一种陶粒压裂支撑剂的制备方法与流程

文档序号:16099313发布日期:2018-11-27 23:55阅读:209来源:国知局

本发明公开了一种陶粒压裂支撑剂的制备方法,属于钻井助剂技术领域。



背景技术:

目前,油气开采技术日趋成熟,然而常规油田的产量依然难以突破。另外,其他非常规能源,比如风能、核能等,因其局限性未能大规模使用在人类生产中。随着油田的不断开采,浅井、渗透力强的矿床越来越少,不靠压裂技术已很难开采油气。目前,在油气勘探和开采过程中,水力压裂技术是增产与提高采收率的主要手段。石油压裂支撑剂是水力压裂技术的关键材料,其性能的优劣直接影响油气的开采率;并且其成本占据开采较大部分,因此研制成本低廉、性能优良的石油压裂支撑剂既是热点也是难点,综上所述,随着社会对油气需求量的不断增大和内页岩气能源的发现,陶粒压裂支撑剂需求量必会急剧增加。因此,研制性能优良、规格多样的可选陶粒压裂支撑剂不仅成为无机材料的研究热点之一,而且将会对石油天然气开采产生巨大的意义。总之,随着油气井深度的不断增加和世界刚起步的“页岩气革命”,高性能陶粒压裂支撑剂将迎来巨大的机遇和挑战。现阶段很多研究在获得低密度的同时,抗压强度也随之降低,所制备的陶粒只适合浅层油气井的压裂,所以应继续加大对低密度高强度陶粒压裂支撑剂的研究,找到二者关系的一个平衡点,在降低密度的同时提高其抗压强度。陶粒压裂支撑剂的发展方向主要是制备各种密度的高强度石油压裂支撑剂来提高产能,为中深油气井和页岩气井压裂开采提供性能优良的支撑剂。为适应深层高闭合压力下的水力压裂,除对现有陶粒支撑剂制备工艺改进外,研制和开发新型低密高强高导流陶粒支撑剂已势在必行。目前传统的陶粒压裂支撑剂还存在渗透率和力学性能无法同时提升的问题,因此还需对其进行研究。



技术实现要素:

本发明主要解决的技术问题是:针对传统陶粒压裂支撑剂渗透率和力学性能无法同时提升的问题,提供了一种陶粒压裂支撑剂的制备方法。

为了解决上述技术问题,本发明所采用的技术方案是:

(1)按重量份数计,将30~50份钠长石,40~60份铝矾土,20~30份高岭土,30~50份粉煤灰,10~20份白云石,3~5份高锰酸钾,10~20份冰晶石,8~10份低熔点合金粉,5~8份石墨,5~8份草酸铜,5~8份草酸铁,10~20份碳酸钙,10~20份改性竹纤维粉混合球磨,过120目的筛,得混合粉末;

(2)将氟化钠溶液与桃胶液按质量比1:20~1:30搅拌混合,得混合浆液;

(3)将混合粉末与混合浆液按质量比3:2~3:1混合,造粒,干燥,炭化,烧结,得坯料;

(4)将坯料与改性海藻酸钠液按质量比1:20~1:30搅拌混合,过滤,干燥,即得陶粒压裂支撑剂。

步骤(1)所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

步骤(1)所述改性竹纤维粉的制备过程为:将竹纤维粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与氢氧化钠溶液按质量比1:20~1:30混合浸泡,过滤,洗涤,干燥,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯浸泡,过滤,洗涤,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻,球磨,过240目的筛,干燥,即得改性竹纤维粉。

步骤(2)所述桃胶液的制备过程为:将桃胶与水按质量比1:50~1:100混合,静置溶胀后,加热搅拌溶解,即得桃胶液。

步骤(4)所述炭化条件为:温度为550~750℃,炭化时间为2~3h。

步骤(4)所述烧结条件为:温度为1300~1500℃,烧结时间为2~3h。

步骤(4)所述改性海藻酸钠液的制备过程为:将海藻酸钠与水按质量比1:50~1:100混合,静置溶胀后,加热搅拌溶解,接着加入海藻酸钠质量0.03~0.05倍的高碘酸钠,加热搅拌混合,即得改性海藻酸钠液。

