一种形貌可控六钛酸钾粉晶材料及其低能耗制备方法与流程

文档序号:14706621发布日期:2018-06-15 23:33阅读:345来源:国知局
一种形貌可控六钛酸钾粉晶材料及其低能耗制备方法与流程

本发明属于功能增强材料、摩擦材料、隔热材料、催化剂及载体等材料工程技术领域,具体是涉及一种形貌可控六钛酸钾粉晶材料及其低能耗制备方法。



背景技术:

钛酸钾(K2O·nTiO2,n=2,4,6,8)材料是一种由TiO6八面体通过共棱和共面形成的隧道结构,K+在隧道中间不易溶出,所以钛酸钾材料具有良好的化学稳定性和物理机械性能,如耐磨、耐腐蚀性能、耐热性、以及低热导率等。美国杜邦材料公司自上世纪50年代研发该材料以来,钛酸钾功能材料已在环境处理剂、离子交换材料、新能源相关材料如光解水制氢催化剂、锂离子电池多孔分离膜材料、汽车刹车片复合摩擦材料、塑料增强材料以及隔热材料等领域具有广泛的市场应用前景。

由于钛酸钾材料具有片状、层状和隧道状不同的微观结构,其实用的粉晶形式常表现为不同的纳米带、纳米丝和纳米棒,以及针状和晶须状聚集体形式。其中,已被广泛使用的六钛酸钾(K2Ti6O13)晶须材料,目前报道的典型合成方法有很多,如水热法、熔融法、助溶剂法、溶胶-凝胶法、烧结法、KDC法、急冷烧结结晶法、液相沉淀法等(参考:王慧,商少明,低能耗制备六钛酸钾晶须的方法研究[J].应用化工,2010,39(12):1878-1881;Xiaoming Sun,Xing Chen,and Yadong Li,Large-Scale Synthesis of Sodium and Potassium Titanate Nanobelts,Inorg.Chem.2002,41:4996-4998)。众多制备方法中,烧结法具有工业收率高,成本相对较低优势,且工艺简单适合工业化生产(参考:Yang Li,Haiyang Yu,YangYang,Feng Zheng,Hongwei Ni,Mei Zhang,Min Guo,Synthesis of potassium hexatitanate whiskers with high thermal stability from Ti-bearing electric arc furnace molten slag[J],Ceramics International,2016,42:11294–11302)。但由于固相烧结法生产六钛酸钾晶须制备工艺过程中,通常使用颗粒状的氧化钛或含钛矿渣和氢氧化钾或碳酸钾为原料,900-1100℃高温范围长时间保温方能获得所需产品。过程中高能耗导致的高生产成本,阻碍了六钛酸钾晶须在工业上的大规模应用(参考:Wang Xin,Liu Shuangjin,Qi Yumin,et al.Behavior of potassium titanate whisker in simulated body fluid[J].2014,(135):139-142.)。同时,六钛酸钾生产原料中通常采用金红石型TiO2或偏钛酸,理化性能较难稳定控制(参考:柳春艳,刘于民,漆琳,等,偏钛酸为原料烧结法制备超细六钛酸钾晶须[J].中国有色金属学报,2008,18(12):2007)。中国专利CN100577896C公开了一种六钛酸钾晶须及其水热制备方法,制备出的六钛酸钾晶须直径约在200-500nm之间,长约20000-30000μm之间,长径比较大,晶须产率在83%左右,但其实验原料选用的是工业级的锐钛矿型TiO2和水热合成技术。此方法不利于宏量制备性价比高的产品。徐艳姬等人对纳米六钛酸钾的合成形态和机理做了研究,验证了纳米级二氧化钛为原料可以降低六钛酸钾煅烧合成温度(参考:徐艳姬,徐明霞,申玉田,等,纳米K2Ti6O13w合成中的形态演化和生长机理[J].无机材料学报,2006,6(21):1325-1332.)。中国专利CN106048727A公布了燃烧法一步制备六钛酸钾晶须的方法,选用钛酸钾颗粒和二氧化钛为原料,分别与活性炭、乙炔、苯甲酸燃料混合,加热约15min制备出六钛酸钾晶须。该发明技术虽改进了制备方法,一步直接合成且合成时间短,但采用活性炭等燃料燃烧制备六钛酸钾晶须,反应过程中的二氧化碳等温室气体的排放不利于绿色环保。中国专利CN101962808A公布了一种通过窑炉余热回收技术综合提高钛酸钾晶须材料的能量使用效率,但该发明技术使用的工艺过程复杂,周期长,设备投资大,不利于工业化推广。

