一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用与流程

文档序号:17478742发布日期:2019-04-20 06:18阅读:442来源:国知局
一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用与流程

本发明属于电子陶瓷材料制备的技术领域,涉及一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用。



背景技术:

随着世界能源和环境问题的日益凸显,引起了世界各国对新能源开发和应用的高度重视。介电储能技术由于其介电响应快、器件微型化、智能化、集成化、成本低廉等特点,在储能领域有着广阔的应用前景,也成为新能源储能技术开发中不可或缺的一部分。介电储能技术的核心在于介电储能材料的研究和制备,而研发一种环境友好型,综合性能良好,生产成本较低的介电储能材料对介电储能技术的研究和开发至关重要。

目前,正在研究的介电储能材料绝大部分是具有钙钛矿结构相的氧化物,通常这些材料属于铁电体或者多铁材料,其介电常数的温度稳定性相对较差。随着微电子工业的高速发展,对介电储能材料的电性能提出了更高的要求。2000年subramanian等人发现并报道了巨介电钛酸铜钙(cacu3ti4o12,ccto)陶瓷材料(m.a.subramanian,d.li,n.duan,b.a.reisner,a.w.sleight,highdielectricconstantinacu3ti4o12andacu3ti3feo12phases,j.solidstatechem.,151(2000)323-325.),在常温下具有很高的介电常数(104-105),而且在很宽的温度(100-600k)和频率(102-106hz)范围内保持高度稳定,并且没有任何结构相变,使得ccto材料得到了诸多学者的大量研究。ccto陶瓷材料除了具有高介电常数外,还具有优异的非线性特性,作为压敏陶瓷材料在电子、电力系统有很大的应用潜力。但是ccto陶瓷的介电损耗较高、击穿场强较低限制了其进一步应用,而大多研究文献和发明专利显示,有关ccto陶瓷的研究都主要集中在改变粉体预烧温度、陶瓷烧结温度和时间等工艺参数以及a/b位离子掺杂来改善ccto陶瓷的介电性能,提高其介电击穿场强(m.ahmadipour,m.f.ain,z.a.ahmad,ashortreviewoncoppercalciumtitanate(ccto)electroceramic:synthesis,dielectricproperties,filmdeposition,andsensingapplication,nano-microlett.,8(2016)291-311.孙礼,郝文涛,石永杰,彭华,曹恩思.一种高介电常数、低介电损耗cacu3ti4-xzrxo12陶瓷的制备方法:中国,cn104909747a[p].2015.09.16)。据研究结果表明,一般在降低介电损耗的同时也会伴随着介电常数的减小,这样反而削弱了ccto作为巨介电材料的固有特性。至此,探索一种ccto陶瓷材料的制备方法,在保持其高介电常数的条件下降低介电损耗、提高击穿场强显得尤为重要。另外,对ccto陶瓷材料的介电储能行为的研究也极少,姚小练等人申请的专利中涉及了与钛酸铜钙同类的氧化物钛酸铜镉(姚小练,彭战辉,杨祖培,梁鹏飞.一种高击穿场强和储能密度二氧化硅掺杂钛酸铜镉巨介电陶瓷材料及制备方法:中国,cn107188559a[p].2017.07.20),该发明提供了一种高击穿场强和储能密度二氧化硅掺杂钛酸铜镉巨介电陶瓷材料及制备方法,其陶瓷材料的击穿场强高达895~2352v/cm,储能密度高达0.712~1.77mj/cm3,但是该储能行为距离实际应用还有待进一步提高。一般地,陶瓷材料的晶粒尺寸对其介电性能和击穿响应十分敏感,从而对陶瓷材料的储能密度有着巨大的影响。因此,提出通过调控ccto陶瓷的晶粒尺寸及其分布范围,可增强晶界效应提高介电常数降低损耗,还可增加材料的介电击穿路径提高击穿场强,进而提高陶瓷材料的介电储能密度,促进ccto陶瓷的实际应用。



技术实现要素:

为了克服上述现有技术的缺点,本发明的目的在于提供一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用,能够有效改善钛酸铜钙陶瓷的介电性能、提高其非线性特性。

为了达到上述目的,本发明采用以下技术方案予以实现:

本发明公开了一种巨介电钛酸铜钙复合陶瓷材料的制备方法,包括以下步骤:

1)按(0.3~0.7):(0.3~0.7)的质量比,将钛酸铜钙微米粉体与钛酸铜钙纳米粉体混合后,加入无水乙醇,在250w的超声功率下超声处理1h,然后干燥,得到混合粉体;

2)将干燥处理后的混合粉体进行球磨复合处理,然后将球磨后的钛酸铜钙复合粉体干燥、研磨,再加入聚乙烯醇依次进行造粒、压片、排胶、烧结、涂银电极并烧银处理,得到钛酸铜钙复合陶瓷材料。

优选地,钛酸铜钙微米粉体的制备,包括以下步骤:

a、按cacu3ti4o12物质的化学计量比称取caco3、cuo及tio2,采用无水乙醇作为分散剂,充分球磨混合均匀;

b、将球磨后的混合溶液干燥,得到钛酸铜钙前驱粉;

c、将干燥后的钛酸铜钙前驱粉研磨、过筛后,进行粉体预烧,从室温开始以2~3℃/min的升温速率升温至900~1000℃,保温8~10h,自然冷却后出炉;

d、将预烧后的粉块充分研磨后,进行二次球磨,再将二次球磨后的粉体干燥、研磨、过筛,制得钛酸铜钙微米粉体。

进一步优选地,步骤a中,将称取的caco3、cuo及tio2混合后放入球磨罐中,再加入分散剂无水乙醇和球磨介质玛瑙球,置于行星球磨机中进行球磨,以400~500r/min的转速球磨6~12小时;

步骤b中,干燥是在80~100℃烘干5~10h;

步骤c中,将钛酸铜钙前驱粉进行充分研磨并过80~100目筛;

步骤d中,二次球磨是以400~500r/min的转速球磨6~12小时;将二次球磨后的粉体于80~100℃烘干5~10h,研磨10~15min后过120~160目筛。

优选地,钛酸铜钙纳米粉体的制备,包括以下步骤:

a、按cacu3ti4o12物质的化学计量比称取ca(no3)2·4h2o、cu(no3)2·3h2o及ti(c3h9o)4;

b、将ca(no3)2·4h2o、cu(no3)2·3h2o和柠檬酸用去离子水与无水乙醇的混合溶液溶解,充分混匀至完全溶解,形成a溶液;

c、将称取的钛酸四丁酯溶于与其等体积的无水乙醇中,充分混合均匀使钛酸四丁酯均匀分布在无水乙醇中,再滴加冰醋酸,形成b溶液;

d、在a溶液保持搅拌的状态下,将b溶液缓慢加入a溶液中,再加入聚乙二醇,继续搅拌反应60~90min,并调节反应体系ph值为3~4,形成蓝色且透明的溶胶;

e、将制得的溶胶于60~80℃干燥处理5~10h,得到淡蓝色的凝胶,随后将凝胶搅碎于100~120℃干燥处理8~12h,得到灰黑色蓬松状的干凝胶;

f、将干凝胶进行预烧,缓慢升温至650~850℃,保温2~3h,自然冷却后研磨10~15min,制得钛酸铜钙纳米粉体。

进一步优选地,步骤a中,去离子水与无水乙醇的混合溶液中,去离子水与无水乙醇的体积比为1:2;

步骤b中和步骤c中,充分混匀是采用磁力搅拌机搅拌60~90min;

步骤c中,冰醋酸用量为b溶液中加入无水乙醇体积的1/4~1/3;

步骤d中,聚乙二醇用量为按化学计量比制备钛酸铜钙粉体质量的8%~10%。

优选地,步骤1)中,干燥是在70~90℃下干燥处理3~6h。

优选地,步骤2)中,球磨复合处理将干燥处理后的混合粉体放入球磨罐中,再加入分散剂无水乙醇和球磨介质玛瑙球,置于行星球磨机中以不同的速率和时间进行球磨复合;将球磨后的钛酸铜钙复合粉体于80~100℃干燥5~10h,然后再放入玛瑙研钵中研磨10~20min。

