一种超短时间制备高储能铌酸钾钠铁电陶瓷材料的方法与流程

文档序号:16583371发布日期:2019-01-14 18:10阅读:303来源:国知局
一种超短时间制备高储能铌酸钾钠铁电陶瓷材料的方法与流程

本发明属于材料技术领域,具体涉及一种高储能的铌酸钾钠((k0.5na0.5)nbo3)铁电陶瓷材料的制备方法。



背景技术:

压铁电陶瓷是一类重要的、国际竞争极为激烈的新型功能材料。由于其具有优异的铁电、压电、热释电性能、机械性能、热学和显著的电光效应,且还具有耐高温、耐腐蚀、高硬度和高透明等特性,使该类材料在电子、通信、航空、发电、探测、冶金、计算机等诸多领域得到广泛的应用,如导弹用整流罩、飞行员护目镜、高压钠灯管、电焊工用头罩、超市条码扫描红外传感器窗口、太阳能及照相机的光学器件等。但是,该材料产业一直由性能优异的锆钛酸铅(pzt)陶瓷所统治。进入21世纪后,欧盟、日本、美国和我国等世界主要国家及地区都相继立法禁止、限制使用含铅等有害材料,因此,寻找能够替代pzt的无铅高性能的铁电材料成为世界性的紧迫课题。

在众多无铅铁电陶瓷中,无铅压电材料(k,na)nbo3(knn)陶瓷由于具有较高的压电常数和居里温度,得到广大研究者的关注,取得了极大的进展。knn陶瓷通常采用传统固相法制备,通过球磨机6~24小时的混合球磨后,再经高温煅烧合成knn钙钛矿相,进而烧结成瓷。如kepichen等通过传统行星球磨6h、700~900℃预烧、1040~1080℃烧结,获得了(k0.5na0.5)nbo3陶瓷。结果显示,由于烧结温度的不同,d33值在15~120pc/n之间变化,陶瓷晶粒的大小范围在300nm到2μm之间(chen,k.;tang,j.;chen,y.,compositionalinhomogeneityandsegregationin(k0.5na0.5)nbo3ceramics.ceramicsinternational2016,42,9949-9954.)。再如hansubirol等采用传统行星球磨24小时、825℃预烧、1114℃烧结,获得了(k0.5na0.5)nbo3陶瓷。该陶瓷在室温下介电常数为≈480,最大击穿场强dbs达到了90kv/cm(birol,h.;damjanovic,d.;setter,n.,preparationandcharacterizationof(k0.5na0.5)nbo3ceramics.journaloftheeuropeanceramicsociety2006,26,861-866.)。此外,也有人采用高能球磨法制备铌酸钾纳陶瓷,如chongthamjiten等采用高能球磨法制备(k0.5na0.5)nbo3陶瓷,经过20小时球磨、900℃预烧及1110℃烧结,获得了(k0.5na0.5)nbo3陶瓷。获得的陶瓷粒径约为148nm,压电和介电性能均有所提高,但其铁电性能较差,击穿场强仅为30kv/cm,没有储能性能(jiten,c.;rawat,m.;bhattacharya,a.;singh,k.c.,(na0.5k0.5)nbo3nanocrystallinepowdersproducedbyhighenergyballmillingandcorrespondingceramics.materialsresearchbulletin2017,90,162-169.)。这表明,高能球磨方法可以使陶瓷在电学性能等方面普遍得到提高,但由于其球磨时间仍然很长导致制备效率不高,和传统行星球磨方法相比并不具有优势,这就需要我们积极探索如何缩短球磨时间、提高合成效率,同时保持或提高其介电、铁电等性能的方法。



技术实现要素:

本发明的目的是提供一种在超短时间内制备致密、细晶且具有较高介电、铁电和储能性的(k0.5na0.5)nbo3铁电陶瓷材料的方法。

针对上述目的,本发明所采用的技术方案由下述步骤组成:

1、配料

按照(k0.5na0.5)nbo3的化学计量分别称取纯度为99.99%的原料na2co3、k2co3、nb2o5混合均匀,将原料混合物装入氧化锆高能罐中,将φ1.5mm氧化锆球、φ3mm氧化锆球、φ10mm氧化锆球按质量比为(6~7):(1~2):1加入氧化锆高能罐中,其中球料质量比为6~10:1,并加入质量分数为0.02%~0.08%的聚乙烯吡咯烷酮k30水溶液或质量分数为0.02%~0.08%的硬脂酸水溶液作为球磨介质;设置球磨机正向转速为300~500rpm、反向转速为600~800rpm,每运行2~5分钟冷却8~10分钟,记为一个循环,充分混合球磨30~50个循环;球磨完后分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80~120目筛。

2、预烧

将步骤1过80~120目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,700~750℃预烧5~9小时,自然冷却至常温,用研钵研磨,得到预烧粉。

3、二次球磨

将步骤2的预烧粉按照步骤1的方法进行二次球磨,球磨完后分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过180目筛。

4、冷等静压压片

向步骤3过180目筛的预烧粉中加入质量分数为5%聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过180目筛,制成球状粉粒;将球状粉粒用压片机压制成圆柱状坯件,然后依次排列放入橡胶手套中,抽真空后放入冷等静压机液腔中,于180~220mpa下保压3~8分钟。

5、无压密闭烧结

将步骤4冷等静压压片后的圆柱状坯件放在密闭氧化铝坩埚中,再将该氧化铝坩埚置于氧化铝密闭匣钵中,以3~5℃/分钟升温至500℃后保温2小时,再以3~5℃/分钟的速率升温至1120~1140℃,保温烧结2~3小时,再以5~10℃/分钟的速率降温至室温。

6、抛光

将步骤5烧结后的陶瓷依次用800目和1500目的金刚砂抛光至厚度为0.3~0.6mm,超声波清洗。

7、烧银

在步骤6抛光的陶瓷上下表面涂覆厚度为0.01~0.03mm、直径为2~5mm的银浆,置于电阻炉中650℃保温30分钟,自然冷却至常温,制备成高储能铌酸钾钠铁电陶瓷材料。

上述步骤1中,优选球料质量比为8:1;优选以质量分数为0.05%~0.06%的聚乙烯吡咯烷酮k30水溶液或质量分数为0.05%~0.06%的硬脂酸水溶液作为球磨介质。

上述步骤1中,进一步优选设置球磨机正向转速为300rpm、反向转速为600rpm,每运行2分钟冷却8~10分钟,记为一个循环,充分混合球磨50个循环。

上述步骤4中,优选于200mpa下保压5分钟。

本发明的有益效果如下:

1、本发明采用机械化学辅助法制备(k0.5na0.5)nbo3陶瓷,高能球磨方法的使用和分散剂的添加极大的提高了合成效率,在短时间内得到了亚微米粉体,最终获得了细晶化的陶瓷;同时采用冷等静压法压片,增加了陶瓷片致密度,有利于陶瓷材料电学性能的提高。