本发明的有益效果是:

(1)本发明通过添加低熔点合金粉,石墨和冰晶石,在炭化过程中,低熔点合金熔融并在体系中流动,使得体系的体系率得到提升,同时,携带石墨和冰晶石在体系中分散,随着温度升高,体系中的石墨挥发,使得体系孔隙率得到进一步的提升,从而使得体系的渗透率得到进一步的提升,随着温度继续升高,冰晶石分解产生游离态的氟,游离态的氟与体系中的二氧化硅、氧化铝反应生成莫来石晶须,大量交错形成的棒状莫来石晶须插嵌在孔壁中,使得体系孔隙率提升的同时,力学性能也进一步提升;

(2)本发明通过添加改性竹纤维粉,在制备过程中,首先,竹纤维粉经过氢氧化钠溶液浸泡,使得纤维间的结合力进一步下降,再利用液氮处理,使纤维细胞中形成冰晶,再经球磨,使得细胞壁中的冰晶受到压力作用而破裂,使得纤维分解成纳米级纤维晶须,经过炭化和高温处理后,竹纤维石墨化,使其韧性得得到提升,当体系受到外力作用时,应力从纤维基体向纤维传递,纤维与基体产生相对滑移拔出过程中会吸收更多的摩擦能,从而使得体系的力学性能得到进一步的提升。

具体实施方式

将桃胶与水按质量比1:50~1:100置于1号烧杯中,用玻璃棒搅拌10~20min,静置溶胀3~5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为80~90℃,转速为300~500r/min条件下,加热搅拌溶解40~60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为30~40%的氢氧化钠溶液按质量比1:20~1:30置于反应釜中,于转速为400~600r/min,温度为40~60℃条件下,混合浸泡2~3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为105~110℃条件下,干燥至含水率为5~8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为300~500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤2~3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为105~110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:50~1:100置于3号烧杯中,用玻璃棒搅拌10~20min,静置溶胀3~5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为80~90℃,转速为300~500r/min条件下,加热搅拌溶解40~60min,接着向3号烧杯中加入海藻酸钠质量0.03~0.05倍的高碘酸钠,于温度为60~80℃条件下,加热搅拌混合40~60min,即得改性海藻酸钠液;按重量份数计,将30~50份钠长石,40~60份铝矾土,20~30份高岭土,30~50份粉煤灰,10~20份白云石,3~5份高锰酸钾,10~20份冰晶石,8~10份低熔点合金粉,5~8份石墨,5~8份草酸铜,5~8份草酸铁,10~20份碳酸钙,10~20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为3~5%的氟化钠溶液与桃胶液按质量比1:20~1:30置于4号烧杯中,于转速为300~500r/min条件下,搅拌混合30~50min,得混合浆液;将混合粉末与混合浆液按质量比3:2~3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为105~110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以400~600mL/min速率向炉内通入氮气,在氮气保护状态下,以8~10℃/min速率程序升温至550~750℃,炭化2~3h,接着以10~15℃/min速率程序升温至1300~1500℃,保温烧结3~5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:20~1:30置于三口烧瓶中,于转速为400~600r/min条件下,搅拌混合40~60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为105~110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

实例1

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为40%的氢氧化钠溶液按质量比1:30置于反应釜中,于转速为600r/min,温度为60℃条件下,混合浸泡3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为110℃条件下,干燥至含水率为8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,接着向3号烧杯中加入海藻酸钠质量0.05倍的高碘酸钠,于温度为80℃条件下,加热搅拌混合60min,即得改性海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,20份冰晶石,10份低熔点合金粉,8份石墨,8份草酸铜,8份草酸铁,20份碳酸钙,20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为5%的氟化钠溶液与桃胶液按质量比1:30置于4号烧杯中,于转速为500r/min条件下,搅拌混合50min,得混合浆液;将混合粉末与混合浆液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