相比于固相反应法制备钛酸钾晶须材料,溶胶-凝胶技术是一种低温、简单可获得高纯化学组成的一种材料制备技术。利用溶胶-凝胶技术可比熔盐法还低350℃的630℃煅烧条件获得钛酸钾材料(参考:K.T.Jung and Y.G.Shul,Synthesis of high surface area potassium hexatitanate powders by sol-gel method[J],Journal of Sol-Gel Science and Technology 1996,6:227~233)。利用同样的方法结合陶瓷煅烧工艺技术,可获得不同形貌组成的钛酸钾纳米带材料(参考:Sung-Oong Kang,Hoon-Sik Jang,Yong-Il Kim,Ki-Bok Kim,Maeng-Joon Jung,Study on the growth of potassium titanate nanostructures prepared by sol-gel–calcination process[J],Materials Letters,2007,61:473–477)。然而,该技术通常使用价格较贵的高纯化合物,且反应制备周期较长,所得产物收率低,仅为克级规模,根本不满足工程规模化制备要求。而且,传统的规模化制备六钛酸钾晶须除高昂的原料价格和制备耗能较大外,另一个主要问题就是如何制备出形貌可控、适用不同应用领域的系列粉晶材料。例如,六钛酸钾晶须作为制造汽车摩擦刹车片的重要增强材料要求良好的分散性和合适的长径比,而作为锂离子电池隔膜材料主要成分的高性能晶须材料则需要满足必要的强度和热稳定性(参考:Xinxin Zhao,Zonglin Zhang,Sisi Yang,Guangchuan Liang,Inorganic ceramic fiber separator for electrochemical and safety performance improvement of lithium-ion batteries[J],Ceramics International,2017,43:14775–14783)。此外,由于传统的天然矿物纤维使用引发的环境致病机制的发现,国际上加强了对于可吸入人造纳米晶须类材料限制使用(参考:Roser Costa,Ramon Orriols,Man-Made Mineral Fibers and the Respiratory Tract[J],Arch Bronconeumol.2012,48(12):460–468)。



技术实现要素:

为了解决上述技术问题,本发明提供一种形貌可控六钛酸钾粉晶材料及其低能耗制备方法。

为了实现本发明的目的,本发明采用了以下技术方案:

一种形貌可控六钛酸钾粉晶材料的低能耗制备方法,包括以下步骤:

步骤1、纳米锐钛矿型TiO2粉的制备:

在搅拌作用下,将含钛前驱物缓慢加入低级醇中,然后迅速加入去离子水以及分散剂形成均匀的淡黄色溶胶,13~17min后向所述溶胶内缓慢加入环氧丙烷(PO)强化促进凝胶化反应,生成的凝胶在室温且通风条件下放置2天之后,于60~70℃条件下干燥5~12h,干燥结束后在430~470℃条件下烧结1.5~2.5h,得到纳米锐钛矿型TiO2粉;

所述含钛前驱物为TiCl3或TiCl4盐酸溶液;所述低级醇为无水乙醇、异丙醇、正丁醇中的任一种或几种;所述含钛前驱物与低级醇的体积比为1:(10~40),所述含钛前驱物中Ti元素、去离子水、环氧丙烷的化学计量比为1:(1~3):(6~20);

步骤2、六钛酸钾粉晶材料制备:

将制备得到的TiO2粉与含钾化合物混合并加入去离子水配制成混合液,搅拌、超声混合处理后干燥除去水分获得混合粉末,之后将所述混合粉末升温煅烧并选择在700~850℃温度条件下保温0.5~1h,随后自然冷却至室温将煅烧后得到的产物水洗、抽滤、干燥后制得六钛酸钾粉晶材料;

所述含钾化合物为乙酸钾、醋酸钾、碳酸钾、碳酸氢钾、氯化钾中的任一种或几种,所述TiO2粉中Ti元素与含钾化合物中的K元素两者化学计量比为(2.5~3.5):1。

进一步,所述步骤1中分散剂为聚丙烯酸,所述分散剂的加入量为所述溶胶总质量的0.1~0.5%。

进一步,所述步骤2中混合液的干燥温度为90~105℃,所述混合液的干燥时间5~6h。

进一步,所述步骤2中混合粉末煅烧升温速率为2~5℃/min。

一种所述制备方法制备获得的具有片状、晶须状或二者混合形貌结构的六钛酸钾粉晶材料。

本发明的有益效果在于:

(1)本发明提供了一种分步且采用廉价的含钛卤化物为原料,利用环氧丙烷驱动溶胶-凝胶技术预制得高活性纳米锐钛矿型TiO2粉体,利用低温煅烧工艺合成系列形貌可控的六钛酸钾粉晶材料。本发明的明显优势为:利用廉价原料,显著降低了钛酸钾粉晶材料合成的温度,具有节约成本、节能降耗的意义。通过优选有机物含量、K/Ti原料配比、煅烧温度可制备出分布均匀、长径比高的系列形貌可控六钛酸钾粉晶材料。本发明制备出的六钛酸钾粉晶材料为片状、晶须状或二者混合形貌结构,其晶须平均直径在0.2~0.5μm,长径比(L/D)最大可达到12,粗细均匀,分散性良好。所述六钛酸钾粉晶材料结晶良好,形貌可控,产率高,用途广泛。

(2)本发明采用环氧丙烷(PO)驱动,通过环氧化合物与反应溶剂发生开环反应捕获质子固定共轭碱,使得溶液pH均匀缓慢增加到7~8,加速含钛化合物的水解缩聚反应,促进溶胶-凝胶化动力学过程,减少溶胶-凝胶化的反应时间,反应时间为15min以内。本发明自制锐钛矿型TiO2粉具有超细且高活性的特点,相比于购买的商业纳米TiO2原料,本发明可大幅度降低钛酸钾粉晶材料合成反应的温度。本发明合成方法简单,操作简便,反应条件温和,无污染物排出。

(3)需要特别说明的是,通过对本制备方法中的原料组成配比、煅烧温度以及煅烧时间的三种因素的控制和配合,即可获得特定形貌和结构的六钛酸钾,这种特定的形貌和结构,可以是单独的片状形貌结构,也可以是单独的晶须状形貌结构,还可以是兼有片状和晶须状的混合形貌结构。改变上述三种因素中的任何一个因素,都可能会使六钛酸钾的形貌和结构也发生变化。然而,无论如何,本发明中的技术方案率先实现和保障了可以获得形貌可控的六钛酸钾粉晶材料。

附图说明

图1为实施例中制备的纳米锐钛矿型TiO2的X射线衍射图;

图2为实施例1、2、3煅烧0.5h得到的六钛酸钾材料X射线衍射图;

图3为实施例1、2、3煅烧1h得到的六钛酸钾材料X射线衍射图;

图4为实施例1煅烧0.5h得到的六钛酸钾晶须扫描电子显微镜图;

图5为实施例1煅烧1h得到的六钛酸钾片晶扫描电子显微镜图;

图6为实施例2煅烧0.5h得到的六钛酸钾晶须扫描电子显微镜图;

图7为实施例2煅烧1h得到的六钛酸钾片晶扫描电子显微镜图;

图8为实施例3煅烧0.5h得到的六钛酸钾片晶、晶须混合扫描电子显

微镜图;

图9为实施例3煅烧1h得到的六钛酸钾片晶扫描电子显微镜图。

具体实施方式

下面结合实施例对本发明技术方案做出更为具体的说明:

实施例1:

步骤1、纳米锐钛矿型TiO2粉的制备

前驱体四氯化钛按V(TiCl4):V(无水乙醇)=1:10量取,在磁力搅拌器搅拌作用下将TiCl4缓慢滴加到无水乙醇中,迅速加入适量去离子水和PAA(PAA占溶胶总质量的0.1%),形成均匀的淡黄色溶胶,13min后逐滴加入环氧丙烷(PO),凝胶化反应立即发生,溶胶体系中TiCl4、去离子水、环氧丙烷三者比例按摩尔比n(Ti):n(H2O):n(PO)=1:3:6控制。生成的凝胶在通风处室温放置2天后,于鼓风干燥箱中70℃下干燥5h,然后研磨成粉置于瓷质坩埚中放入马弗炉中450℃下煅烧2h,得到的粉末即锐钛矿相TiO2,其XRD物相组成见图1。

之所以将TiCl4缓慢滴加到无水乙醇中,是为了使滴加到无水乙醇中的TiCl4能够尽可能充分均匀地与无水乙醇混合。因此,TiCl4的滴加速度并没有明确的限制,其滴加的缓慢程度只要使TiCl4能够均匀地与无水乙醇充分混合即可。举例来说,TiCl4的滴加速度可以为10ml/min。