2、本发明方法简单,制备时间短、效率高,重复性好,所制备的陶瓷材料体密度高、击穿场强大,具有较高的储能性,实用性很强。

附图说明

图1是实施例1~4及对比例1制备的(k0.5na0.5)nbo3球磨粉的粒径分布图。

图2是实施例1~4及对比例1制备的(k0.5na0.5)nbo3预烧粉的xrd图。

图3是实施例1~4及对比例1制备的(k0.5na0.5)nbo3陶瓷在1khz下的介电常数随温度的变化关系图。

图4是实施例1~4及对比例1制备的(k0.5na0.5)nbo3陶瓷材料的电滞回线图。

具体实施方式

下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。

实施例1

1、配料

按照(k0.5na0.5)nbo3的化学计量分别称取纯度为99.99%的原料na2co30.8253g、k2co31.0722g、nb2o54.1118g,混合均匀,将原料混合物装入氧化锆高能罐中,将φ1.5mm氧化锆球、φ3mm氧化锆球、φ10mm氧化锆球按质量比为6:2:1加入氧化锆高能罐中,其中球料质量比为8:1,并加入质量分数为0.05%的聚乙烯吡咯烷酮k30水溶液作为球磨介质,设置球磨机正向转速为300rpm、反向转速为600rpm,每运行2分钟冷却8分钟,记为一个循环,充分混合球磨50个循环。球磨完后分离锆球,将原料混合物在80℃下干燥24小时,用研钵研磨,过80目筛。取0.05g过80目筛的原料混合物在乙醇溶剂中超声分散,采用激光粒径仪(modelbi-90plus,brookhaven,usa)测颗粒度分布,结果见图1。

2、预烧

将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,700℃预烧9小时,自然冷却至常温,用研钵研磨,得到预烧粉。

3、二次球磨

将步骤2的预烧粉按照步骤1的方法进行二次球磨,球磨完后分离锆球,将预烧粉在80℃下干燥24小时,用研钵研磨,过180目筛。

4、冷等静压压片

向步骤3过180目筛的预烧粉中加入质量分数为5%聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的50%,造粒,过180目筛,制成球状粉粒;将球状粉粒用压片机压制成φ10.5mm×1.3mm圆柱状坯件,然后依次排列放入橡胶手套中,抽真空后放入冷等静压机液腔中,于200mpa下保压5分钟。

5、无压密闭烧结

将步骤4冷等静压压片后的圆柱状坯件放在密闭氧化铝坩埚中,再将该氧化铝坩埚置于氧化铝密闭匣钵中,以3℃/分钟升温至500℃后保温2小时,再以3℃/分钟的速率升温至1140℃,保温烧结2小时,再以5℃/分钟的速率降温至室温。

6、抛光

将步骤5烧结后的陶瓷依次用800目和1500目的金刚砂抛光至厚度为0.3~0.6mm,用去离子水超声波清洗。

7、烧银

在步骤6抛光的陶瓷上下表面涂覆厚度为0.02mm、直径为3mm的银浆,置于电阻炉中650℃保温30分钟,自然冷却至常温,制备成(k0.5na0.5)nbo3铁电陶瓷材料。

实施例2

本实施例中,以质量分数为0.05%的硬脂酸水溶液作为球磨介质,其他步骤与实施例1相同,制备成(k0.5na0.5)nbo3铁电陶瓷材料。

实施例3

本实施例中,设置球磨机正向转速为300rpm、反向转速为600rpm,每运行2分钟冷却8分钟,记为一个循环,充分混合球磨40个循环,其他步骤与实施例1相同,制备成(k0.5na0.5)nbo3铁电陶瓷材料。

实施例4

本实施例中,设置球磨机正向转速为300rpm、反向转速为600rpm,每运行3分钟冷却10分钟,记为一个循环,充分混合球磨40个循环,其他步骤与实施例1相同,制备成(k0.5na0.5)nbo3铁电陶瓷材料。

对比例1

1、配料

按照(k0.5na0.5)nbo3的化学计量分别称取纯度为99.99%的原料na2co30.8253g、k2co31.0722g、nb2o54.1118g,混合均匀。将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与原料混合物的质量比为1.5:1,用球磨机401转/分钟球磨24小时。球磨完后分离锆球,将原料混合物在80℃下干燥24小时,用研钵研磨后过80目筛。取0.05g过80目筛的原料混合物在乙醇溶剂中超声分散,采用激光粒径仪(modelbi-90plus,brookhaven,usa)测颗粒度分布,结果见图1。

2、预烧

将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至850℃预烧9小时,自然冷却至室温,出炉,用研钵研磨10分钟,得到预烧粉。

