多孔质材料、隔室结构体和多孔质材料的制造方法与流程

文档序号:18937926发布日期:2019-10-23 00:51阅读:209来源:国知局
多孔质材料、隔室结构体和多孔质材料的制造方法与流程

本发明涉及多孔质材料、隔室结构体和多孔质材料的制造方法。



背景技术:

使用含有堇青石的粘结材料将碳化硅粒子等骨料粒子粘结而得的多孔质材料具有耐热冲击性等优异的性能。例如,在日本专利第5922629号公报中公开了一种多孔质材料,该多孔质材料的粘结材料含有结晶质的堇青石和铈元素或锆元素,粘结材料的质量相对于骨料和粘结材料的合计质量的比率在规定的范围内。这样的多孔质材料成型为内部被隔壁分隔成多个隔室的蜂窝结构体,用于催化剂载体、dpf(柴油颗粒过滤器,dieselparticulatefilter)等。

然而,由于蜂窝结构体暴露于高温的废气中,因此优选通过氧化处理在骨料粒子的表面形成氧化膜来提高抗氧化性。在这种情况下,骨料粒子为碳化硅粒子或氮化硅粒子时,该氧化膜含有方英石。另一方面,使蜂窝结构体负载沸石等scr(选择性催化还原,selectivecatalyticreduction)催化剂时,在含有催化剂的浆料的干燥工序中,蜂窝结构体被加热到200~400℃。此时,形成有氧化膜的多孔质材料由于方英石的相转变而热膨胀系数变高,因此为了适当地负载催化剂,需要繁琐地控制温度条件等。另外,认为在为了进一步提高抗氧化性而使氧化膜进一步变厚的情况下,方英石的量增加,热膨胀系数进一步变高。因此,对于提高了抗氧化性的多孔质材料,要求降低热膨胀系数。



技术实现要素:

本发明提供一种多孔质材料,目的在于,对于提高了抗氧化性的多孔质材料,降低热膨胀系数。

本发明的多孔质材料包含在粒子主体的表面设置有含有方英石的氧化膜的骨料粒子、和以形成有细孔的状态对上述骨料粒子之间进行粘结的粘结材料,并含有铜、钙和镍中的至少一种作为辅助成分,所述粒子主体为碳化硅粒子或氮化硅粒子。

根据本发明,能够对于提高了抗氧化性的多孔质材料,降低热膨胀系数。

本发明的一个优选方案中,上述辅助成分的质量的比率相对于上述多孔质材料的整体而言按氧化物换算为0.4~3.0质量%。

本发明的另一优选方案中,上述氧化膜的厚度为0.3~5.0μm。

本发明的另一优选方案中,上述粘结材料含有堇青石。

在优选的多孔质材料中,以40℃为基准时在250℃下的热膨胀系数为6.0ppm/k以下。

本发明还提供一种隔室结构体。本发明的隔室结构体由上述多孔质材料形成,内部被隔壁分隔成多个隔室。

本发明还提供一种多孔质材料的制造方法。本发明所涉及的一种多孔质材料的制造方法包括如下工序:a)将混合有骨料原料、粘结材料原料和造孔材料的混合物成型而得到成型体的工序、b)在不活泼气氛下对上述成型体进行烧成而得到烧成体的工序、和c)在氧化性气氛下对上述烧成体实施氧化处理而得到多孔质材料的工序,上述骨料原料包含碳化硅粒子或氮化硅粒子,上述粘结材料原料含有铜、钙和镍中的至少一种作为辅助成分。

本发明所涉及的另一种多孔质材料的制造方法包括如下工序:a)将混合有骨料原料、粘结材料原料和造孔材料的混合物成型而得到成型体的工序、b)在不活泼气氛下对上述成型体进行烧成而得到烧成体的工序、和c)在氧化性气氛下对上述烧成体实施氧化处理而得到多孔质材料的工序,上述骨料原料包含碳化硅粒子或氮化硅粒子,上述粘结材料原料包含辅助成分或锶,进一步包含氢氧化铝,所述辅助成分为铜、钙和镍中的至少一种。

