一种高强耐磨型复合耐火材料的制备方法与流程

文档序号:16474718发布日期:2019-01-02 23:28阅读:166来源:国知局

本发明涉及一种高强耐磨型复合耐火材料的制备方法,属于耐火材料技术领域。



背景技术:

镁碳耐火材料中主要成分为mgo和c,其都具有很高的熔点,且互不固熔,因此镁碳耐火材料具有较高的耐火度。镁碳耐火材料既保持了mgo熟料对碱性渣具有很强的抗渣侵蚀性,又继承了碳对熔渣不润湿的优点,所以其表现出优良的抗渣侵蚀性,尤其是抗熔渣渗透性。此外,作为镁碳耐火材料的重要组成部分,石墨具有热膨胀系数小、热导率高等优点,赋予镁碳材料优良的导热性、弹性模量等,可显著改善材料的抗热震性。

镁碳耐火材料具有优异的抗渣性、抗热震性和热传导性,且制备工艺简单,被广泛用作电炉、转炉及精炼炉等的内衬材料。但是,随着钢铁工业的发展,耐火材料的使用条件更加苛刻,传统的镁碳耐火材料在长期的服役过程中主要存在以下两方面的问题。第一,从热力学角度来看,mgo和c只有在很低的温度或很低的氧分压下才能共存,所以镁碳耐火材料在高温使用过程中发生反应,导致材料中碳素原料和mg蒸气白白损失,最终使镁碳材料的结构发生变化乃至损毁失效。第二,传统镁碳耐火材料的碳含量一般在10~20wt%,高的碳含量将会导致以下不利影响:①消耗大量宝贵的石墨资源;②高的热导率导致热损耗增加,迫使出钢温度提高,难以满足二次精炼工艺要求,同时加剧了耐火材料的侵蚀损毁等一系列问题;③容易引起钢水增碳而污染钢水,不利于纯净钢和超低碳钢等的冶炼。进入新世纪后,使用传统镁碳耐火材料的大部分炉窑,已经开始要求低碳化,因此,开展低碳镁碳耐火材料的研究具有十分重要的意义。



技术实现要素:

本发明所要解决的技术问题:针对现有镁碳耐火材料力学性能和耐热震性能的问题,提供了一种高强耐磨型复合耐火材料的制备方法。

为解决上述技术问题,本发明采用的技术方案是:

(1)按重量份数计,分别称量45~50份无水乙醇、6~8份硝酸铁、1~2份硝酸钴、2~3份硝酸镍置于烧杯中,搅拌混合并收集得混合液;

(2)按重量份数计,分别称量45~50份混合液、10~15份去离子水、10~15份柠檬酸溶液、6~8份碳酸镁置于烧杯中搅拌混合2~3h后,收集混合液并旋转蒸发处理,得改性凝胶液;

(3)按质量比1:1:2:3,将硼化锆碳化硅颗粒、金属铝粉和镁砂颗粒搅拌混合并置于球磨罐中,收集混合球磨粉末并按质量比1:5,将改性凝胶液与混合球磨粉末搅拌混合,收集得混合浆液并浇注至模具中,压制成型;

(4)待压制完成后,脱模并收集坯料,将坯料干燥至恒重,收集干燥坯料并干燥固化,收集得干燥坯料并静置冷却至室温,收集高强耐磨型复合耐火材料。

步骤(2)所述的柠檬酸溶液质量分数为25%。

步骤(2)所述的旋转蒸发温度为55~60℃。

步骤(2)所述的旋转蒸发处理为置于55~60℃下旋转蒸发至混合液体积的1/5。

步骤(3)所述的压制成型压力为100~150mpa。

步骤(4)所述的干燥固化为在200~210℃下干燥固化10~12h。

本发明与其他方法相比,有益技术效果是:

(1)本发明技术方案制备氧化镁前驱体凝胶并填充至耐火材料内部,通过催化形成以后有效的改性纤维对耐火材料中复合颗粒产生粘结,生成了类似网状的结构,构成网状的纤维都比较纤细,在很多地方交叉、粘结,这种结构增强了纤维整体的韧性然,加入纳米微粒后,由于其润滑和增强作用,耐磨性能改善,而经过表面改性的纳米粒子填料同复合颗粒之间的界面结合得以加强,因此复合材料的耐磨性能得到改善,有效改善复合耐火材料的力学强度和机械性能;