实例2

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为40%的氢氧化钠溶液按质量比1:30置于反应釜中,于转速为600r/min,温度为60℃条件下,混合浸泡3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为110℃条件下,干燥至含水率为8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,接着向3号烧杯中加入海藻酸钠质量0.05倍的高碘酸钠,于温度为80℃条件下,加热搅拌混合60min,即得改性海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,10份低熔点合金粉,8份石墨,8份草酸铜,8份草酸铁,20份碳酸钙,20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为5%的氟化钠溶液与桃胶液按质量比1:30置于4号烧杯中,于转速为500r/min条件下,搅拌混合50min,得混合浆液;将混合粉末与混合浆液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

实例3

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为40%的氢氧化钠溶液按质量比1:30置于反应釜中,于转速为600r/min,温度为60℃条件下,混合浸泡3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为110℃条件下,干燥至含水率为8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,接着向3号烧杯中加入海藻酸钠质量0.05倍的高碘酸钠,于温度为80℃条件下,加热搅拌混合60min,即得改性海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,20份冰晶石,8份石墨,8份草酸铜,8份草酸铁,20份碳酸钙,20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为5%的氟化钠溶液与桃胶液按质量比1:30置于4号烧杯中,于转速为500r/min条件下,搅拌混合50min,得混合浆液;将混合粉末与混合浆液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。

实例4

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为40%的氢氧化钠溶液按质量比1:30置于反应釜中,于转速为600r/min,温度为60℃条件下,混合浸泡3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为110℃条件下,干燥至含水率为8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,接着向3号烧杯中加入海藻酸钠质量0.05倍的高碘酸钠,于温度为80℃条件下,加热搅拌混合60min,即得改性海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,20份冰晶石,10份低熔点合金粉,8份草酸铜,8份草酸铁,20份碳酸钙,20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为5%的氟化钠溶液与桃胶液按质量比1:30置于4号烧杯中,于转速为500r/min条件下,搅拌混合50min,得混合浆液;将混合粉末与混合浆液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

实例5

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为40%的氢氧化钠溶液按质量比1:30置于反应釜中,于转速为600r/min,温度为60℃条件下,混合浸泡3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为110℃条件下,干燥至含水率为8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,接着向3号烧杯中加入海藻酸钠质量0.05倍的高碘酸钠,于温度为80℃条件下,加热搅拌混合60min,即得改性海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,20份冰晶石,10份低熔点合金粉,8份石墨,8份草酸铁,20份碳酸钙,20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为5%的氟化钠溶液与桃胶液按质量比1:30置于4号烧杯中,于转速为500r/min条件下,搅拌混合50min,得混合浆液;将混合粉末与混合浆液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

实例6

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为40%的氢氧化钠溶液按质量比1:30置于反应釜中,于转速为600r/min,温度为60℃条件下,混合浸泡3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为110℃条件下,干燥至含水率为8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,接着向3号烧杯中加入海藻酸钠质量0.05倍的高碘酸钠,于温度为80℃条件下,加热搅拌混合60min,即得改性海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,20份冰晶石,10份低熔点合金粉,8份石墨,8份草酸铜,20份碳酸钙,20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为5%的氟化钠溶液与桃胶液按质量比1:30置于4号烧杯中,于转速为500r/min条件下,搅拌混合50min,得混合浆液;将混合粉末与混合浆液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

实例7

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,接着向3号烧杯中加入海藻酸钠质量0.05倍的高碘酸钠,于温度为80℃条件下,加热搅拌混合60min,即得改性海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,20份冰晶石,10份低熔点合金粉,8份石墨,8份草酸铜,8份草酸铁,20份碳酸钙,20份竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为5%的氟化钠溶液与桃胶液按质量比1:30置于4号烧杯中,于转速为500r/min条件下,搅拌混合50min,得混合浆液;将混合粉末与混合浆液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