该情况下,上述氢氧化铝的质量的比率相对于上述粘结材料原料的整体而言优选为1~30质量%。

本发明的一个方案中,上述c)工序中的上述氧化处理的温度为1100~1300℃。

上述的目的和其它目的、特征、方案和优点通过以下参照附图而进行的本发明的详细说明而明确。

附图说明

图1是表示蜂窝结构体的图。

图2是表示蜂窝结构体的截面图。

图3是表示多孔质材料的结构的图。

图4是用于对多孔质材料中的氧化膜进行说明的图。

图5是表示制造多孔质材料的处理流程的图。

符号说明

1蜂窝结构体

2多孔质材料

3骨料粒子

4粘结材料

12隔壁

13隔室

21细孔

31粒子主体

32氧化膜

s11~s13步骤

具体实施方式

<蜂窝结构体>

图1是简化表示本发明的一个实施方式的蜂窝结构体1的图。蜂窝结构体1是在一个方向上较长的筒状部件,在图1中示出蜂窝结构体1在长度方向上的一侧端面。图2是表示蜂窝结构体1的截面图,在图2中示出沿着该长度方向的截面的一部分。蜂窝结构体1例如用于dpf等过滤器。蜂窝结构体1也可以用于除了过滤器以外的其它用途。

蜂窝结构体1具备筒状外壁11和隔壁12。筒状外壁11和隔壁12由后述的多孔质材料形成。筒状外壁11为在长度方向延伸的筒状。垂直于长度方向的筒状外壁11的截面形状例如为圆形,也可以为多边形等。隔壁12设置于筒状外壁11的内部,将该内部分隔成多个隔室13。隔壁12的厚度例如为30μm(微米)以上,优选为50μm以上。隔壁12的厚度例如为1000μm以下,优选为500μm以下,更优选为350μm以下。

各隔室13是在长度方向上延伸的空间。垂直于长度方向的隔室13的截面形状例如为多边形(三角形、四边形、五边形、六边形等),也可以为圆形等。多个隔室13原则上具有相同的截面形状。在多个隔室13中可以包含截面形状不同的隔室13。隔室密度例如为10个隔室/cm2(平方厘米)以上,优选为20个隔室/cm2以上,更优选为50个隔室/cm2以上。隔室密度例如为200个隔室/cm2以下,优选为150个隔室/cm2以下。蜂窝结构体1是内部被隔壁12分隔成多个隔室13的隔室结构体。

蜂窝结构体1作为dpf使用时,规定的气体以长度方向的蜂窝结构体1的一端侧为入口、以另一端侧为出口而进行流动。另外,在规定数量的隔室13中,在入口侧的端部设置密封部14,在剩余的隔室13中,在出口侧的端部设置密封部14。因此,流入到蜂窝结构体1内的气体从入口侧没有被密封的隔室13通过隔壁12而移动到出口侧没有被密封的隔室13(参照图2中的箭头a1)。此时,在隔壁12中高效地捕集气体中的粒子状物质。优选在蜂窝结构体1的入口侧的端部和出口侧的端部分别沿着隔室13的排列方向每隔一个设置一个密封部14。在蜂窝结构体1中,根据需要负载催化剂。

<多孔质材料>

图3是表示形成蜂窝结构体1的多孔质材料2的结构的图。多孔质材料2为多孔质的烧结体,包含骨料粒子3和粘结材料4。粘结材料4以形成有细孔21的状态对骨料粒子3之间进行粘结。粘结材料4例如包含结晶质的堇青石。在多孔质材料2中,除骨料粒子3以外的物质原则上包含于粘结材料4中。

骨料粒子3包含粒子主体31。粒子主体31为碳化硅(sic)或氮化硅(si3n4)的粒子。多孔质材料2可以包含碳化硅粒子和氮化硅粒子这两者的粒子主体31。在本实施方式中,粒子主体31为碳化硅粒子。典型的是,骨料粒子3的粒子主体31是构成多孔质材料2的物质中量最多的物质的粒子。骨料粒子3进一步包含设置于粒子主体31的表面的氧化膜32。在图3中用粗线表示氧化膜32。优选各骨料粒子3由粒子主体31和氧化膜32构成。氧化膜32是通过氧化性气氛中的热处理而形成于属于非氧化物的粒子主体31的表面的氧化物层。氧化膜32含有方英石。在多孔质材料2中,通过在粒子主体31的周围设置氧化膜32而得到优异的抗氧化性。