(2)本发明技术方案采用前驱体凝胶材料内高温反应形成大量微气孔,有效地阻止微裂纹的扩展和缓解因温度梯度而产生的热应力,调整颗粒的临界粒径及其分布,在材料内形成较大的微裂纹密度,从而利用微裂纹增韧机理,提高材料抗热震性,同时对其耐火材料中引入玻璃相物质或其前驱体,利用玻璃相在较高温度下发生软化变形而吸收材料内的热应力,有效改善材料的力学强度和耐热效应。

具体实施方式

按重量份数计,分别称量45~50份无水乙醇、6~8份硝酸铁、1~2份硝酸钴、2~3份硝酸镍置于烧杯中,搅拌混合并收集得混合液,再按重量份数计,分别称量45~50份混合液、10~15份去离子水、10~15份质量分数25%柠檬酸溶液、6~8份碳酸镁置于烧杯中搅拌混合2~3h后,收集混合液并置于55~60℃下旋转蒸发至混合液体积的1/5,得改性凝胶液;按质量比1:1:2:3,将硼化锆碳化硅颗粒、金属铝粉和镁砂颗粒搅拌混合并置于球磨罐中,收集混合球磨粉末并按质量比1:5,将改性凝胶液与混合球磨粉末搅拌混合,收集得混合浆液并浇注至模具中,将模具置于100~150mpa下压制10~15min,待压制完成后,脱模并收集坯料,将坯料置于100~110℃下干燥至恒重,收集干燥坯料并置于200~210℃下干燥固化10~12h,收集得干燥坯料并静置冷却至室温,收集高强耐磨型复合耐火材料。

按重量份数计,分别称量45份无水乙醇、6份硝酸铁、1份硝酸钴、2份硝酸镍置于烧杯中,搅拌混合并收集得混合液,再按重量份数计,分别称量45份混合液、10份去离子水、10份质量分数25%柠檬酸溶液、6份碳酸镁置于烧杯中搅拌混合2h后,收集混合液并置于55℃下旋转蒸发至混合液体积的1/5,得改性凝胶液;按质量比1:1:2:3,将硼化锆碳化硅颗粒、金属铝粉和镁砂颗粒搅拌混合并置于球磨罐中,收集混合球磨粉末并按质量比1:5,将改性凝胶液与混合球磨粉末搅拌混合,收集得混合浆液并浇注至模具中,将模具置于100mpa下压制10min,待压制完成后,脱模并收集坯料,将坯料置于100℃下干燥至恒重,收集干燥坯料并置于200℃下干燥固化10h,收集得干燥坯料并静置冷却至室温,收集高强耐磨型复合耐火材料。

按重量份数计,分别称量47份无水乙醇、7份硝酸铁、1份硝酸钴、2份硝酸镍置于烧杯中,搅拌混合并收集得混合液,再按重量份数计,分别称量47份混合液、13份去离子水、13份质量分数25%柠檬酸溶液、7份碳酸镁置于烧杯中搅拌混合2h后,收集混合液并置于57℃下旋转蒸发至混合液体积的1/5,得改性凝胶液;按质量比1:1:2:3,将硼化锆碳化硅颗粒、金属铝粉和镁砂颗粒搅拌混合并置于球磨罐中,收集混合球磨粉末并按质量比1:5,将改性凝胶液与混合球磨粉末搅拌混合,收集得混合浆液并浇注至模具中,将模具置于125mpa下压制13min,待压制完成后,脱模并收集坯料,将坯料置于105℃下干燥至恒重,收集干燥坯料并置于205℃下干燥固化11h,收集得干燥坯料并静置冷却至室温,收集高强耐磨型复合耐火材料。

按重量份数计,分别称量50份无水乙醇、8份硝酸铁、2份硝酸钴、3份硝酸镍置于烧杯中,搅拌混合并收集得混合液,再按重量份数计,分别称量50份混合液、15份去离子水、15份质量分数25%柠檬酸溶液、8份碳酸镁置于烧杯中搅拌混合3h后,收集混合液并置于60℃下旋转蒸发至混合液体积的1/5,得改性凝胶液;按质量比1:1:2:3,将硼化锆碳化硅颗粒、金属铝粉和镁砂颗粒搅拌混合并置于球磨罐中,收集混合球磨粉末并按质量比1:5,将改性凝胶液与混合球磨粉末搅拌混合,收集得混合浆液并浇注至模具中,将模具置于150mpa下压制15min,待压制完成后,脱模并收集坯料,将坯料置于110℃下干燥至恒重,收集干燥坯料并置于210℃下干燥固化12h,收集得干燥坯料并静置冷却至室温,收集高强耐磨型复合耐火材料。

将本发明制备的实例1,2,3进行性能测试,具体测试结果如下表表1所示:

表1性能测试表

由上表可知,本发明制备的耐火材料具有优异的耐火性能和力学强度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1