优选地,步骤2)中,向研磨后的钛酸铜钙复合粉体中加入聚乙烯醇进行造粒,过100目筛,再放入模具中压制成生坯,再将其放入马弗炉中500℃保温9h进行排胶,随后继续置于马弗炉中,于1050~1100℃下烧结8~12h,最后将烧结好的陶瓷进行打磨抛光,进行涂银电极并烧银,最终得到钛酸铜钙复合陶瓷样品。

本发明还公开了采用上述制备方法制得的巨介电钛酸铜钙复合陶瓷材料,该巨介电钛酸铜钙复合陶瓷材料为具有高介电、低损耗、高击穿场强和高储能密度的钛酸铜钙复合陶瓷材料。

本发明还公开了采用上述巨介电钛酸铜钙复合陶瓷材料在制备高介电多层陶瓷电容器和动态随机存储器中的应用。

与现有技术相比,本发明具有以下有益效果:

本发明通过将固相法和溶胶-凝胶法合成的微、纳米粉体进行混合制备钛酸铜钙复合陶瓷材料,制备过程简单可控、重复性好、成品率高,还可通过改变微米粉体和纳米粉体复合比例,调控钛酸铜钙复合陶瓷的晶粒尺寸及其范围,从而得到致密的高介电(5×104)、低损耗(0.051)、高击穿场强(2374v/cm)和高储能密度(20kj/m3)的钛酸铜钙复合陶瓷材料。

经本发明方法制备得到的巨介电钛酸铜钙复合陶瓷材料,其储能密度是单一微米和纳米粉体制备陶瓷的12.7和12.1倍。因此该复合陶瓷材料实用性强,作为介质材料可用于制备高介电多层陶瓷电容器(mlcc)和动态随机存储器(dram),也作为压敏陶瓷材料用于电力、电子系统等领域。

附图说明

图1为本发明高储能密度的巨介电ccto复合陶瓷材料的制备工艺流程图。

图2为本发明中ccto微、纳米粉体的xrd图。

图3a为本发明中ccto微米粉体的sem图。

图3b为本发明中ccto纳米粉体的sem图。

图4为本发明中纯微/纳米粉体制备的ccto陶瓷对比实施例1-3中ccto复合陶瓷样品的xrd图。

图5为本发明中纯微/纳米粉体制备的ccto陶瓷对比实施例1-3中ccto复合陶瓷样品的sem图。

图6a为本发明中纯微/纳米粉体制备的ccto陶瓷对比实施例1-3中ccto复合陶瓷样品的介电常数图。

图6b为本发明中纯微/纳米粉体制备的ccto陶瓷对比实施例1-3中ccto复合陶瓷样品的介电损耗图。

图7为本发明中纯微/纳米粉体制备的ccto陶瓷对比实施例1-3中ccto复合陶瓷样品的非线性曲线图。

图8为本发明中纯微/纳米粉体制备的ccto陶瓷对比实施例1-3中ccto复合陶瓷样品的击穿场强、非线性系数和储能密度的变化曲线图。

具体实施方式

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

需要说明的是,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

下面结合附图对本发明做进一步详细描述:

实施例1

一种高储能密度的巨介电钛酸铜钙复合陶瓷材料的制备方法,按以下步骤进行:

(1)钛酸铜钙微米粉体(m)的制备

a、按cacu3ti4o12物质的化学计量比分别称取caco37.6g、cuo18.125g和tio224.275g;

b、将步骤a称取的caco3、cuo和tio2原料混合后放入球磨罐中,再加入60ml的无水乙醇和球磨介质玛瑙球,置于行星球磨机中进行球磨,以500r/min的转速球磨12小时;

c、将球磨后的混合溶液放在蒸发皿,置于干燥箱中,80℃烘干10h,得到ccto前驱粉;

d、将干燥后的ccto前驱粉进行充分研磨并过80目筛,再放入氧化铝坩埚内压实,盖上锆板,置于马弗炉中进行粉体预烧,缓慢升温至1000℃,保温10h,自然冷却后出炉;

e、将预烧后的陶瓷块敲碎用玛瑙研钵进行充分研磨,再放入球磨罐中,同时加入分散剂无水乙醇和球磨介质玛瑙球,置于行星球磨机中进行二次球磨,以500r/min的转速球磨6小时,再将其二次球磨后的粉体放入蒸发皿中置于干燥箱内,80℃烘干5~10h,研磨15min后过160目筛,即得到ccto微米粉体。