图4是用于对多孔质材料2中的氧化膜32进行说明的图。在图4中示意地表示粒子主体31、氧化膜32和粘结材料4。在多孔质材料2中,在粒子主体31和粘结材料4之间以及粒子主体31和细孔21之间都存在氧化膜32。对于多孔质材料2,为了更可靠地提高抗氧化性,氧化膜32的厚度(平均厚度)例如为0.3μm以上,优选为0.5μm以上,更优选为0.8μm以上。

如后所述,在多孔质材料2中能够降低热膨胀系数,但认为该热膨胀系数随着氧化膜32变厚而变高。因此,为了进一步降低热膨胀系数,氧化膜32的厚度例如为5.0μm以下,优选为3.5μm以下,更优选为2.0μm以下。在氧化膜32的厚度的测定中,例如以规定的倍率观察对多孔质材料2进行镜面研磨而得到的截面。然后,在多个位置求出从氧化膜32和细孔21的界面到氧化膜32和粒子主体31的界面的长度,求出该长度的平均值作为氧化膜32的厚度。

在多孔质材料2中,骨料粒子3的质量的比率相对于多孔质材料2的整体而言大于50质量%。即,粘结材料4的质量的比率相对于多孔质材料2的整体而言小于50质量%。另外,粘结材料4优选相对于粘结材料4的整体而言包含50质量%以上的堇青石,即,粘结材料4优选以堇青石为主成分。堇青石由二氧化硅(sio2)成分、氧化镁(mgo)成分和氧化铝(al2o3)成分形成。

堇青石的质量的比率相对于多孔质材料2的整体而言,例如为10质量%以上,优选为12质量%以上。由此,在多孔质材料2中确保一定的机械强度(此处为弯曲强度)。如后所述,对于多孔质材料2,要求高气孔率,但是,如果粘结材料4过多,则用于在多孔质材料2中实现高气孔率的困难性增大。为了在多孔质材料2中容易地实现高气孔率,作为粘结材料4的主成分的堇青石的质量比率相对于多孔质材料2的整体而言,例如为40质量%以下,优选为30质量%以下。

多孔质材料2的构成结晶相(sic,方英石,堇青石等)的质量比率例如如下求出。首先,使用x射线衍射装置而得到多孔质材料2的x射线衍射图案。作为x射线衍射装置,使用多功能粉末x射线衍射装置(bruker公司制,d8advance)。x射线衍射测定的条件为cukα射线源,10kv,20ma,2θ=5~100°。然后,使用解析软件topas(brukeraxs公司制)根据rietveld法对得到的x射线衍射数据进行解析,对各结晶相进行定量。将可检测到的所有结晶相的质量之和设为100质量%,算出各构成结晶相的质量比率。

多孔质材料2包含铜(cu)、钙(ca)和镍(ni)中的至少一种、即、辅助成分。辅助成分为选自铜、钙和镍中的至少一种。辅助成分可以包含于骨料粒子3的氧化膜32中,也可以包含于粘结材料4中。

然而,氧化膜32所含有的方英石随着200℃附近的从α相向β相的相转变而发生剧烈的体积变化。因此,含有方英石的多孔质材料在包括200℃附近的温度范围中热膨胀系数容易变高。与此相对,在含有上述辅助成分的多孔质材料2中,即使存在方英石,也能抑制热膨胀系数的增大。其结果,能够提高多孔质材料2的耐热冲击性。通过存在辅助成分而使热膨胀系数变低的理由尚不明确,但认为一个原因是由于辅助成分固溶于一部分的方英石而使方英石的结晶结构稳定化,方英石不发生相转变。另外,还认为有可能是因为辅助成分的存在而使方英石的一部分以其它结晶相的形式存在。