实例8

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为40%的氢氧化钠溶液按质量比1:30置于反应釜中,于转速为600r/min,温度为60℃条件下,混合浸泡3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为110℃条件下,干燥至含水率为8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,接着向3号烧杯中加入海藻酸钠质量0.05倍的高碘酸钠,于温度为80℃条件下,加热搅拌混合60min,即得改性海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,20份冰晶石,10份低熔点合金粉,8份石墨,8份草酸铜,8份草酸铁,20份碳酸钙,20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将混合粉末与桃胶液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与改性海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

实例9

将桃胶与水按质量比1:100置于1号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将1号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,即得桃胶液;将竹纤维置于粉碎机中粉碎,过120目的筛,得竹纤维粉,接着将竹纤维粉与质量分数为40%的氢氧化钠溶液按质量比1:30置于反应釜中,于转速为600r/min,温度为60℃条件下,混合浸泡3h,得浸泡混合液,再将浸泡混合液过滤,得1号滤渣,接着用冰醋酸将1号滤渣洗涤至洗涤液为中性,接着将洗涤后的1号滤渣置于烘箱中,于温度为110℃条件下,干燥至含水率为8%,得一次处理竹纤维粉,将一次处理竹纤维粉与正硅酸乙酯置于2号烧杯中,于转速为500r/min条件下,搅拌混合浸泡后,过滤,得滤饼,接着用去离子水将滤饼洗涤3次,得二次处理竹纤维粉,将二次处理竹纤维粉液氮冷冻后,得冷冻料,随后将冷冻料球磨,过240目的筛,得球磨料,接着将球磨料置于烘箱中,于温度为110℃条件下,干燥至恒重,即得改性竹纤维粉;将海藻酸钠与水按质量比1:100置于3号烧杯中,用玻璃棒搅拌20min,静置溶胀5h后,将3号烧杯置于数显测速恒温磁力搅拌器中,于温度为90℃,转速为500r/min条件下,加热搅拌溶解60min,得海藻酸钠液;按重量份数计,将50份钠长石,60份铝矾土,30份高岭土,50份粉煤灰,20份白云石,5份高锰酸钾,20份冰晶石,10份低熔点合金粉,8份石墨,8份草酸铜,8份草酸铁,20份碳酸钙,20份改性竹纤维粉置于球磨机中混合球磨,过120目的筛,得混合粉末;将质量分数为5%的氟化钠溶液与桃胶液按质量比1:30置于4号烧杯中,于转速为500r/min条件下,搅拌混合50min,得混合浆液;将混合粉末与混合浆液按质量比3:1混合造粒,得颗粒料,接着将颗粒料置于烘箱中,于温度为110℃条件下,干燥至恒重,得干燥颗粒料,再将所得干燥颗粒料移入管式炉中,以600mL/min速率向炉内通入氮气,在氮气保护状态下,以10℃/min速率程序升温至750℃,炭化3h,接着以15℃/min速率程序升温至1500℃,保温烧结5h后,随炉冷却至室温,出料,得坯料;将坯料与海藻酸钠液按质量比1:30置于三口烧瓶中,于转速为600r/min条件下,搅拌混合60min后,过滤,得2号滤渣,接着将2号滤渣置于烘箱中,于温度为110℃条件下,干燥至恒重,即得陶粒压裂支撑剂。所述低熔点合金粉为锡,钠和镝按质量比1:3:8混合配置而成。

对比例:郑州某科技有限公司生产的陶粒支撑剂。

将实例1至9所得支撑剂和对比例产品进行性能检测,具体检测方法如下:

按照SY /T5108对试件的耐压强度进行检测;采用压裂酸化裂缝导流性能检测分析系统对试件的导流能力进行检测,并根据达西定律公式计算渗透率。

具体检测结果如表1所示:

表1:性能检测表

由表1检测结果可知,本发明所得陶粒压裂支撑剂力学性能和渗透率同时得到了有效的提升。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1