(2)钛酸铜钙纳米粉体(n)制备

a、按cacu3ti4o12物质的化学计量比准确称取ca(no3)2·4h2o10.168g、cu(no3)2·3h2o31.21g和ti(c3h9o)458.622g;

b、将以上称取的ca(no3)2·4h2o、cu(no3)2·3h2o和10.404g的柠檬酸放入干净的烧杯中,再加入80ml的去离子水与无水乙醇(1:2)的混合溶液中,用磁力搅拌机搅拌60min,使其完全溶解,形成a溶液;

c、将称取的ti(c3h9o)4放入另一个干净烧杯中,再加入60ml的无水乙醇,用磁力搅拌机搅拌60min,使ti(c3h9o)4均匀分散在无水乙醇中,再滴加20ml的冰醋酸,形成b溶液;

d、在a溶液保持搅拌的状态下,将b溶液沿玻璃棒缓慢加入a溶液中,再加入25ml的聚乙二醇,继续搅拌反应60min,并调节ph值为3~4,随着水解与聚合反应的进行,形成蓝绿色的透明溶胶;

e、将得到的溶胶置于干燥箱中,80℃干燥10h,得到淡蓝色的凝胶,随后再将凝胶搅碎放入蒸发皿中置于干燥箱中,120℃干燥12h,得到灰黑色蓬松状的干凝胶;

f、将干凝胶放入玛瑙研钵中研磨15min后再放入氧化铝坩埚中,盖上锆板,置于马弗炉中进行预烧,缓慢升温至850℃,保温3h,自然冷却后研磨15min,即得到ccto纳米粉体。

(3)按ccto纳米粉体与ccto微米粉体的比例(n:m)为0.3:0.7,称取6g的纳米和14g的微米粉体混合后放入烧杯中,再加入30ml的无水乙醇,置于超声清洗器内,在250w的超声功率下超声处理1h,然后将其放入蒸发皿中置于干燥箱内,70~90℃烘干3~6h;

(4)将超声处理后的混合粉体放入球磨罐中,再加入30ml的无水乙醇和球磨介质玛瑙球,置于行星球磨机中,以550r/min的转速球磨12h。

(5)将球磨后的ccto复合粉体放入蒸发皿中置于干燥箱内,80℃烘干10h,取出后再放入玛瑙研钵中研磨20min。

(6)将研磨后的ccto复合粉体中加入聚乙烯醇(pva)进行造粒,过100目筛,再放入模具中压制成直径为12mm厚度为1~2mm的圆片生坯。将其放入马弗炉中500℃保温9h进行排胶,随后继续置于马弗炉1100℃烧结12h(升温速率为4℃/min,降温速率为3℃/min),最后将烧结好的陶瓷进行打磨抛光,进行涂银电极并烧银,最终得到ccto复合陶瓷样品。

实施例2

与本实施例1不同的是,本实施例在步骤(3)中按ccto纳米粉体与ccto微米粉体的比例(n:m)为0.5:0.5称取10g的纳米和10g的微米粉体混合后放入球磨罐中,再加入30ml的无水乙醇和球磨介质玛瑙球,置于行星球磨机中,以550r/min的转速球磨12h。

其他步骤与实施例1相同,得到ccto复合陶瓷样品。

实施例3

与本实施例1不同的是,本实施例在步骤(3)中按ccto纳米粉与微米粉的比例(n:m)为0.7:0.3,称取14g的纳米和6g的微米粉体混合后放入球磨罐中,再加入30ml的无水乙醇和球磨介质玛瑙球,置于行星球磨机中,以550r/min的转速球磨12h。

其他步骤与实施例1相同,得到ccto复合陶瓷样品。

实施例4

与本实施例3不同的是,本实施例在步骤(6)中将圆片生坯放入马弗炉中500℃保温9h进行排胶,随后继续置于马弗炉1100℃烧结8h(升温速率为4℃/min,降温速率为3℃/min)。