辅助成分含有铜或镍时,为了在多孔质材料2中更可靠地降低热膨胀系数,辅助成分的质量比率相对于多孔质材料2的整体而言按氧化物换算例如为0.2质量%以上,优选为0.3质量%以上,更优选为0.4质量%以上。辅助成分仅含有钙时,辅助成分的质量比率例如为0.4质量%以上,优选为0.5质量%以上。在辅助成分含有钙的多孔质材料2中,由于机械强度也变高,因此能够与热膨胀系数的降低相结合而进一步提高耐热冲击性。

辅助成分的质量比率优选低于构成堇青石的二氧化硅成分、氧化镁成分和氧化铝成分中的任一者。辅助成分的质量的比率例如为3.0质量%以下,优选为2.0质量%以下,更优选为1.5质量%以下。辅助成分含有多种元素时,上述质量比率为该多种元素的合计的质量比率。多孔质材料2中含有的各成分的质量比率例如通过icp(电感耦合等离子体,inductivelycoupledplasma)发射光谱法而求出。

在优选的多孔质材料2中,从40℃加热到250℃时长度膨胀的比例,即,以40℃为基准时在250℃下的热膨胀系数(以下,称为“40~250℃的热膨胀系数”)为6.0ppm/k(即,6.0×10-6/k)以下。在更优选的多孔质材料2中,该热膨胀系数为5.5ppm/k以下。该热膨胀系数越低越好,例如,该热膨胀系数的下限值为1.0ppm/k。热膨胀系数为通过如下方式而得的值,即,例如从蜂窝结构体1中切出纵3个隔室×横3个隔室×长度20mm的试验片,利用依据jisr1618的方法,测定与蜂窝结构体1的流路平行的方向的40~250℃下的平均线性热膨胀系数而得的值。

使蜂窝结构体1负载沸石等scr催化剂时,在含有催化剂的浆料的干燥工序中,将蜂窝结构体1加热到200℃左右。对于40~250℃的热膨胀系数低的蜂窝结构体1(多孔质材料2),能够适当地进行scr催化剂的负载。

对于蜂窝结构体1所使用的多孔质材料2,要求高气孔率(此处为开口气孔率)。为了在多孔质材料2中容易地实现高气孔率,骨料粒子3的平均粒径优选为5μm以上,更优选为10μm以上。为了避免在多孔质材料2中存在较多过大的细孔21,骨料粒子3的平均粒径优选为100μm以下,更优选为40μm以下。

多孔质材料2的气孔率例如为40%以上,由此,在作为dpf使用的蜂窝结构体1中,压力损失过度升高得到抑制。而且,能够负载较多的催化剂。为了在进一步减少压力损失的同时负载更多的催化剂,气孔率优选为50%以上,更优选为55%以上。另外,气孔率例如为80%以下,由此在蜂窝结构体1中确保某种程度的机械强度。为了进一步提高机械强度,气孔率优选为75%以下,更优选为70%以下。开口气孔率例如可以通过将纯水作为介质利用阿基米德法而进行测定。应予说明,气孔率例如可以通过在制造多孔质材料时使用的造孔材料的量、烧结助剂的量、烧成气氛等而进行调整。另外,气孔率也可以通过后述的骨料原料与粘结材料原料的比率而进行调整。

在多孔质材料2中,平均细孔径优选为10μm以上,更优选为15μm以上。另外,平均细孔径优选为40μm以下,更优选为30μm以下。平均细孔径小于10μm的情况下,有时压力损失变大。平均细孔径超过40μm的情况下,将多孔质材料2作为dpf等使用时,有时废气中的粒子状物质中的一部分未被捕集而通过dpf等。平均细孔径通过汞压法(依据jisr1655)进行测定。

另外,优选:细孔径小于10μm的细孔为细孔整体的20%以下,细孔径超过40μm的细孔为细孔整体的10%以下。由于细孔径小于10μm的细孔负载催化剂时容易堵塞,因此细孔径小于10μm的细孔超过细孔整体的20%时,有时压力损失变大。由于细孔径超过40μm的细孔容易使粒子状物质通过,因此细孔径大于40μm的细孔超过细孔整体的10%时,有时过滤器功能降低。