步骤2、六钛酸钾片晶的制备

将制得的纳米锐钛矿型TiO2粉按n(Ti):n(K)=3:1与乙酸钾混合,加入10ml去离子水配置成混合液,搅拌、超声30min以利于TiO2与乙酸钾的充分混合,充分混合后放入干燥箱中于90℃干燥6h除去混合物中的水分获得混合粉末。将若干混合粉末分别放入30ml高铝坩埚中用马弗炉采用一步升温法于750℃下分别煅烧0.5h得到样品1,煅烧1h得到样品2,随炉冷却至室温。将得到的产物经水洗、抽滤、干燥后即制得的六钛酸钾晶须和片晶,其XRD物相分析见图2、3和形貌见图4、5。

实施例2:

步骤1、纳米锐钛矿型TiO2粉的制备

前驱体四氯化钛按V(TiCl4):V(无水乙醇)=1:40量取,在磁力搅拌器搅拌作用下将TiCl4缓慢滴加到无水乙醇中,迅速加入适量去离子水和PAA(PAA占溶胶总质量的0.3%),形成均匀的淡黄色溶胶,15min后按n(Ti):n(H2O):n(PO)=1:1:12逐滴加入环氧丙烷(PO),凝胶化反应立即发生,生成的凝胶在通风处室温放置2天后,于鼓风干燥箱中60℃下干燥12h,然后研磨成粉置于瓷质坩埚中放入马弗炉中430℃下烧结2.5h,得到的粉末即锐钛矿相TiO2,其XRD见图1。

步骤2、六钛酸钾晶须的制备

将制得的纳米锐钛矿型TiO2粉按n(Ti):n(K)=2.5:1与乙酸钾混合,加入10ml去离子水配置成混合液,搅拌、超声30min以利于TiO2与乙酸钾的充分混合,充分混合后放入干燥箱中于90℃干燥6h除去混合物中的水分获得混合粉末。混合粉末放入30ml高铝坩埚中用马弗炉采用一步升温于800℃下并分别煅烧0.5h得到样品1,煅烧1h得到样品2,随炉冷却至室温。将得到的产物经水洗、抽滤、干燥后即制得的六钛酸钾晶须和片晶。其XRD见图2、3,形貌见图6、7。

实施例3:

步骤1、纳米锐钛矿型TiO2粉的制备

前驱体四氯化钛按V(TiCl4):V(无水乙醇)=1:20量取,在磁力搅拌器搅拌作用下将TiCl4缓慢滴加到无水乙醇中,迅速加入适量去离子水和PAA(PAA占溶胶总质量的0.5%),形成均匀的淡黄色溶胶,17min后按n(Ti):n(H2O):n(PO)=1:2:20逐滴加入环氧丙烷(PO),凝胶化反应立即发生,生成的凝胶在通风处室温放置2天后,于鼓风干燥箱中65℃下干燥8h,然后研磨成粉置于瓷质坩埚中放入马弗炉中470℃下烧结1.5h,得到的粉末即锐钛矿相TiO2,其XRD见图1。

步骤2、六钛酸钾晶须的制备

将制得的纳米锐钛矿型TiO2粉按n(Ti):n(K)=3.5:1与乙酸钾混合,加入10ml去离子水配置成混合液,搅拌、超声30min以利于TiO2与乙酸钾的充分混合,充分混合后放入干燥箱中于105℃干燥5h除去混合物中的水分获得混合粉末。混合粉末放入30ml高铝坩埚中用马弗炉采用一步升温于850℃下并分别煅烧0.5h得到样品1,煅烧1h得到样品2,随炉冷却至室温。将得到的产物经水洗、抽滤、干燥后即制得的六钛酸钾晶须和片晶。其XRD见图2、3,形貌见图8、9。

由图4~图9所示:本发明所述六钛酸钾的形貌和结构可以根据制备方法所述的原料组成配比、煅烧温度以及煅烧时间来控制,即本发明技术方案保障可以获得形貌可控的六钛酸钾粉晶材料。

以上实施例仅为本发明的部分实施例,按照本发明所述制备方法利用含钾化合物比如硝酸钾、碳酸钾、碳酸氢钾、氯化钾同样可以制备得到形貌可控的六钛酸钾粉晶材料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1