一种碳氮化铀锆粉末的微波合成方法与流程

文档序号:18518052发布日期:2019-08-24 09:35阅读:405来源:国知局
一种碳氮化铀锆粉末的微波合成方法与流程

本发明属于核燃料制备技术领域,涉及一种碳氮化铀锆粉末的微波合成方法。



背景技术:

碳氮化物核燃料一般指(u,x)(c,n)形式的燃料,其可能添加金属元素x(例如zr)提高燃料熔点及分解温度,其燃料性能(图1、图2)也类似于碳化物燃料、氮化物燃料的结合体:燃料蒸汽压大于碳化物燃料,低于氮化物燃料;燃料辐照肿胀低于碳化物燃料,大于氮化物燃料;热导率同样远高于氧化物燃料;同时其具备类似氧化物燃料的高温稳定性。这种新型高性能燃料一般用于特种核动力系统。

目前世界各国中,俄罗斯(前苏联)对(u,zr)(c,n)的研究最为广泛,虽然其用于特种核动力系统,但目前俄罗斯方面已有计划将其应用于商用快堆领域。其他西方国家对此燃料研究较少,仅见德国方面20世纪70年代有相关报道。

德国koushen等合成(u,zr)(c,n)粉末的方法为:直接将uo2、zro2、c粉末按比例(3:1、1:1、1:3)混合,在1800℃、1975℃下保温4-16小时,得到(u,zr)(c,n)粉末。实验结果表明:1800℃下u(c,n)与zr(c,n)为独立双峰,无法得到(u,zr)(c,n)单相粉末;1975℃下保温4小时后开始形成(u,zr)(c,n)固溶体;1975℃保温16小时以上(u,zr)(c,n)固溶体才能完全形成。

俄罗斯合成(u,zr)(c,n)粉末的方法为:将uo2、zro2、c粉末混合均匀,压成40-50%相对密度的压坯,反应温度为1700-2000℃,升温速率为15-25℃/min,反应时间为3-5小时,炉内通以10.1kpa的流动氮气。过高的氮气压力将导致u-c-n-o固溶体的产生,而过低氮气压力不足以完成反应。俄罗斯研究表明:较高的合成温度将导致坯体的烧结,增加后期破碎制粉工序的难度。

从俄罗斯、德国等国研究经验来看,将uo2、zro2、c粉末混合,在1700-2000℃下进行碳热还原氮化反应,是制备(u,zr)(c,n)粉末的主流工艺路线,但该工艺路线存在反应温度较低难以形成固溶体,过高坯体易烧结结块的缺点,因此需开发新的工艺方法克服这些缺点。



技术实现要素:

本发明的目的是提供一种碳氮化铀锆粉末的微波合成方法,以可在较低的反应温度直接获得(u,zr)(c,n)单一固溶体相,且合成得到的(u,zr)(c,n)粉末活性高,可直接用于后续芯块烧结工序。

为实现此目的,在基础的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,所述的微波合成方法依次包括如下步骤:

(1)球磨:称量uo2粉末、zro2粉末、碳粉后混合均匀,倒入球磨罐,添加磨球进行球磨;

(2)压制:将球磨后的物料倒出,球料分离并过筛,在液压机上将球磨后原料粉末压制成生坯;

(3)微波煅烧:将生坯放入微波高温炉内,抽真空后通入气氛气体,微波加热升温至1300-1600℃后保温煅烧,得到碳氮化铀锆粉末。

在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(1)中,碳粉的摩尔量值与uo2粉末、zro2粉末的摩尔量值的和的比值为2.6-2.9。

在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(1)中,球磨条件为:球料体积比为3:1-5:1,球磨转速为300-500转/分,球磨时间为4-16小时。

在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(2)中,压制压力为50-100mpa,压制时间为10-30s。

在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(3)中,抽真空至10-3pa以下。

在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(3)中,所述的气氛气体为高纯n2,通入后保持微波高温炉内n2压力为0.11-0.13mpa。

在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(3)中,保温煅烧时间为1-4小时。

本发明的有益效果在于,利用本发明的碳氮化铀锆粉末的微波合成方法,可在较低的反应温度直接获得(u,zr)(c,n)单一固溶体相,且合成得到的(u,zr)(c,n)粉末活性高,可直接用于后续芯块烧结工序。

本发明可以显著降低(u,zr)(c,n)粉末的合成反应温度,由常规方法的1700-2000℃降低至1300-1600℃。由于合成反应温度较低,因此也避免合成得到的(u,zr)(c,n)粉末在高温下自发烧结,无需对其进行破碎即可进行芯块制备等后续工序,降低了(u,zr)(c,n)燃料生产总体成本。

附图说明

图1为不同核燃料辐照肿胀对比图。

图2为不同核燃料蠕变速率对比图。

图3为实施例中本发明的碳氮化铀锆粉末的微波合成方法的流程图。

图4为实施例1制备的(u,zr)(c,n)粉末的xrd衍射图谱。

图5为实施例2制备的(u,zr)(c,n)粉末的xrd衍射图谱。

图6为实施例3制备的(u,zr)(c,n)粉末的xrd衍射图谱。

具体实施方式

以下通过实施例对本发明的具体实施方式作出进一步的说明。

实施例1:碳氮化铀锆粉末的微波合成(一)

称量uo2粉17.75g、zro2粉24.10g、碳粉8.15g,混合后放入高能球磨机球磨,条件为:球料体积比为3:1,球磨转速为300转/分,球磨时间为16小时。

将球磨后的物料倒出,球料分离并过筛后得到混合粉末,在液压机上使用硬质合金模具将混合粉末压制成生坯,压制压力为50mpa,保压时间30s。

将压制得到的生坯放入微波高温炉内,抽真空至10-3pa,持续通入高纯n2,保持炉内n2压力为0.13mpa,开启微波加热,升温至1600℃,保温1小时,得到(u,zr)(c,n)粉末,为(u,zr)(c,n)单一固溶体相,松装密度2.3g/cm3,可直接用于后续烧结工序。

实施例2:碳氮化铀锆粉末的微波合成(二)

称量uo2粉29.57g、zro2粉13.38g、碳粉7.05g,混合后放入高能球磨机球磨,条件为:球料体积比为4:1,球磨转速为400转/分,球磨时间为8小时。

将球磨后的物料倒出,球料分离并过筛后得到混合粉末,在液压机上使用硬质合金模具将混合粉末压制成生坯,压制压力为80mpa,保压时间20s。

将压制得到的生坯放入微波高温炉内,抽真空至10-3pa,持续通入高纯n2,保持炉内n2压力为0.12mpa,开启微波加热,升温至1400℃,保温2小时,得到(u,zr)(c,n)粉末,为(u,zr)(c,n)单一固溶体相,松装密度2.7g/cm3,可直接用于后续烧结工序。

实施例3:碳氮化铀锆粉末的微波合成(三)

称量uo2粉38.00g、zro2粉5.73g、碳粉6.27g,混合后放入高能球磨机球磨,条件为:球料体积比为5:1,球磨转速为500转/分,球磨时间为4小时。

将球磨后的物料倒出,球料分离并过筛后得到混合粉末,在液压机上使用硬质合金模具将混合粉末压制成生坯,压制压力为100mpa,保压时间10s。

将压制得到的生坯放入微波高温炉内,抽真空至10-3pa,持续通入高纯n2,保持炉内n2压力为0.11mpa,开启微波加热,升温至1300℃,保温4小时,得到(u,zr)(c,n)粉末,为(u,zr)(c,n)单一固溶体相,松装密度3.0g/cm3,可直接用于后续烧结工序。

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1