多孔质材料2的弯曲强度例如为5.0mpa(兆帕斯卡)以上。由此,能够进一步提高多孔质材料2的耐热冲击性。多孔质材料2的弯曲强度优选为6.0mpa以上,更优选为7.0mpa以上。多孔质材料2的弯曲强度的上限设想为40mpa左右。弯曲强度可以通过依据jisr1601的弯曲试验进行测定。

已知:使多孔质材料2(蜂窝结构体1)负载沸石等scr催化剂而使用的情况下,在多孔质材料2含有钠等碱金属成分时,高温下的老化(热处理)会导致nox净化性能降低。因此,在抑制因上述老化所致的nox净化性能降低的情况下,碱金属成分相对于多孔质材料2整体的质量比率优选小于0.1质量%,更优选为0.03质量%以下。碱金属成分的质量比率可以利用icp发射光谱法进行测定。

<多孔质材料的制造方法>

图5是表示制造多孔质材料2的处理流程的图。此处,通过多孔质材料2的制造来制造蜂窝结构体1。即,多孔质材料2被制造成蜂窝结构体1。

首先,混合作为骨料粒子3的骨料原料、通过烧成而生成粘结材料4的粘结材料原料、和造孔材料,根据需要,添加粘合剂、表面活性剂、水等,由此准备成型原料。骨料原料包含碳化硅粒子或氮化硅粒子。骨料原料的平均粒径优选为5μm以上,更优选为10μm以上。骨料原料的平均粒径优选为100μm以下,更优选为40μm以下。

在成型原料中,将骨料原料设为100质量%时,粘结材料原料的比率例如为9.0质量%~67.0质量%。粘结材料原料例如包含堇青石化原料。堇青石化原料是指通过烧成而生成堇青石结晶的原料。堇青石化原料包含氧化铝成分、二氧化硅成分和氧化镁成分。氧化铝成分不仅包含氧化铝,还包含在含有铝和氧的原料中的、达到氧化铝的组成比的铝和氧。二氧化硅成分不仅包含二氧化硅,还包含在含有硅和氧的原料中的、达到二氧化硅的组成比的硅和氧。氧化镁成分不仅包含氧化镁,还包含在含有镁和氧的原料中的、达到氧化镁的组成比的镁和氧。

粘结材料原料进一步含有铜、钙和镍中的至少一种作为辅助成分。辅助成分以含有辅助成分的氧化物、碳酸盐等作为原料并包含于粘结材料原料中。辅助成分的原料例如为氧化铜(cuo)、碳酸钙(caco3)等。辅助成分的原料的质量比率相对于粘结材料原料的整体而言例如为0.5质量%以上,优选为1.0质量%以上。辅助成分的原料的质量比率例如为10.0质量%以下,优选为8.0质量%以下。如上所述,在多孔质材料2中,辅助成分并不一定仅包含于粘结材料4中,在多孔质材料2的制造中,将辅助成分的原料视为粘结材料原料的一部分。

粘结材料原料优选进一步含有氢氧化铝(al(oh)3)。通过在粘结材料原料中一并添加氢氧化铝,能够进一步降低所制造的多孔质材料2的热膨胀系数。为了更可靠地降低热膨胀系数,氢氧化铝的质量比率相对于粘结材料原料的整体而言例如为1质量%以上,优选为3质量%以上。氢氧化铝的质量比率例如为30质量%以下,优选为25质量%以下。粘结材料原料中包含氢氧化铝的情况下,使用锶代替辅助成分时也能够降低所制造的多孔质材料的热膨胀系数。含有锶的原料例如为碳酸锶(srco3)、氧化锶(sro)等。锶的原料所优选的质量比率与辅助成分的原料相同。如上所述,为了制造热膨胀系数低的多孔质材料,粘结材料原料优选含有辅助成分或锶,并进一步含有氢氧化铝,所述辅助成分为铜、钙和镍中的至少一种,粘结材料原料可以进一步含有二氧化铈(ceo2)等其它成分。

作为粘合剂,可以举出甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素、羧甲基纤维素、聚乙烯醇等有机粘合剂。粘合剂的含量相对于成型原料整体而言优选为2~10质量%。

