一种超宽温细晶高介无铅多层陶瓷电容器介质材料及其制备方法与流程

文档序号:18456220发布日期:2019-08-17 01:37阅读:232来源:国知局
一种超宽温细晶高介无铅多层陶瓷电容器介质材料及其制备方法与流程

本发明提供一种超宽温细晶高介的无铅电容器陶瓷介质材料及其制备方法,主要应用于多层陶瓷电容器等表面贴装电子元器件,属于电子信息材料的技术领域。



背景技术:

多层陶瓷电容器是电子信息设备的重要基础元器件,也是全球需求量最大的表面贴装电子元器件。近年来,随着电子产品的需求不断增长,对于新型陶瓷电容器材料的标准也不断提高,例如应用于航空航天、汽车传感器和石油钻井等领域的电容器,都需要在极端环境下(大于200℃)长时间运行,这就需要这些电子设备中的电子元器件工作温度范围能延伸到200℃以上,甚至更高达到300℃。现有商用的x8r、x9r型陶瓷电容器虽然工作温度下限达到-55℃,但是工作温度上限都不超过200℃,不能满足高温应用的需求,大大限制了高温电子器件的发展。因此,研究超宽温的多层陶瓷电容器介电材料是目前电子元器件发展的一个重要方向。

当前,用于制造高温稳定多层陶瓷电容器的介质材料研究主要分为两类,第一类研究目的是要突破材料最高的使用温度上限(300℃-500℃),其中间介电常数能够达到2000,甚至更高,但是低温段一般在50℃以上,不符合eia标准中低温-55℃的要求;第二类研究是按照eia标准研究超宽温的陶瓷电容器材料,这类材料的温度稳定区间能在-55℃-300℃之间,但室温介电常数只能保持在500左右,大大影响了多层陶瓷电容器的体积效率,另外,对这类材料的研究大多数没有考虑到宽温范围内介电损耗的温度稳定性,所以很难应用到商业当中。近期,有研究者以bi0.5na0.5tio3-batio3为基体,通过添加nanbo3和cazro3进行改性,实现了在-55℃-300℃范围内,电容温度变化率△c/c25℃≤±15%,同时在-55℃-300℃范围内,介电损耗低于2.5%。(jiawenxu等,journaloftheamericanceramicsociety卷:101期:8页:3468-3479出版年:aug2018)。但是,需要说明的是该材料在具有优异温度稳定性的同时,标准室温介电常数却不到650,低介电常数会导致电容体积效率低,不利于发展大容量高温陶瓷电容器。此外,这种陶瓷材料的晶粒尺寸过大(大于2μm),不利于在有限的体积内介质膜叠层数的提升,限制了其在多层陶瓷电容器方面的应用与发展。



技术实现要素:

本发明所要解决的技术问题是针对现有的陶瓷介质材料在同时满足宽工作温度范围内的电容温度稳定性(△c/c25℃≤±15%)与低介电损耗(tanδ≤2.5%)的情况下,很难保持较高的介电常数和具备较小的晶粒尺寸,而提供一种在介电常数和介电损耗同时稳定的区间内具有较高相对介电常数的细晶无铅电容器陶瓷介质材料及其制备方法,该陶瓷介质材料在超宽的温度范围内(-55℃-320℃)在保持优异的电容温度稳定性(△c/c25℃≤±15%)同时,介电损耗都低于2.5%,在1khz的测试频率下,相对介电常数在840左右,晶粒尺寸均匀保持在1.4μm左右。

本发明通过如下技术方案予以实现。

一种超宽温细晶高介无铅电容器陶瓷介电材料,其化学组成为(1-x)(0.56bi1/2na1/2tio3-0.14bi1/2k1/2tio3-0.3nanbo3)-xcazro3,其中x=0.06-0.08,优选0.06。

上述超宽温高介电细晶无铅电容器陶瓷介电材料的工作温度范围为:-55℃-320℃。

一种新型多层陶瓷电容器用介质材料的制备方法,具有如下步骤:

(1)根据化学式(1-x)(0.56bi1/2na1/2tio3-0.14bi1/2k1/2tio3-0.3nanbo3)-xcazro3,其中x=0.06-0.08中各金属元素的摩尔比,称取适量的bi2o3、na2co3、k2co3、tio2、nb2o5、caco3和zro2作为起始原料,并将这几种原料于100℃的温度下烘干8h;

(2)按照表达式中金属原子的化学摩尔计量比称取bi2o3、na2co3、k2co3、tio2、nb2o5、caco3和zro2并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;

(3)把步骤(2)预烧后制得的粉体用玛瑙研钵研碎,再二次球磨12小时将粉体磨细,接着以聚乙烯醇缩丁醛酒精溶液(优选质量百分比浓度为10wt%)作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温4小时以排出胶体,再在高温炉空气气氛中1150℃烧结,保温3小时后随炉自然冷却至室温,即制得超宽温细晶高介电的无铅电容器陶瓷介质材料。

与现有技术相比较,本发明具有以下优点:

本发明方法解决了传统以钛酸钡为基体的介质材料,其工作温度范围(△c/c25℃≤±15%)很难延伸至200℃以上的难题。同时改善了现有钛酸铋钠基超宽温陶瓷电容器材料介电常数低(<650)的缺点。得到的最优组分陶瓷的晶粒尺寸小,能均匀保持在1.4μm左右,并且材料介电性能优异,工作温度范围(△c/c25℃≤±15%)能保持在-55℃-320℃之间,同时该体系在这温度区间内介电损耗都低于2.5%。更重要的是,该材料相对介电常数比其他超宽温电容器瓷介质材料要高(可达到840)。该材料不含对环境有害物质、原材料成本低,具有良好的应用前景。

附图说明

采用德国bruker公司d8-advance型x射线衍射仪测定样品的相结构,hitachis–4800扫描电子显微镜测定所制备材料的显微形貌。采用精密数字电桥(agilente4980a)在1khz下测试该介电材料的介电常数和介电损耗随温度变化的关系。

图1:实施例1、2和对比例1、2制备的陶瓷介质材料的xrd图谱。

图2:实施例1、2和对比例1、2制备的陶瓷介电材料的断面扫描电镜图。其中,扫描电镜中a,b,c,d分别代表具体实施例1、实施例2、对比例1、对比例2。

图3:实施例1、2和对比例1、2制备的陶瓷介电材料的容温变化率与温度的关系曲线。

图4:实施例1制备的陶瓷介电材料在1khz频率下介电常数及介电损耗与温度的关系曲线。

图5:实施例2制备的陶瓷介电材料在1khz频率下介电常数及介电损耗与温度的关系曲线。

图6:对比例1制备的陶瓷介电材料在1khz频率下介电常数及介电损耗与温度的关系曲线。

图7:对比例2制备的陶瓷介电材料在1khz频率下介电常数及介电损耗与温度的关系曲线。

具体实施方式

下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。

实施例1

(1)根据表达式(1-x)(0.56bi1/2na1/2tio3-0.14bi1/2k1/2tio3-0.3nanbo3)-xcazro3,x=0.06,称取适量的bi2o3、na2co3、k2co3、tio2、nb2o5、caco3和zro2作为起始原料,并将这几种原料于100℃的温度下烘干8h;

(2)按照表达式中金属原子的化学计量比称取bi2o3、na2co3、k2co3、tio2、nb2o5、caco3和zro2并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;

(3)把步骤(2)预烧后制得的粉体用玛瑙研钵研碎,再二次球磨12小时将粉体磨细,接着以10wt%的聚乙烯醇缩丁醛酒精溶液作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温4小时以排出胶体,再在高温炉空气气氛中1150℃烧结,保温3小时后随炉自然冷却至室温,即制得超宽温细晶高介的无铅电容器陶瓷介质材料x=0.06。

实施例2

(1)根据表达式(1-x)(0.56bi1/2na1/2tio3-0.14bi1/2k1/2tio3-0.3nanbo3)-xcazro3,x=0.08,称取适量的bi2o3、na2co3、k2co3、tio2、nb2o5、caco3和zro2作为起始原料,并将这几种原料于100℃的温度下烘干8h;