其他步骤与实施例3相同,得到ccto复合陶瓷样品。

实施例5

与本实施例3不同的是,本实施例在步骤(6)中将圆片生坯放入马弗炉中500℃保温9h进行排胶,随后继续置于马弗炉1050℃烧结12h(升温速率为3℃/min,降温速率为2.5℃/min)。

其他步骤与实施例3相同,得到ccto复合陶瓷样品。

实施例6

与本实施例3不同的是,本施实例在步骤(6)中将圆片生坯放入马弗炉中500℃保温9h进行排胶,随后继续置于马弗炉1050℃烧结8h(升温速率为3℃/min,降温速率为2.5℃/min)。

其他步骤与实施例3相同,得到ccto复合陶瓷样品。

因此,鉴于以上实施例,将单一的微米粉和纳米粉制备的ccto陶瓷样品与实施例1-3中制备的ccto复合陶瓷样品进行结构表征和电性能测试对比实验,结果如下:

1.材料的晶相组成与微观结构表征

(1)x射线衍射分析(xrd)

采用x射线衍射仪(d8advance,德国,cu)对ccto粉体和陶瓷材料进行晶相组成分析。

(2)扫描电子显微镜(sem)

采用场发射电子扫描显微镜(fesem,feiverios460,日本)对ccto微、纳米粉体和陶瓷样品表面的微观结构进行观察。

2.材料性能测试

(1)介电性能测试

采用宽频介电谱仪(德国novocontrolconcept80)测试ccto陶瓷样品的介电性能(介电常数ε′和介电损耗tanδ),测试条件为是室温下频率范围在10-1-107hz。

(2)非线性特性

采用直流稳压电源(wj10001d)和精密电子万用表(hp34001a),在室温下对ccto陶瓷样品的非线性特性(j-e)进行测试。陶瓷样品的击穿场强eb和非线性系数α由如下公式(1)-(2)所得:

式(1)中u1为电流为1ma时的电压,d为陶瓷样品厚度;

式(2)中e1和e2分别为j1=1ma/cm2和j2=10ma/cm2对应的电场强度。

(3)储能密度

对于线性电介质材料,其储能密度由介电常数ε′和击穿场强eb共同决定。因此,ccto陶瓷材料的储能密度可通过如下公式(3)计算所得:

式(3)中:ε0为真空介电常数(8.85×10-12f/m)。

2.实验结果

(1)图2是本发明通过固相反应法合成ccto微米粉体和通过溶胶-凝胶法合成ccto纳米粉体的xrd图谱。从图2中可以看出,两种粉体的所有衍射峰都符合ccto钙钛矿结构的标准pdf数据库(jcpdsno.752188),说明本发明成功合成了ccto微、纳米粉体。

(2)图3a和图3b分别是本发明通过固相反应法合成ccto微米粉体和通过溶胶-凝胶法合成ccto纳米粉的sem微观形貌。其中,ccto微米粉体的粒径大概0.53~2.08μm,ccto纳米粉体的粒径大概为260~500nm。

(3)图4是本发明中单一的微米与纳米粉制备的ccto陶瓷和实施例1-3所制备的ccto复合陶瓷的xrd图谱。由图可知,本发明制备的ccto复合陶瓷材料的衍射峰与ccto标准pdf数据库一致,表明本发明成功制备了ccto复合陶瓷。

(4)图5是本发明中单一的微米与纳米粉制备的ccto陶瓷和实施例1-3所制备的ccto复合陶瓷表面的sem微观形貌。其中,(a)是单一纳米粉制备ccto陶瓷的sem微观形貌,其平均晶粒尺寸为47.29μm。(b)是本发明实施例1中制备的ccto复合陶瓷的sem表面微观形貌,其纳米粉与微米粉(n:m)的比例为0.3:0.7,该复合陶瓷的平均晶粒尺寸为32.1μm。(c)是本发明实施例2中制备的ccto复合陶瓷的sem表面微观形貌,其纳米粉与微米粉(n:m)的比例为0.5:0.5,该复合陶瓷的平均晶粒尺寸为10.27μm。(d)为本发明实施例3中制备的ccto复合陶瓷的sem表面微观形貌,其纳米粉与微米粉(n:m)的比例为0.7:0.3,该复合陶瓷的平均晶粒尺寸为4.39μm。(e)是单一微米粉制备ccto陶瓷的sem微观形貌,其平均晶粒尺寸为3.25μm。由此可见,本发明实施例1-3的平均晶粒尺寸介于纳米粉和微米粉制备的ccto陶瓷的之间,说明本发明制备的ccto复合陶瓷调控了其晶粒尺寸。