作为表面活性剂,可以使用乙二醇、糊精、脂肪酸皂、多元醇等。它们可以单独使用1种,也可以组合2种以上使用。表面活性剂的含量相对于成型原料整体而言优选为2质量%以下。

作为造孔材料,只要是在烧成后变为气孔的材料即可,没有特别限定,例如可以举出石墨、淀粉、发泡树脂、吸水性树脂、硅胶等。造孔材料的含量相对于成型原料整体而言优选为40质量%以下。造孔材料的平均粒径优选为10μm以上。另外,造孔材料的平均粒径优选为70μm以下。造孔材料的平均粒径小于10μm时,有时无法充分形成气孔。造孔材料的平均粒径大于70μm的情况下,例如将本实施方式的多孔质材料作为dpf等使用时,有时废气中的粒子状物质的一部分没有被捕集而通过dpf等。应予说明,造孔材料为吸水性树脂时,平均粒径为吸水后的值。水的含量按成为易于成型的坯土硬度进行适当调整,相对于成型原料整体而言,优选为20~80质量%。

接下来,通过对成型原料进行混炼而形成坯土。作为将成型原料混炼而形成坯土的方法,没有特别限制,例如可以举出使用捏合机、真空练泥机等的方法。然后,将坯土挤出成型而形成蜂窝成型体(成型体)。应予说明,坯土也包含于成型原料的概念中。在挤出成型中,优选使用具有所希望的整体形状、隔室形状、隔壁厚度、隔室密度等的口模。作为口模的材质,优选不易磨损的超硬合金。蜂窝成型体为具有区划形成作为流体的流路的多个隔室的隔壁、和位于最外周的筒状外壁的结构。对于蜂窝成型体的隔壁厚度、隔室密度、筒状外壁的厚度等,通过考虑干燥、烧成中的收缩,根据所要制作的蜂窝结构体的结构而适当地决定。如上所述地将混合有骨料原料、粘结材料原料和造孔材料的混合物(成型原料)成型而得到成型体(步骤s11)。

蜂窝成型体优选在后述的烧成前进行干燥。干燥的方法没有特别限定,例如可以举出微波加热干燥、高频感应加热干燥等电磁波加热方式和热风干燥、过热水蒸气干燥等外部加热方式。其中,从能够以不产生裂纹的方式迅速且均匀地干燥整个成型体方面考虑,优选以电磁波加热方式使一定量的水分干燥后,利用外部加热方式使剩余的水分干燥。该情况下,在蜂窝成型体中,例如利用电磁波加热方式,相对于干燥前的水分量除去30~99质量%的水分后,利用外部加热方式而使水分为3质量%以下。作为电磁波加热方式,优选感应加热干燥,作为外部加热方式,优选热风干燥。

另外,蜂窝成型体在隔室的延伸方向的长度不是所希望的长度时,优选通过切断而制成所希望的长度。切断方法没有特别限定,可以举出使用圆盘锯切割机等的方法。

接下来,对成型体进行烧成而得到烧成体(步骤s12)。此处,在烧成之前,为了除去粘结剂等,优选进行预烧。预烧在大气气氛中例如以200~600℃进行0.5~20小时。烧成在填充有氮、氩等不活泼气体的不活泼气氛下(氧分压为10-4气压以下)进行。烧成温度例如为1300℃以上。在本实施方式中,通过成型体的烧成而生成以堇青石为主成分的粘结材料,以形成有细孔的状态由粘结材料对骨料粒子之间进行粘结。烧成温度优选为1330℃以上,更优选为1350℃以上。烧成温度例如为1600℃以下,优选为1500℃以下。烧成时的压力优选为常压。烧成时间例如为1小时~20小时。

在烧成工序之后,对烧成体实施氧化性气氛下的热处理(氧化处理),由此得到作为蜂窝结构体的多孔质材料(步骤s13)。氧化性气氛例如为大气气氛(可以含有水蒸气)。如上所述,骨料原料包含属于非氧化物的碳化硅粒子或氮化硅粒子,通过进行氧化处理而在该粒子的表面形成氧化膜。由此,在多孔质材料中得到优异的抗氧化性。