(2)按照表达式中金属原子的化学计量比称取bi2o3、na2co3、k2co3、tio2、nb2o5、caco3和zro2并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;

(3)把步骤(2)预烧后制得的粉体用玛瑙研钵研碎,再二次球磨12小时将粉体磨细,接着以10wt%的聚乙烯醇缩丁醛酒精溶液作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温4小时以排出胶体,再在高温炉空气气氛中1150℃烧结,保温3小时后随炉自然冷却至室温,即制得超宽温细晶高介的无铅电容器陶瓷介质材料x=0.08。

对比例1

(1)根据表达式(1-x)(0.56bi1/2na1/2tio3-0.14bi1/2k1/2tio3-0.3nanbo3)-xcazro3,x=0,称取适量的bi2o3、na2co3、k2co3、tio2和nb2o5作为起始原料,并将这几种原料于100℃的温度下烘干8h;

(2)按照表达式中金属原子的化学计量比称取bi2o3、na2co3、k2co3、tio2和nb2o5并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;

(3)把步骤(2)预烧后制得的粉体用玛瑙研钵研碎,再二次球磨12小时将粉体磨细,接着以10wt%的聚乙烯醇缩丁醛酒精溶液作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温4小时以排出胶体,再在高温炉空气气氛中1150℃烧结,保温3小时后随炉自然冷却至室温,即制得超宽温细晶高介的无铅电容器陶瓷介质材料x=0.00。

对比例2

(1)根据表达式(1-x)(0.56bi1/2na1/2tio3-0.14bi1/2k1/2tio3-0.3nanbo3)-xcazro3,x=0.04,称取适量的bi2o3、na2co3、k2co3、tio2、nb2o5、caco3和zro2作为起始原料,并将这几种原料于100℃的温度下烘干8h;

(2)按照表达式中金属原子的化学计量比称取bi2o3、na2co3、k2co3、tio2、nb2o5、caco3和zro2并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;

(3)把步骤(2)预烧后制得的粉体用玛瑙研钵研碎,再二次球磨12小时将粉体磨细,接着以10wt%的聚乙烯醇缩丁醛酒精溶液作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温4小时以排出胶体,再在高温炉空气气氛中1150℃烧结,保温3小时后随炉自然冷却至室温,即制得超宽温细晶高介的无铅电容器陶瓷介质材料x=0.04。

由图1可知,制备的陶瓷样品均呈现钙钛矿结构,无第二相生成。

由图2可知,制备的陶瓷样品均呈现致密的显微组织结构,晶粒细小,随着cazro3的增加,晶粒尺寸从1.8μm减小到1.2μm,其中实施例1的晶粒大小约为1.4μm,实施例2的晶粒大小约为1.2μm。

由图3可知,随着添加cazro3含量增加,电容量的变化率满足△c/c25℃≤±15%的温度区间随之拓宽。当x=0.06时,所得介电材料在从-55℃-350℃温度范围内具有良好的容温稳定性,当x=0.08时,容温稳定温度范围能够达到-70℃-400℃。

由图4可知当x=0.06时,所得介电材料在从-55℃-320℃温度范围内具有良好的介电常数温度稳定性,同时样品的介电损耗在该区间内都低于2.5%,并且室温下相对介电常数能够在840左右,所以此组分最适宜制备超宽温多层陶瓷电容器。

由图5可知,当x=0.08时,所得介电材料在从-70℃-290℃温度范围内具有良好的介电常数温度稳定性,同时样品的介电损耗在该区间内都低于2.5%,其介电常数有所减少,样品室温介电常数在700左右,但也相比于前人研究有一定提升。

由图6和图7,可知当x=0和x=0.04,所得介电材料相比于x=0.06的样品,虽然室温相对介电常数较高(>1000),但是其△c/c25℃≤±15%区间的低温段没有达到-55℃,不符合eia标准要求。并且x=0样品的低温介电损耗明显提升,仅在24℃-320℃范围内介电损耗低于2.5%。综上,当x=0和x=0.04时,所得的电介质材料不适宜制备超宽温多层陶瓷电容器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1