3、二次球磨

将预烧粉装入尼龙罐中,按照步骤1的方法进行二次球磨,球磨完后分离锆球,将预烧粉在80℃下干燥24小时,用研钵研磨,过180目筛。

4、造粒及压片

向步骤3过180目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的50%,造粒,过180目筛,制成球状粉粒;将球状粉粒放入直径为11.5mm的不锈钢模具内,用粉末压片机在300mpa的压力下将其压制成φ11.5mm×1.5mm的圆柱状坯件。

5、无压密闭烧结

将圆柱状坯件放在密闭氧化铝坩埚中,再将该氧化铝坩埚置于氧化铝密闭匣钵中,以3℃/分钟升温至500℃后保温2小时,再以3℃/分钟的速率升温至1120℃,保温烧结2小时,再以5℃/分钟的速率降温至室温。

6、抛光

将步骤5烧结后的陶瓷依次用800目和1500目的金刚砂抛光至厚度为0.3~0.6mm,用去离子水超声波清洗。

7、烧银

在步骤6抛光的陶瓷上下表面涂覆厚度为0.02mm、直径为3mm的银浆,置于电阻炉中650℃保温30分钟,自然冷却至常温,制备成(k0.5na0.5)nbo3铁电陶瓷材料。

发明人对上述实施例1~4及对比例1制备的陶瓷片采用d/max-2200x型射线衍射仪(由日本理学公司生产)进行结构测试,结果见图2;采用agilient4980a型精密阻抗分析仪(由安捷伦科技有限公司生产)进行介电和铁电性能测试,结果见图3和4。

由图1可见,实施例1~4制备的不同球磨参数取值和采用不同分散剂的球磨粉均获得亚微米尺寸的颗粒,平均粒径范围均在115~145nm范围内,小于对比例1的平均粒径≈170nm。图2表明,实施例1~4经700℃预烧后均形成纯的钙钛矿相结构,而对比例1需经过850℃预烧才能形成纯的钙钛矿相结构。图3表明,实施例1~4制备的(k0.5na0.5)nbo3陶瓷材料在210℃附近发生了正交相到立方相的转变,在385℃附近发生了铁电四方相到顺电立方相的转变,即居里温度tc为385℃,较对比例1的居里温度419℃有所下降。由图4可见,对比例1制备的陶瓷材料的击穿场强为50v/cm,实施例1~4制备的陶瓷材料的击穿场强增大到了104~110kv/cm,饱和极化强度由15μc/cm提高到≈40μc/cm,剩余极化强度也大大提高。经计算,实施例1~4陶瓷材料均获得了高的储能密度。其中,实施例1的总储能密度为1.612j/cm3,可回收储能密度为0.431j/cm3,远高于对比例1采用传统行星球磨法制备的陶瓷材料的0.344j/cm3和0.039j/cm3

表1对实施例1~4及对比例1制备的(k0.5na0.5)nbo3陶瓷的制备参数及电学性能做了汇总和比较。由表1可知,实施例1~4制备的(k0.5na0.5)nbo3陶瓷的各项性能指标相近,单次球磨时间的微小变化及相同用量的不同分散剂对陶瓷的各项性能影响不大,而加入聚乙烯吡咯烷酮k30分散剂的陶瓷性能略优于加入硬脂酸分散剂的陶瓷性能。总之,实施例1~4制备的(k0.5na0.5)nbo3陶瓷材料不管从合成工艺还是致密度、晶粒尺寸以及介电、铁电等性能方面,都比对比例1制备的陶瓷材料具有合成时间显著缩短、合成效率明显提高、材料质量更好以及材料电学性能更优等特点,尤其是获得了较高的储能性能。

表1实施例1~4及对比例1制备的(k05na05)nbo3陶瓷的制备参数及电学性能

注:表中εt----室温下介电常数;tc----居里温度,℃;d33----压电系数,pc/n;dbs----击穿场强,kv/cm;wtol----总能量储存密度,j/cm3;wrec-----有效能量储存密度,j/cm3;pvp-k30----聚乙烯吡咯烷酮k30。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1