为了适当地形成氧化膜,氧化处理的温度优选为1100℃以上,更优选为1150℃以上。氧化处理的温度优选为1300℃以下,更优选为1270℃以下。氧化处理的时间例如为1小时~20小时。通过变更氧化处理的条件,能够一定程度地调整氧化膜的厚度。预烧、烧成和氧化处理例如可以使用电炉、燃气炉等进行。在通过上述处理而制造的多孔质材料中,由于烧成前后的尺寸变化较小,因此能够提高尺寸精度,能够提高蜂窝结构体的生产率。

<实施例>

接下来,对实施例进行叙述。此处,作为实施例1~9和比较例1、2,以表1中示出的条件来制作多孔质材料(蜂窝结构体)。

[表1]

(实施例1~9)

首先,将作为骨料原料的粉末状的碳化硅(sic)和粉末状的粘结材料原料混合,准备基础粉末。基础粉末中的骨料原料的质量比率和粘结材料原料的质量比率(均为相对于基础粉末的整体的质量比率)如表1中的“骨料原料的比例”和“粘结材料原料的比例”所示。另外,粘结材料原料的各材料的质量比率(相对于粘结材料原料的整体的质量比率)如“粘结材料原料的组成”所示。

接下来,在上述基础粉末中添加造孔材料、粘合剂和水而得到成型原料。其后,使用捏合机进行混炼,得到可塑性的坯土(成型原料)。使用真空练泥机将得到的坯土成型加工成圆柱状(圆筒状),将得到的圆柱状的坯土投入到挤出成型机中,通过挤出成型而得到蜂窝状的蜂窝成型体。实施对蜂窝成型体进行微波干燥、接着使用热风干燥机进行干燥的二阶段干燥。切断蜂窝成型体的两端部而整理为规定的长度后,实施在大气气氛下以规定温度进行脱脂的脱脂处理(预烧处理)。然后,在不活泼气体气氛下(氩气气氛下)将蜂窝成型体烧成,接着,在大气中进行氧化处理。烧成时的温度(烧成温度)和氧化处理的温度(氧化温度)如表1所示。由此,得到实施例1~9的蜂窝结构的多孔质材料(蜂窝结构体)。

(比较例1、2)

对于比较例1、2的多孔质材料的制作,未在成型原料中加入辅助成分(在表1中为氧化铜(cuo)、碳酸钙(caco3))和氢氧化铝(al(oh)3),除此之外,与实施例1~9相同。另外,在比较例2中没有进行氧化处理。

(多孔质材料的各种测定)

对制作的多孔质材料,利用icp发射光谱法,对sio2、al2o3、mgo、ceo2、cuo、cao、sro的各成分的质量比率进行定量。将针对实施例1~9和比较例1、2的多孔质材料的定量结果示于表2。

[表2]

进一步对骨料粒子中的氧化膜的有无和厚度、开口气孔率、蜂窝弯曲强度、弯曲强度以及热膨胀系数进行测定。将对实施例1~9和比较例1、2的多孔质材料的测定结果示于表3。

[表3]

在骨料粒子中的氧化膜(sio2膜)的有无的判定中,使用金刚石浆料等对用树脂包裹的多孔质材料进行镜面研磨,在得到的截面(研磨面)中以1500倍的倍率对粒子主体(sic)的周围进行观察。在表3中,将能够确认到氧化膜的情形表示为“有”,将未能确认到氧化膜的情形表示为“无”。另外,在另行进行的x射线衍射解析中,在具有氧化膜的多孔质材料中检测到方英石,确认氧化膜为方英石。另外,在x射线衍射解析中,在实施例1~9和比较例1、2的所有多孔质材料中检测到了堇青石。

另外,在氧化膜的厚度的测定中,在上述截面中以750倍的倍率对粒子主体的周围进行观察。详细而言,从倍率750倍的视野中任意选择15个位置,在各位置对从氧化膜和细孔的界面到氧化膜和粒子主体的界面的长度进行测定,将这些长度的平均值作为氧化膜的厚度。