(5)图6a是本发明中单一的微米与纳米粉制备的ccto陶瓷和实施例1-3所制备的ccto复合陶瓷的介电常数图。从图中可以看出,与单一微米粉制备的ccto陶瓷相比,实施例1(n:m=0.3:0.7)中制备的ccto复合陶瓷的在中频段(102-105hz)的介电常数相对较高。与单一纳米粉制备的ccto陶瓷相比,实施例1(n:m=0.3:0.7)中制备的ccto复合陶瓷在整个测试频率范围内(10-1-107hz)的介电常数都显著提高。在实施例2(n:m=0.5:0.5)和实施例3(n:m=0.7:0.3)制备的ccto复合陶瓷材料与单一纳米粉制备的ccto陶瓷相比,其介电常数在低频段(10-1-102hz)和高频段(106-107hz)明显增加。由此表明本发明通过微米和纳米粉体混合法制备ccto复合陶瓷材料的介电常数得到了明显提高。

(6)图6b是本发明中单一的微米与纳米粉制备的ccto陶瓷和实施例1-3所制备的ccto复合陶瓷的介电损耗图。实施例1(n:m=0.3:0.7)中制备的ccto复合陶瓷与单一微米粉制备的ccto陶瓷相比,其在10-1-103hz下的介电损耗明显降低。在实施例2(n:m=0.5:0.5)制备的ccto复合陶瓷材料与单一微米粉制备的ccto陶瓷相比,其介电损耗在10-1-107hz的测试频率下显著降低。而与单一纳米粉制备的ccto陶瓷相比,实施例2中ccto复合陶瓷的介电损耗在104-107hz测试频率下明显降低。在实施例3(n:m=0.7:0.3)制备的ccto复合陶瓷材料与单一微米粉制备的ccto陶瓷相比,其介电损耗在10-1-10hz和102-105hz的两个测试频率段下有所降低。而与单一纳米粉制备的ccto陶瓷相比,实施例3中ccto复合陶瓷的介电损耗在104-106hz测试频率下相对较低。由此表明本发明通过微米和纳米粉体混合法制备ccto复合陶瓷材料的介电损耗有所降低,并且介电损耗在不同频率下的变化相对比较稳定。

(7)图7是本发明中单一的微米与纳米粉制备的ccto陶瓷和实施例1-3所制备的ccto复合陶瓷的非线性特性(j-e曲线)图。由图中可以看出,实施例1(n:m=0.3:0.7)中制备的ccto复合陶瓷与单一微米粉制备的ccto陶瓷相比,其非线性明显改善。实施例2(n:m=0.5:0.5)和实施例3(n:m=0.7:0.3)制备的ccto复合陶瓷材料与单一微、纳米粉制备的ccto陶瓷相比,其非线性得到了十分显著的提高,特别是实施例3最为明显。

(8)图8是本发明中单一微、纳米粉体制备的ccto陶瓷与实施例1-3中ccto复合陶瓷的击穿场强、非线性系数和储能密度的变化曲线图。从图中可以看出,与单一微米粉制备的ccto陶瓷相比,实施例1(n:m=0.3:0.7)、实施例2(n:m=0.5:0.5)和实施例3(n:m=0.7:0.3)制备的ccto复合陶瓷的非线性系数、击穿场强和储能密度都有明显提高。而与单一纳米粉制备的ccto陶瓷相比,实施例3(n:m=0.7:0.3)制备的ccto复合陶瓷的非线性系数明显提高,实施例2(n:m=0.5:0.5)和实施例3(n:m=0.7:0.3)制备的ccto复合陶瓷的击穿场强均有增加,实施例1(n:m=0.3:0.7)、实施例2(n:m=0.5:0.5)和实施例3(n:m=0.7:0.3)制备ccto复合陶瓷的储能密度都有提高,特别是实施例3最为明显,高达20kj/m3

以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1