h,得到不同mgo含量的bszt@mgo@zbso微纳米粉体;

(7)先将上述步骤(6)所制得的bszt@mgo@zbso微纳米粉体进行造粒,然后于6mpa压力下压制成直径8mm和厚度1.5mm的坯体圆片,最后在1140°c条件下烧结2h制得bszt@mgo@zbso细晶储能介质陶瓷样品。

陶瓷样品#2-1到#2-4的性能参数见表2-1。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1