对于开口气孔率,使用从多孔质材料中切出为20mm×20mm×0.3mm的大小的板片,以纯水为介质,利用阿基米德法进行测定。在实施例1~9和比较例1、2的多孔质材料中得到几乎相同的开口气孔率。在蜂窝弯曲强度的测定中,从蜂窝结构体(多孔质材料)中切出纵3个隔室×横5个隔室×长度30~40mm的试验片,依据jisr1601,与隔室贯通的长度方向垂直地进行四点弯曲试验。

在弯曲强度的测定中,将蜂窝结构体加工成以隔室贯通的方向为长度方向、纵0.3mm×横4mm×长度40mm的试验片,与蜂窝弯曲强度的测定同样地进行依据jisr1601的弯曲试验。在实施例1~9和比较例1、2的所有多孔质材料中得到从耐热冲击性的观点来看所需要的值以上的弯曲强度。在热膨胀系数的测定中,从蜂窝结构体中切出纵3个隔室×横3个隔室×长度20mm的试验片,利用依据jisr1618的方法,对与蜂窝结构体的流路平行的方向的40~250℃下的平均线性热膨胀系数(热膨胀系数)进行测定。

在表3中,设有“耐热冲击性”、“抗氧化性”和“综合评价”的项目。对于耐热冲击性的评价,对热膨胀系数小于5.5ppm/k的多孔质材料标记“◎”,对热膨胀系数为5.5ppm/k以上且小于6.5ppm/k的多孔质材料标记“〇”,对热膨胀系数为6.5ppm/k以上的多孔质材料标记“×”。另外,对于抗氧化性的评价,对氧化膜的厚度为1.2μm以上的多孔质材料标记“◎”,对氧化膜的厚度小于1.2μm且为1.0μm以上的多孔质材料标记“〇”,对氧化膜的厚度小于1.0μm的多孔质材料标记“×”。对于综合评价,对耐热冲击性和抗氧化性这两者的评价结果为◎的多孔质材料标记“◎”,对耐热冲击性和抗氧化性中任一者的评价结果为×的多孔质材料标记“×”,对其余多孔质材料标记“〇”。

如表1和表3所示,在进行了氧化处理的实施例1~9和比较例1的多孔质材料中确认有厚度为1.0~1.5μm的氧化膜,在没有进行氧化处理的比较例2的多孔质材料中没有确认到氧化膜。在具有氧化膜的多孔质材料中,可以认为抗氧化性提高。如表2和表3所示,在具有氧化膜且不含有辅助成分(cuo和cao)的比较例1的多孔质材料中,热膨胀系数变高。与此相对,在具有氧化膜且含有辅助成分的实施例1~8的多孔质材料中,与比较例1的多孔质材料相比热膨胀系数变低。因此,可以认为在通过形成氧化膜而提高多孔质材料的抗氧化性的情况下,通过在多孔质材料中含有辅助成分,使多孔质材料的热膨胀系数变低,耐热冲击性提高。另外,制造时的粘结材料原料不含有辅助成分但含有锶、且进一步含有氢氧化铝的实施例9的多孔质材料也是热膨胀系数变低。另外,认为虽然在实施例1~8的多孔质材料中没有含有镍作为辅助成分,但镍与铜同样为2价,两者的离子半径相近(以6配位计cu2+ni2+),因此,镍也容易固溶于方英石内,含有镍作为辅助成分的多孔质材料也同样热膨胀系数变低。

<变形例>

在上述多孔质材料2、蜂窝结构体1和多孔质材料的制造方法中可以进行各种变形。

多孔质材料2可以形成为除蜂窝结构体1以外的形态,也可以用于除过滤器以外的各种用途。骨料粒子3可以根据多孔质材料2的用途而含有多种物质的粒子。粘结材料4的主成分可以为堇青石以外的材料,例如可以为玻璃。

多孔质材料2和蜂窝结构体1的制造方法不限定于上述制造方法,可以进行各种变更。

上述实施方式和各变形例的构成只要不相互矛盾,就可以进行适当的组合。

虽然已经对发明进行了详细的描述和说明,但已叙述的说明是例示性的而非限定性的。因此,可以说只要不脱离本发明的范围,就可以为许多的变形、方案。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1